Advertisement

Current Heart Failure Reports

, Volume 11, Issue 3, pp 321–329 | Cite as

Cerebral Impairment in Heart Failure

  • Jennifer A. Ogren
  • Gregg C. Fonarow
  • Mary A. WooEmail author
Comorbidities of Heart Failure (CE Angermann, Section Editor)

Abstract

Patients with heart failure (HF) exhibit a wide range of symptoms, including dyspnea, sleep-disordered breathing, autonomic abnormalities, cognitive dysfunction, and neuropsychological disturbances. These symptoms, which affect quality of life and morbidity and mortality in the condition, are largely related to structural and functional changes in the brain. There are increasing reports of brain abnormalities in HF, but often the linkages between brain injury and common HF clinical symptomatology are not clearly described. In this review, we will discuss the current evidence of brain injury and the associated clinical symptoms in HF, focusing on those brain regions that are commonly damaged in the condition. We will also provide a brief exploration of some potential mechanisms for brain injury in HF.

Keywords

Brain MRI Dyspnea Breathing Autonomic Sympathetic Blood pressure Cognition Depression Memory Cerebellum Cingulate Insula Amygdala Hippocampus 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Jennifer A. Ogren declares that she has no conflict of interest.

Gregg C. Fonarow has received support through grants from Gambro, NIH/AQRO, and the Ahmanson Foundation, and has received compensation for service as a consultant from Johnson & Johnson, Medtronic, Novartis, Takeda, and The Medicines Company.

Mary A. Woo declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.PubMedCrossRefGoogle Scholar
  2. 2.
    Miller LW, Missov ED. Epidemiology of heart failure. Cardiol Clin. 2001;19(4):547–55.PubMedCrossRefGoogle Scholar
  3. 3.
    National Heart, Lung, and Blood Institute. Mortality and morbidity: 2000 chart book on cardiovascular, lung, and blood diseases. Bethesda: National Institutes of Health; 2000.Google Scholar
  4. 4.
    Opie LH. The neuroendocrinology of congestive heart failure. Cardiovasc J South Afr Off J South Afr Card Soc South Afr Soc Card Pract. 2002;13(4):171–8.Google Scholar
  5. 5.
    Almeida JR, Alves TC, Wajngarten M, et al. Late-life depression, heart failure and frontal white matter hyperintensity: a structural magnetic resonance imaging study. Braz J Med Biol Res. 2005;38(3):431–6.PubMedCrossRefGoogle Scholar
  6. 6.
    Pressler SJ, Subramanian U, Kareken D, et al. Cognitive deficits in chronic heart failure. Nurs Res. 2010;59(2):127–39.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Jiang W, Kuchibhatla M, Clary GL, et al. Relationship between depressive symptoms and long-term mortality in patients with heart failure. Am Heart J. 2007;154(1):102–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Pressler SJ, Kim J, Riley P, et al. Memory dysfunction, psychomotor slowing, and decreased executive function predict mortality in patients with heart failure and low ejection fraction. J Card Fail. 2010;16(9):750–60.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.•
    Alosco ML, Brickman AM, Spitznagel MB, et al. Independent and interactive effects of blood pressure and cardiac function on brain volume and white matter hyperintensities in heart failure. J Am Soc Hypertens. 2013;7(5):336–43. This study shows that elevated blood pressure and reduced cardiac index are associated with a decrease in gray matter volume in heart failure patients.PubMedCrossRefGoogle Scholar
  10. 10.
    Alosco ML, Brickman AM, Spitznagel MB, et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail. 2013;19(4):E29–34.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Peiffer C, Poline JB, Thivard L, et al. Neural substrates for the perception of acutely induced dyspnea. Am J Respir Crit Care Med. 2001;163(4):951–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Parsons LM, Egan G, Liotti M, et al. Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci U S A. 2001;98(4):2041–6.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.•
    Ogren JA, Macey PM, Kumar R, et al. Impaired cerebellar and limbic responses to the valsalva maneuver in heart failure. Cerebellum. 2012;11(4):931–8. This study shows the time course of abnormal brain responses in heart failure patients during autonomic challenge.PubMedCrossRefGoogle Scholar
  14. 14.
    von Leupoldt A, Sommer T, Kegat S, et al. Dyspnea and pain share emotion-related brain network. Neuroimage. 2009;48(1):200–6.CrossRefGoogle Scholar
  15. 15.
    Woo MA, Kumar R, Macey PM, et al. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail. 2009;15(3):214–23.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.•
    Almeida OP, Garrido GJ, Beer C, et al. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J. 2012;33(14):1769–76. This cross-sectional study is one of the few to demonstrate memory impairment and gray matter loss in brain cognitive areas within the same group of heart failure patients.PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar R, Woo MA, Macey PM, et al. Brain axonal and myelin evaluation in heart failure. J Neurol Sci. 2011;307(1–2):106–13.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Cheng DT, Knight DC, Smith CN, et al. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behav Neurosci. 2003;117(1):3–10.PubMedCrossRefGoogle Scholar
  19. 19.
    von Leupoldt A, Sommer T, Kegat S, et al. The unpleasantness of perceived dyspnea is processed in the anterior insula and amygdala. Am J Respir Crit Care Med. 2008;177(9):1026–32.CrossRefGoogle Scholar
  20. 20.
    Banzett RB, Mulnier HE, Murphy K, et al. Breathlessness in humans activates insular cortex. Neuroreport. 2000;11(10):2117–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain. 2007;128(1–2):20–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Henderson LA, Rubin TK, Macefield VG. Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Hum Brain Mapp. 2011;32(10):1592–601.PubMedCrossRefGoogle Scholar
  23. 23.
    Lieber C, Mohsenin V. Cheyne-Stokes respiration in congestive heart failure. Yale J Biol Med. 1992;65(1):39–50.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Javaheri S, Shukla R, Zeigler H, et al. Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol. 2007;49(20):2028–34.PubMedCrossRefGoogle Scholar
  25. 25.
    Bradley TD, Floras JS. Sleep apnea and heart failure: part II: central sleep apnea. Circulation. 2003;107(13):1822–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Woo MA, Macey PM, Fonarow GC, et al. Regional brain gray matter loss in heart failure. J Appl Physiol. 2003;95(2):677–84.PubMedGoogle Scholar
  27. 27.
    Ben-Tal A, Shamailov SS, Paton JF. Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation-perfusion efficiency. J Physiol. 2012;590(Pt 8):1989–2008.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Woo MA, Macey PM, Keens PT, et al. Aberrant central nervous system responses to the Valsalva maneuver in heart failure. Congest Heart Fail. 2007;13(1):29–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Xu F, Frazier DT. Role of the cerebellar deep nuclei in respiratory modulation. Cerebellum. 2002;1(1):35–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Oppenheimer SM, Kedem G, Martin WM. Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clin Auton Res. 1996;6(3):131–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens. 2010;4(4):174–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.PubMedCrossRefGoogle Scholar
  33. 33.
    Cechetto DF, Ciriello J, Calaresu FR. Afferent connections to cardiovascular sites in the amygdala: a horseradish peroxidase study in the cat. J Auton Nerv Syst. 1983;8(2):97–110.PubMedCrossRefGoogle Scholar
  34. 34.
    Allen GV, Cechetto DF. Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area. II. Ascending projections. J Comp Neurol. 1993;330(3):421–38.PubMedCrossRefGoogle Scholar
  35. 35.
    Laowattana S, Zeger SL, Lima JA, et al. Left insular stroke is associated with adverse cardiac outcome. Neurology. 2006;66(4):477–83. discussion 63.PubMedCrossRefGoogle Scholar
  36. 36.
    Cechetto DF, Hachinski V. Cardiovascular consequence of experimental stroke. Bailliere Clin Neurol. 1997;6(2):297–308.Google Scholar
  37. 37.
    Oppenheimer SM, Gelb A, Girvin JP, et al. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42(9):1727–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Bannister R, Sever P, Gross M. Cardiovascular reflexes and biochemical responses in progressive autonomic failure. Brain. 1977;100(2):327–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Harper RM, Gozal D, Bandler R, et al. Regional brain activation in humans during respiratory and blood pressure challenges. Clin Exp Pharmacol Physiol. 1998;25(6):483–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Parisi AF, Harrington JJ, Askenazi J, et al. Echocardiographic evaluation of the Valsalva Maneuver in healthy subjects and patients with and without heart failure. Circulation. 1976;54(6):921–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Woo MA, Macey PM, Keens PT, et al. Functional abnormalities in brain areas that mediate autonomic nervous system control in advanced heart failure. J Card Fail. 2005;11(6):437–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Vogels RL, Oosterman JM, van Harten B, et al. Neuroimaging and correlates of cognitive function among patients with heart failure. Dement Geriatr Cogn Disord. 2007;24(6):418–23.PubMedCrossRefGoogle Scholar
  43. 43.•
    Almeida OP, Garrido GJ, Etherton-Beer C, et al. Brain and mood changes over 2 years in healthy controls and adults with heart failure and ischaemic heart disease. Eur J Heart Fail. 2013;15(8):850–8. In this longitudinal study, heart failure patients showed an increase in severity of symptoms of anxiety and depression over a two-year period, and also showed subtle gray matter loss in areas such as the thalamus and cingulate, which are known to play a significant role in depression.PubMedCrossRefGoogle Scholar
  44. 44.
    Sairafian K, Ogren JA, Macey PM, et al. Depression correlates with right amygdala damage in heart failure patients. ESC Heart Failure Congress. 2013; Lisbon, Portugal, May 17-20.Google Scholar
  45. 45.•
    Pan A, Kumar R, Macey PM, et al. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure. J Card Fail. 2013;19(2):94–100. Like many other studies, this shows brain injury in heart failure in areas regulating cognition and mood. However, unlike previous studies, this establishes that the structural injury is extensive enough so as to be detectable through visual, as opposed to quantitative, assessment of MRI.PubMedCrossRefGoogle Scholar
  46. 46.
    Lutherer LO, Lutherer BC, Dormer KJ, et al. Bilateral lesions of the fastigial nucleus prevent the recovery of blood pressure following hypotension induced by hemorrhage or administration of endotoxin. Brain Res. 1983;269(2):251–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Moruzzi G. Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J Neurophysiol. 1940;3(1):20–32.Google Scholar
  48. 48.
    Shamsham F, Mitchell J. Essentials of the diagnosis of heart failure. Am Fam Physician. 2000;61(5):1319–28.PubMedGoogle Scholar
  49. 49.
    Rutledge T, Reis VA, Linke SE, et al. Depression in heart failure a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J Am Coll Cardiol. 2006;48(8):1527–37.PubMedCrossRefGoogle Scholar
  50. 50.
    Hwang B, Moser DK, Dracup K. knowledge is insufficient for self-care among heart failure patients with psychological distress. Health Psychol 2014;33(7):588–98.Google Scholar
  51. 51.
    Hastings RS, Parsey RV, Oquendo MA, et al. Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29(5):952–9.CrossRefGoogle Scholar
  52. 52.
    Malykhin NV, Carter R, Hegadoren KM, et al. Fronto-limbic volumetric changes in major depressive disorder. J Affect Disord. 2012;136(3):1104–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Pannekoek JN, van der Werff SJ, van den Bulk BG, et al. Reduced anterior cingulate gray matter volume in treatment-naive clinically depressed adolescents. NeuroImage Clin. 2014;4:336–42.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Lorenzetti V, Allen NB, Fornito A, et al. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord. 2009;117(1–2):1–17.PubMedCrossRefGoogle Scholar
  55. 55.
    Bernstein HG, Klix M, Dobrowolny H, et al. A postmortem assessment of mammillary body volume, neuronal number and densities, and fornix volume in subjects with mood disorders. Eur Arch Psychiatry Clin Neurosci. 2012;262(8):637–46.PubMedCrossRefGoogle Scholar
  56. 56.
    Young KA, Holcomb LA, Yazdani U, et al. Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry. 2004;161(7):1270–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Serber SL, Kumar R, Woo MA, et al. Cognitive test performance and brain pathology. Nurs Res. 2008;57(2):75–83.PubMedCrossRefGoogle Scholar
  58. 58.
    Alves TC, Rays J, Fraguas Jr R, et al. Association between major depressive symptoms in heart failure and impaired regional cerebral blood flow in the medial temporal region: a study using 99 m Tc-HMPAO single photon emission computerized tomography (SPECT). Psychol Med. 2006;36(5):597–608.PubMedCrossRefGoogle Scholar
  59. 59.
    Menteer J, Macey PM, Woo MA, et al. Central nervous system changes in pediatric heart failure: a volumetric study. Pediatr Cardiol. 2010;31(7):969–76.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Kumar R, Woo MA, Birrer BV, et al. Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis. 2009;33(2):236–42.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Almeida OP, Flicker L. The mind of a failing heart: a systematic review of the association between congestive heart failure and cognitive functioning. Intern Med J. 2001;31(5):290–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Cacciatore F, Abete P, Ferrara N, et al. Congestive heart failure and cognitive impairment in an older population. Osservatorio Geriatrico Campano Study Group. J Am Geriatr Soc. 1998;46(11):1343–8.PubMedGoogle Scholar
  63. 63.
    Callegari S, Majani G, Giardini A, et al. Relationship between cognitive impairment and clinical status in chronic heart failure patients. Monaldi Arch Chest Dis. 2002;58(1):19–25.PubMedGoogle Scholar
  64. 64.
    Cohen MB, Mather PJ. A review of the association between congestive heart failure and cognitive impairment. Am J Geriatr Cardiol. 2007;16(3):171–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Bennett SJ, Sauve MJ. Cognitive deficits in patients with heart failure: a review of the literature. J Cardiovasc Nurs. 2003;18(3):219–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Petrucci RJ, Truesdell KC, Carter A, et al. Cognitive dysfunction in advanced heart failure and prospective cardiac assist device patients. Ann Thorac Surg. 2006;81(5):1738–44.PubMedCrossRefGoogle Scholar
  67. 67.
    Riegel B, Bennett JA, Davis A, et al. Cognitive impairment in heart failure: issues of measurement and etiology. Am J Crit Care. 2002;11(6):520–8.PubMedGoogle Scholar
  68. 68.
    Zuccala G, Cattel C, Manes-Gravina E, et al. Left ventricular dysfunction: a clue to cognitive impairment in older patients with heart failure. J Neurol Neurosurg Psychiatry. 1997;63(4):509–12.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Bennett SJ, Sauve MJ, Shaw RM. A conceptual model of cognitive deficits in chronic heart failure. J Nurs Scholarsh. 2005;37(3):222–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Rozzini R, Sabatini T, Trabucchi M. Cognitive impairment and mortality in elderly patients with heart failure. Am J Med. 2004;116(2):137–8. author reply 8.PubMedCrossRefGoogle Scholar
  71. 71.
    Trojano L, Antonelli Incalzi R, Acanfora D, et al. Cognitive impairment: a key feature of congestive heart failure in the elderly. J Neurol. 2003;250(12):1456–63.PubMedCrossRefGoogle Scholar
  72. 72.
    Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177(3):385–90.PubMedCrossRefGoogle Scholar
  73. 73.
    Burch GE. The role of the central nervous system in chronic congestive heart failure. Am Heart J. 1978;95(2):255–61.PubMedCrossRefGoogle Scholar
  74. 74.
    Ogren JA, Abouzeid CM, Macey PM, et al. Regional hippocampal damage in heart failure. In Preparation.Google Scholar
  75. 75.
    Ogren JA, Macey PM, Kumar R, et al. Hippocampal volume reductions correlate with impaired memory performance in heart failure. 42nd Annual Meeting of the Society for Neuroscience, New Orleans, LA. Soc Neurosci Abstracts. 2012; 194.23/XX9.Google Scholar
  76. 76.
    Kumar R, Nguyen HD, Ogren JA, et al. Global and regional putamen volume loss in patients with heart failure. Eur J Heart Fail. 2011;13(6):651–5.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Hanninen SA, Darling PB, Sole MJ, et al. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. J Am Coll Cardiol. 2006;47(2):354–61.PubMedCrossRefGoogle Scholar
  78. 78.
    Langlais PJ, Savage LM. Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behav Brain Res. 1995;68(1):75–89.PubMedCrossRefGoogle Scholar
  79. 79.
    Briones TL, Therrien B. Behavioral effects of transient cerebral ischemia. Biol Res Nurs. 2000;1(4):276–86.PubMedCrossRefGoogle Scholar
  80. 80.
    Jefferson AL, Himali JJ, Au R, et al. Relation of left ventricular ejection fraction to cognitive aging (from the Framingham Heart Study). Am J Cardiol. 2011;108(9):1346–51.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.PubMedGoogle Scholar
  82. 82.
    Georgiadis D, Sievert M, Cencetti S, et al. Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur Heart J. 2000;21(5):407–13.PubMedCrossRefGoogle Scholar
  83. 83.
    Kumar R, Woo MA, Wang DJ, et al. Regional reduction in cerebral blood flow in patients with heart failure. International Society for Magnetic Resonance in Medicine Annual Meeting (#2028), Melbourne, Australia, May 5-11, 2012. 2012.Google Scholar
  84. 84.
    Endres M. Statins and stroke. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2005;25(9):1093–110.CrossRefGoogle Scholar
  85. 85.
    Nybo L, Moller K, Volianitis S, et al. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol. 2002;93(1):58–64.PubMedGoogle Scholar
  86. 86.
    Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.PubMedCentralPubMedCrossRefGoogle Scholar
  87. 87.
    Pressler SJ, Therrien B, Riley PL, et al. Nurse-Enhanced Memory Intervention in Heart Failure: the MEMOIR study. J Card Fail. 2011;17(10):832–43.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jennifer A. Ogren
    • 1
  • Gregg C. Fonarow
    • 2
  • Mary A. Woo
    • 1
    Email author
  1. 1.UCLA School of NursingLos AngelesUSA
  2. 2.Department of Medicine, Division of Cardiology, David Geffen School of Medicine at UCLAUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations