Advertisement

Current Heart Failure Reports

, Volume 11, Issue 2, pp 146–155 | Cite as

Interleukin-6 Signaling, Soluble Glycoprotein 130, and Inflammation in Heart Failure

  • Erik Tandberg AskevoldEmail author
  • Lars Gullestad
  • Christen P. Dahl
  • Arne Yndestad
  • Thor Ueland
  • Pål Aukrust
Pathophysiology: Neuroendocrine, Vascular, and Metabolic Factors (SD Katz, Section Editor)

Abstract

Both experimental and clinical evidence accumulated over the last couple of decades has linked inflammatory activation to the initiation and progression of chronic heart failure (HF). Circulating levels of inflammatory mediators are associated with cardiac function and inform risk prediction in patients, but the effect of anti-inflammatory therapy in HF remains uncertain. Interleukin (IL)-6 type cytokines are central to the inflammatory response, and convey their signals through the ubiquitously expressed glycoprotein (gp) 130 receptor subunit. IL-6-type/gp130 signaling therefore represents an inflammatory nexus, with inherent potential for disease modification. This review focuses on the current knowledge of IL-6/gp130 signaling in relation to HF, with a particular emphasis on the role of soluble gp130 (sgp130), a signaling pathway modulator. Biological aspects of sgp130 and IL-6 signaling are discussed, as are potential novel therapeutic approaches to modulate this central inflammatory signaling pathway.

Keywords

sgp130 Interleukin-6 Inflammation Cytokine Heart failure Risk prediction Therapy 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Erik Tandberg Askevold, Lars Gullestad, Christen P. Dahl, Arne Yndestad, Thor Ueland, and Pål Aukrust declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323(4):236–41.PubMedGoogle Scholar
  2. 2.
    Mann DL. Inflammatory mediators and the failing heart: past, present, and the f oreseeable future. Circ Res. 2002;91(11):988–98.PubMedGoogle Scholar
  3. 3.
    Yndestad A, Damas JK, Oie E, Ueland T, Gullestad L, Aukrust P. Systemic inflammation in heart failure–the whys and wherefores. Heart Fail Rev. 2006;11(1):83–92.PubMedGoogle Scholar
  4. 4.
    Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83(3):376–82.PubMedGoogle Scholar
  5. 5.
    Deswal A, Petersen NJ, Feldman AM, Young JB, White BG, Mann DL. Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the Vesnarinone trial (VEST). Circulation. 2001;103(16):2055–9.PubMedGoogle Scholar
  6. 6.
    Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, et al. Inflammation as a therapeutic target in heart failure? A scientific statement from the Translational Research Committee of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2009;11(2):119–29.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 1996;27(5):1201–6.PubMedGoogle Scholar
  8. 8.
    Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, et al. Multimarker approach for the prediction of heart failure incidence in the community. Circulation. 2010;122(17):1700–6.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Ky B, French B, Levy WC, Sweitzer NK, Fang JC, Wu AH, et al. Multiple biomarkers for risk prediction in chronic heart failure. Circ Heart Fail. 2012;5(2):183–90.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Braunwald E. Heart Failure. JACC Heart Fail. 2013;1(1):1–20.PubMedGoogle Scholar
  11. 11.
    Gullestad L, Ueland T, Vinge LE, Finsen A, Yndestad A, Aukrust P. Inflammatory cytokines in heart failure: mediators and markers. Cardiology. 2012;122(1):23–35.PubMedGoogle Scholar
  12. 12.
    Frangogiannis NG. The immune system and cardiac repair. Pharmacol Res. 2008;58(2):88–111.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-kappaB in the heart: to be or not to NF-kappaB. Circ Res. 2011;108(9):1122–32.PubMedGoogle Scholar
  14. 14.
    Mann DL. The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circulation research. 2011;108(9):1133–45.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Rogler G, Rosano G. The heart and the gut. Eur Heart J. 2013 Jul 17 [Epub ahead of print].Google Scholar
  16. 16.
    Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 2004;94(12):1543–53.PubMedGoogle Scholar
  17. 17.
    Prabhu SD, Chandrasekar B, Murray DR, Freeman GL. Beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation. 2000;101(17):2103–9.PubMedGoogle Scholar
  18. 18.
    Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res. 2009;81(3):474–81.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–73.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Jiang B, Liao R. The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res. 2010;3(4):410–6.PubMedGoogle Scholar
  21. 21.
    Deswal A, Bozkurt B, Seta Y, Parilti-Eiswirth S, Hayes FA, Blosch C, et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation. 1999;99(25):3224–6.PubMedGoogle Scholar
  22. 22.
    Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, Colucci WS, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation. 2004;109(13):1594–602.PubMedGoogle Scholar
  23. 23.
    Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107(25):3133–40.PubMedGoogle Scholar
  24. 24.
    Gullestad L, Aukrust P. Review of trials in chronic heart failure showing broad-spectrum anti-inflammatory approaches. Am J Cardiol. 2005;95(11A):17C–23C. discussion 38C-40C.PubMedGoogle Scholar
  25. 25.
    Skudicky D, Bergemann A, Sliwa K, Candy G, Sareli P. Beneficial effects of pentoxifylline in patients with idiopathic dilated cardiomyopathy treated with angiotensin-converting enzyme inhibitors and carvedilol: results of a randomized study. Circulation. 2001;103(8):1083–8.PubMedGoogle Scholar
  26. 26.
    Gullestad L, Ueland T, Fjeld JG, Holt E, Gundersen T, Breivik K, et al. Effect of thalidomide on cardiac remodeling in chronic heart failure: results of a double-blind, placebo-controlled study. Circulation. 2005;112(22):3408–14.PubMedGoogle Scholar
  27. 27.
    Gong K, Zhang Z, Sun X, Zhang X, Li A, Yan J, et al. The nonspecific anti-inflammatory therapy with methotrexate for patients with chronic heart failure. Am Heart J. 2006;151(1):62–8.PubMedGoogle Scholar
  28. 28.
    Muller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, et al. Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation. 2000;101(4):385–91.PubMedGoogle Scholar
  29. 29.
    Gullestad L, Aass H, Fjeld JG, Wikeby L, Andreassen AK, Ihlen H, et al. Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation. 2001;103(2):220–5.PubMedGoogle Scholar
  30. 30.
    Hare JM, Mangal B, Brown J, Fisher Jr C, Freudenberger R, Colucci WS, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol. 2008;51(24):2301–9.PubMedGoogle Scholar
  31. 31.
    Kjekshus J, Apetrei E, Barrios V, Bohm M, Cleland JG, Cornel JH, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357(22):2248–61.PubMedGoogle Scholar
  32. 32.
    Tavazzi L, Maggioni AP, Marchioli R, Barlera S, Franzosi MG, Latini R, et al. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(9645):1231–9.PubMedGoogle Scholar
  33. 33.
    Torre-Amione G, Anker SD, Bourge RC, Colucci WS, Greenberg BH, Hildebrandt P, et al. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet. 2008;371(9608):228–36.PubMedGoogle Scholar
  34. 34.
    Ridker PM. Testing the inflammatory hypothesis of atherothrombosis: scientific rationale for the cardiovascular inflammation reduction trial (CIRT). J Thromb Haemost. 2009;7 Suppl 1:332–9.PubMedGoogle Scholar
  35. 35.
    Abbate A, Van Tassell BW, Biondi-Zoccai G, Kontos MC, Grizzard JD, Spillman DW, et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol. 2013;111(10):1394–400.PubMedCentralPubMedGoogle Scholar
  36. 36.
    Van Tassell BW, Arena R, Biondi-Zoccai G, McNair Canada J, Oddi C, Abouzaki NA, et al. Effects of Interleukin-1 Blockade With Anakinra on Aerobic Exercise Capacity in Patients With Heart Failure and Preserved Ejection Fraction (from the D-HART Pilot Study). Am J Cardiol. 2013 Oct 4 [Epub ahead of print].Google Scholar
  37. 37.
    Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605.PubMedGoogle Scholar
  38. 38.
    Wollert KC, Drexler H. The role of interleukin-6 in the failing heart. Heart Fail Rev. 2001;6(2):95–103.PubMedGoogle Scholar
  39. 39.
    Pflanz S, Hibbert L, Mattson J, Rosales R, Vaisberg E, Bazan JF, et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol. 2004;172(4):2225–31.PubMedGoogle Scholar
  40. 40.
    Derouet D, Rousseau F, Alfonsi F, Froger J, Hermann J, Barbier F, et al. Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc Natl Acad Sci USA. 2004;101(14):4827–32.PubMedCentralPubMedGoogle Scholar
  41. 41.
    Kishimoto T, Akira S, Narazaki M, Taga T. Interleukin-6 family of cytokines and gp130. Blood. 1995;86(4):1243–54.PubMedGoogle Scholar
  42. 42.
    Peters M, Jacobs S, Ehlers M, Vollmer P, Mullberg J, Wolf E, et al. The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL-6 and prolongation of the plasma half-life of IL-6. J Exp Med. 1996;183(4):1399–406.PubMedGoogle Scholar
  43. 43.
    Rose-John S, Scheller J, Elson G, Jones SA. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J Leukoc Biol. 2006;80(2):227–36.PubMedGoogle Scholar
  44. 44.
    Baumann H, Wang Y, Morella KK, Lai CF, Dams H, Hilton DJ, et al. Complex of the soluble IL-11 receptor and IL-11 acts as IL-6-type cytokine in hepatic and nonhepatic cells. J Immunol. 1996;157(1):284–90.PubMedGoogle Scholar
  45. 45.
    Narazaki M, Yasukawa K, Saito T, Ohsugi Y, Fukui H, Koishihara Y, et al. Soluble forms of the interleukin-6 signal-transducing receptor component gp130 in human serum possessing a potential to inhibit signals through membrane-anchored gp130. Blood. 1993;82(4):1120–6.PubMedGoogle Scholar
  46. 46.
    Jostock T, Mullberg J, Ozbek S, Atreya R, Blinn G, Voltz N, et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur J Biochem. 2001;268(1):160–7.PubMedGoogle Scholar
  47. 47.
    Fischer P, Hilfiker-Kleiner D. Role of gp130-mediated signalling pathways in the heart and its impact on potential therapeutic aspects. Br J Pharmacol. 2008;153 Suppl 1:S414–27.PubMedCentralPubMedGoogle Scholar
  48. 48.
    Fischer P, Hilfiker-Kleiner D. Survival pathways in hypertrophy and heart failure: the gp130-STAT axis. Basic Res Cardiol. 2007;102(5):393–411.PubMedGoogle Scholar
  49. 49.
    Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science. 1992;257(5068):387–9.PubMedGoogle Scholar
  50. 50.
    Janssen SP, Gayan-Ramirez G, Van den Bergh A, Herijgers P, Maes K, Verbeken E, et al. Interleukin-6 causes myocardial failure and skeletal muscle atrophy in rats. Circulation. 2005;111(8):996–1005.PubMedGoogle Scholar
  51. 51.
    Villegas S, Villarreal FJ, Dillmann WH. Leukemia Inhibitory Factor and Interleukin-6 downregulate sarcoplasmic reticulum Ca2+ ATPase (SERCA2) in cardiac myocytes. Basic Res Cardiol. 2000;95(1):47–54.PubMedGoogle Scholar
  52. 52.
    Patten M, Kramer E, Bunemann J, Wenck C, Thoenes M, Wieland T, et al. Endotoxin and cytokines alter contractile protein expression in cardiac myocytes in vivo. Pflugers Arch. 2001;442(6):920–7.PubMedGoogle Scholar
  53. 53.
    Hirota H, Izumi M, Hamaguchi T, Sugiyama S, Murakami E, Kunisada K, et al. Circulating interleukin-6 family cytokines and their receptors in patients with congestive heart failure. Heart Vessels. 2004;19(5):237–41.PubMedGoogle Scholar
  54. 54.
    Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Tsutsui T, et al. Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. J Am Coll Cardiol. 2001;38(5):1485–90.PubMedGoogle Scholar
  55. 55.
    Gwechenberger M, Pacher R, Berger R, Zorn G, Moser P, Stanek B, et al. Comparison of soluble glycoprotein 130 and cardiac natriuretic peptides as long-term predictors of heart failure progression. J Heart Lung Transplant. 2005;24(12):2190–5.PubMedGoogle Scholar
  56. 56.
    Eiken HG, Oie E, Damas JK, Yndestad A, Bjerkeli V, Aass H, et al. Myocardial gene expression of leukaemia inhibitory factor, interleukin-6 and glycoprotein 130 in end-stage human heart failure. Eur J Clin Invest. 2001;31(5):389–97.PubMedGoogle Scholar
  57. 57.
    Zolk O, Ng LL, O'Brien RJ, Weyand M, Eschenhagen T. Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance. Circulation. 2002;106(12):1442–6.PubMedGoogle Scholar
  58. 58.
    Plenz G, Song ZF, Tjan TD, Koenig C, Baba HA, Erren M, et al. Activation of the cardiac interleukin-6 system in advanced heart failure. Eur J Heart Fail. 2001;3(4):415–21.PubMedGoogle Scholar
  59. 59.
    Yan AT, Yan RT, Cushman M, Redheuil A, Tracy RP, Arnett DK, et al. Relationship of interleukin-6 with regional and global left-ventricular function in asymptomatic individuals without clinical cardiovascular disease: insights from the Multi-Ethnic Study of Atherosclerosis. Eur Heart J. 2010;31(7):875–82.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Harhay MO, Tracy RP, Bagiella E, Barr RG, Pinder D, Hundley WG, et al. Relationship of CRP, IL-6, and fibrinogen with right ventricular structure and function: The MESA-Right Ventricle Study. Int J Cardiol. 2013;168(4):3818–24.PubMedGoogle Scholar
  61. 61.
    Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross Jr J, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell. 1999;97(2):189–98.PubMedGoogle Scholar
  62. 62.
    Negoro S, Kunisada K, Fujio Y, Funamoto M, Darville MI, Eizirik DL, et al. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia/reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation. 2001;104(9):979–81.PubMedGoogle Scholar
  63. 63.
    Jacoby JJ, Kalinowski A, Liu MG, Zhang SS, Gao Q, Chai GX, et al. Cardiomyocyte-restricted knockout of STAT3 results in higher sensitivity to inflammation, cardiac fibrosis, and heart failure with advanced age. Proc Natl Acad Sci USA. 2003;100(22):12929–34.PubMedCentralPubMedGoogle Scholar
  64. 64.
    Kunisada K, Tone E, Fujio Y, Matsui H, Yamauchi-Takihara K, Kishimoto T. Activation of gp130 transduces hypertrophic signals via STAT3 in cardiac myocytes. Circulation. 1998;98(4):346–52.PubMedGoogle Scholar
  65. 65.
    Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res. 2004;95(2):187–95.PubMedGoogle Scholar
  66. 66.
    Freed DH, Moon MC, Borowiec AM, Jones SC, Zahradka P, Dixon IM. Cardiotrophin-1: expression in experimental myocardial infarction and potential role in post-MI wound healing. Mol Cell Biochem. 2003;254(1–2):247–56.PubMedGoogle Scholar
  67. 67.
    Tsuruda T, Jougasaki M, Boerrigter G, Huntley BK, Chen HH, D'Assoro AB, et al. Cardiotrophin-1 stimulation of cardiac fibroblast growth: roles for glycoprotein 130/leukemia inhibitory factor receptor and the endothelin type A receptor. Circ Res. 2002;90(2):128–34.PubMedGoogle Scholar
  68. 68.
    Florholmen G, Aas V, Rustan AC, Lunde PK, Straumann N, Eid H, et al. Leukemia inhibitory factor reduces contractile function and induces alterations in energy metabolism in isolated cardiomyocytes. J Mol Cell Cardiol. 2004;37(6):1183–93.PubMedGoogle Scholar
  69. 69.
    El-Adawi H, Deng L, Tramontano A, Smith S, Mascareno E, Ganguly K, et al. The functional role of the JAK-STAT pathway in post-infarction remodeling. Cardiovasc Res. 2003;57(1):129–38.PubMedGoogle Scholar
  70. 70.
    Hirota H, Yoshida K, Kishimoto T, Taga T. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Natl Acad Sci USA. 1995;92(11):4862–6.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Hilfiker-Kleiner D, Shukla P, Klein G, Schaefer A, Stapel B, Hoch M, et al. Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation. 2010;122(2):145–55.PubMedGoogle Scholar
  72. 72.
    Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011;1813(5):878–88.PubMedGoogle Scholar
  73. 73.
    Schuett H, Luchtefeld M, Grothusen C, Grote K, Schieffer B. How much is too much? Interleukin-6 and its signalling in atherosclerosis. Thromb Haemost. 2009;102(2):215–22.PubMedGoogle Scholar
  74. 74.
    Lissilaa R, Buatois V, Magistrelli G, Williams AS, Jones GW, Herren S, et al. Although IL-6 trans-signaling is sufficient to drive local immune responses, classical IL-6 signaling is obligate for the induction of T cell-mediated autoimmunity. J Immunol. 2010;185(9):5512–21.PubMedGoogle Scholar
  75. 75.
    Cheng JM, Akkerhuis KM, Battes LC, van Vark LC, Hillege HL, Paulus WJ, et al. Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail. 2013;15(12):1350–62.PubMedGoogle Scholar
  76. 76.
    Udelson JE. Heart failure with preserved ejection fraction. Circulation. 2011;124(21):e540–3.PubMedGoogle Scholar
  77. 77.
    Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998–1005.PubMedGoogle Scholar
  78. 78.
    Glezeva N, Baugh JA. Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Fail Rev. 2013 Sep 5 [Epub ahead of print].Google Scholar
  79. 79.•
    Paulus WJ, Tschope C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71. This paper proposes a new paradigm where the cardiovascular abnormalities in HFpEF can be understood as the downstream consequence of inflammation, including IL-6, associated with comorbid medical illness. PubMedGoogle Scholar
  80. 80.
    Zuliani G, Galvani M, Maggio M, Volpato S, Bandinelli S, Corsi AM, et al. Plasma soluble gp130 levels are increased in older subjects with metabolic syndrome. The role of insulin resistance. Atherosclerosis. 2010;213(1):319–24.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Inta I, Weber D, Grundt C, Veltkamp R, Winteroll S, Auffarth GU, et al. Correlation of soluble gp130 serum concentrations with arterial blood pressure. J Hypertens. 2009;27(3):527–34.PubMedGoogle Scholar
  82. 82.
    Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, Harrison DG, et al. Inflammatory markers and incident heart failure risk in older adults: the Health ABC (Health, Aging, and Body Composition) study. J Am Coll Cardiol. 2010;55(19):2129–37.PubMedCentralPubMedGoogle Scholar
  83. 83.
    Peters M, Odenthal M, Schirmacher P, Blessing M, Fattori E, Ciliberto G, et al. Soluble IL-6 receptor leads to a paracrine modulation of the IL-6-induced hepatic acute phase response in double transgenic mice. J Immunol. 1997;159(3):1474–81.PubMedGoogle Scholar
  84. 84.
    Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J. 2001;15(1):43–58.PubMedGoogle Scholar
  85. 85.
    Levine SJ. Mechanisms of soluble cytokine receptor generation. J Immunol. 2004;173(9):5343–8.PubMedGoogle Scholar
  86. 86.
    Chalaris A, Garbers C, Rabe B, Rose-John S, Scheller J. The soluble Interleukin 6 receptor: generation and role in inflammation and cancer. Eur J Cell Biol. 2011;90(6–7):484–94.PubMedGoogle Scholar
  87. 87.•
    Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011;121(9):3375–83. This review brings an updated view on the IL-6 blockade in inflammatory diseases and discusses the importance of IL-6 trans-signaling responses. PubMedCentralPubMedGoogle Scholar
  88. 88.
    Klouche M, Bhakdi S, Hemmes M, Rose-John S. Novel path to activation of vascular smooth muscle cells: up-regulation of gp130 creates an autocrine activation loop by IL-6 and its soluble receptor. J Immunol. 1999;163(8):4583–9.PubMedGoogle Scholar
  89. 89.
    Migita K, Abiru S, Maeda Y, Daikoku M, Ohata K, Nakamura M, et al. Serum levels of interleukin-6 and its soluble receptors in patients with hepatitis C virus infection. Hum Immunol. 2006;67(1–2):27–32.PubMedGoogle Scholar
  90. 90.
    Mitsuyama K, Tomiyasu N, Suzuki A, Takaki K, Takedatsu H, Masuda J, et al. A form of circulating interleukin-6 receptor component soluble gp130 as a potential interleukin-6 inhibitor in inflammatory bowel disease. Clin Exp Immunol. 2006;143(1):125–31.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Kovacs E. The serum levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble gp130 (sgp130) in different tumour stages. Correlation between the two parameters in progression of malignancy Biomed Pharmacother. 2005;59(9):498–500.Google Scholar
  92. 92.
    Robak T, Wierzbowska A, Blasinska-Morawiec M, Korycka A, Blonski JZ. Serum levels of IL-6 type cytokines and soluble IL-6 receptors in active B-cell chronic lymphocytic leukemia and in cladribine induced remission. Mediators Inflamm. 1999;8(6):277–86.PubMedCentralPubMedGoogle Scholar
  93. 93.
    Nagaoka T, Sato S, Hasegawa M, Ihn H, Takehara K. Serum levels of soluble interleukin 6 receptor and soluble gp130 are elevated in patients with localized scleroderma. J Rheumatol. 2000;27(8):1917–21.PubMedGoogle Scholar
  94. 94.
    Petretta M, Condorelli GL, Spinelli L, Scopacasa F, de Caterina M, Leosco D, et al. Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. Am Heart J. 2000;140(6):E28.PubMedGoogle Scholar
  95. 95.
    Askevold ET, Nymo S, Ueland T, Gravning J, Wergeland R, Kjekshus J, et al. Soluble glycoprotein 130 predicts fatal outcomes in chronic heart failure: analysis from the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA). Circ Heart Fail. 2013;6(1):91–8.PubMedGoogle Scholar
  96. 96.
    Nishimoto N, Kishimoto T. Interleukin 6: from bench to bedside. Nat Clin Pract Rheumatol. 2006;2(11):619–26.PubMedGoogle Scholar
  97. 97.
    Mihara M, Nishimoto N, Ohsugi Y. The therapy of autoimmune diseases by anti-interleukin-6 receptor antibody. Expert Opin Biol Ther. 2005;5(5):683–90.PubMedGoogle Scholar
  98. 98.
    Smolen JS, Schoels MM, Nishimoto N, Breedveld FC, Burmester GR, Dougados M, et al. Consensus statement on blocking the effects of interleukin-6 and in particular by interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions. Ann Rheum Dis. 2013;72(4):482–92.PubMedCentralPubMedGoogle Scholar
  99. 99.
    De Benedetti F, Brunner HI, Ruperto N, Kenwright A, Wright S, Calvo I, et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med. 2012;367(25):2385–95.PubMedGoogle Scholar
  100. 100.
    Nishimoto N. Clinical studies in patients with Castleman's disease, Crohn's disease, and rheumatoid arthritis in Japan. Clin Rev Allergy Immunol. 2005;28(3):221–30.PubMedGoogle Scholar
  101. 101.
    Unizony S, Arias-Urdaneta L, Miloslavsky E, Arvikar S, Khosroshahi A, Keroack B, et al. Tocilizumab for the treatment of large-vessel vasculitis (giant cell arteritis, Takayasu arteritis) and polymyalgia rheumatica. Arthritis Care Res (Hoboken). 2012;64(11):1720–9.PubMedGoogle Scholar
  102. 102.••
    Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium, Hingorani AD, Casas JP. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet. 2012;379(9822):1214–24. This pivotal paper co-contributed the first causal link between IL-6 signaling and CV disease. Through single-nucleotide polymorphism (SNP) analyses of the IL6R gene in 133,000 individuals, an IL6R variant (Asp358Ala) was found to protect against coronary artery disease, with effects on circulating IL-6, CRP and fibrinogen concentrations similar to that of tocilizumab in clinical trials. PubMedGoogle Scholar
  103. 103.••
    IL6R Genetics Consortium Emerging Risk Factors Collaboration, Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet. 2012;379(9822):1205–13. This pivotal paper co-contributed the first causal link between IL-6 signaling and CV disease. An IL6R variant (Asp358Ala) was associated with increased circulating IL6R and IL6, and reduced CRP and fibrinogen in 125,000 participants. For every copy of 358Ala, the inherited the risk of coronary heart disease was reduced by 3.4 %. PubMedGoogle Scholar
  104. 104.
    Mihara M, Kasutani K, Okazaki M, Nakamura A, Kawai S, Sugimoto M, et al. Tocilizumab inhibits signal transduction mediated by both mIL-6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family. Int Immunopharmacol. 2005;5(12):1731–40.PubMedGoogle Scholar
  105. 105.
    Rubbert-Roth A. Assessing the safety of biologic agents in patients with rheumatoid arthritis. Rheumatology (Oxford). 2012;51 Suppl 5:v38–47.PubMedGoogle Scholar
  106. 106.
    Ahmed S, Marotte H, Kwan K, Ruth JH, Campbell PL, Rabquer BJ, et al. Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc Natl Acad Sci USA. 2008;105(38):14692–7.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Yamamoto K, Rose-John S. Therapeutic blockade of interleukin-6 in chronic inflammatory disease. Clin Pharmacol Ther. 2012;91(4):574–6.PubMedGoogle Scholar
  108. 108.•
    Schuett H, Oestreich R, Waetzig GH, Annema W, Luchtefeld M, Hillmer A, et al. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2011;32(2):281–90. This elegant experimental study demonstrated that inhibition of IL6 trans-signaling with an sgp130Fc fusion protein can dramatically reduce, and even reverse, atherosclerosis in mice. Importantly, sgp130FC did not increase serum lipid levels, a common occurrence with tocilizumab treatment. PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Erik Tandberg Askevold
    • 1
    • 2
    • 4
    Email author
  • Lars Gullestad
    • 1
    • 2
    • 4
    • 6
  • Christen P. Dahl
    • 1
    • 2
    • 4
  • Arne Yndestad
    • 1
    • 4
    • 5
    • 6
  • Thor Ueland
    • 1
    • 6
  • Pål Aukrust
    • 1
    • 3
    • 5
    • 6
  1. 1.Research Institute of Internal MedicineOslo University HospitalOsloNorway
  2. 2.Department of CardiologyOslo University HospitalOsloNorway
  3. 3.Section of Clinical Immunology and Infectious DiseasesOslo University HospitalOsloNorway
  4. 4.K.G. Jebsen Cardiac Research Centre and Center for Heart Failure ResearchOslo University HospitalOsloNorway
  5. 5.K.G. Jebsen Inflammation Research CentreOslo University HospitalOsloNorway
  6. 6.Faculty of MedicineOslo University HospitalOsloNorway

Personalised recommendations