Advertisement

Current Heart Failure Reports

, Volume 11, Issue 1, pp 50–57 | Cite as

Novel Drugs Targeting Transthyretin Amyloidosis

  • Mazen Hanna
Pharmacologic Therapy (WHW Tang, Section Editor)

Abstract

Transthyretin amyloidosis (ATTR) is either a hereditary disease related to a mutation in the transthyretin gene that leads to neuropathy and/or cardiomyopathy or an acquired disease of the elderly that leads to restrictive cardiomyopathy. The prevalence of this disease is higher than once thought and awareness is likely to increase amongst physicians and in particular cardiologists. Until recently there have been no treatment options for this disease except to treat the heart failure with diuretics and the neuropathy symptomatically. However, there are several emerging pharmacologic therapies designed to slow or stop the progression of ATTR. This article reviews novel therapeutic drugs that work at different points in the pathogenesis of this disease attempting to change its natural history and improve outcomes.

Keywords

Transthyretin Amyloid Amyloidosis Cardiac Cardiomyopathy Neuropathy Familial Senile Hereditary Pharmacologic Therapy Drugs 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Mazen Hanna received a one-time consultant fee from Pfizer in April 2012 regarding input for the drug Tafamadis. He is also the local principal investigator of the Tafamadis Cardiomyopathy Trial and is a member of the Scientific Board for THAOS (Transthyretin Outcomes Survey), both sponsored by Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med. 2003;349(6):583–96.PubMedCrossRefGoogle Scholar
  2. 2.
    Shah KB, Inoue Y, Mehra MR. Amyloidosis and the heart: a comprehensive review. Arch Intern Med. 2006;166(17):1805–13.PubMedCrossRefGoogle Scholar
  3. 3.
    Falk RH, Dubrey SW. Amyloid heart disease. Prog Cardiovasc Dis. 2010;52(4):347–61.PubMedCrossRefGoogle Scholar
  4. 4.••
    Esplin BL, Gertz MA. Current trends in diagnosis and management of cardiac amyloidosis. Curr Probl Cardiol. 2013;38(2):53–96. This is an outstanding and comprehensive review of cardiac amyloidsois with guest commentary by Rodney Falk.PubMedCrossRefGoogle Scholar
  5. 5.
    Dubrey SW et al. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM. 1998;91(2):141–57.PubMedCrossRefGoogle Scholar
  6. 6.•
    Dungu JN et al. Cardiac transthyretin amyloidosis. Heart. 2012;98(21):1546–54. Excellent review of Transhyretin Cardiac amyloidosis with multiple images and instructive figures.PubMedCrossRefGoogle Scholar
  7. 7.
    Zeldenrust SR, Cooper LT. Getting to the heart of the matter: cardiac involvement in transthyretin-related amyloidosis. Eur Heart J. 2013;34(7):483–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Rapezzi C et al. Systemic cardiac amyloidoses: disease profiles and clinical courses of the 3 main types. Circulation. 2009;120(13):1203–12.PubMedCrossRefGoogle Scholar
  9. 9.
    Nomenclature. Nomenclature Committee of IUB. IUB–IUPAC Joint Commission on Biochemical Nomenclature. Arch Biochem Biophys. 1981;206(2):458–62.CrossRefGoogle Scholar
  10. 10.
    Robbins J. Transthyretin from discovery to now. Clin Chem Lab Med. 2002;40(12):1183–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Arruda-Olson AM et al. Genotype, echocardiography, and survival in familial transthyretin amyloidosis. Amyloid. 2013;20(4):263–8.PubMedCrossRefGoogle Scholar
  12. 12.••
    Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126(10):1286–300. Comprehensive up-to date review of transthyretin cardiac amyloidosis outlining epidemiology, pathogenesis, diagnosis, and treatment. It includes a summary of emerging treatments.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ihse E et al. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. J Pathol. 2008;216(2):253–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Lobato L. Portuguese-type amyloidosis (transthyretin amyloidosis, ATTR V30M). J Nephrol. 2003;16(3):438–42.PubMedGoogle Scholar
  15. 15.
    Jacobson DR et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med. 1997;336(7):466–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamashita T et al. A prospective evaluation of the transthyretin Ile122 allele frequency in an African-American population. Amyloid. 2005;12(2):127–30.PubMedCrossRefGoogle Scholar
  17. 17.
    Buxbaum J et al. Transthyretin V122I in African Americans with congestive heart failure. J Am Coll Cardiol. 2006;47(8):1724–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Ruberg FL et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS). Am Heart J. 2012;164(2):222–8. e1.PubMedCrossRefGoogle Scholar
  19. 19.
    Pitkanen P, Westermark P, Cornwell 3rd GG. Senile systemic amyloidosis. Am J Pathol. 1984;117(3):391–9.PubMedGoogle Scholar
  20. 20.
    Pinney JH et al. Senile systemic amyloidosis: clinical features at presentation and outcome. J Am Heart Assoc. 2013;2(2):e000098.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ng B et al. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated amyloidosis. Arch Intern Med. 2005;165(12):1425–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Cornwell 3rd GG et al. Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med. 1983;75(4):618–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Tanskanen M et al. Senile systemic amyloidosis affects 25 % of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med. 2008;40(3):232–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Sekijima Y, Kelly JW, Ikeda S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr Pharm Des. 2008;14(30):3219–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Bulawa CE et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A. 2012;109(24):9629–34.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gillmore JD et al. Sustained pharmacological depletion of serum amyloid P component in patients with systemic amyloidosis. Br J Haematol. 2010;148(5):760–7.PubMedCrossRefGoogle Scholar
  27. 27.•
    Benson MD. Pathogenesis of transthyretin amyloidosis. Amyloid. 2012;19 Suppl 1:14–5. A concise two page summary of the pathogenesis of transhyretin amyloid, summarizing what we know and what we don't know. Excellent read.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao L, Buxbaum JN, Reixach N. Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry. 2013;52(11):1913–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Holmgren G et al. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin Genet. 1991;40(3):242–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Pomfret EA et al. Effect of orthotopic liver transplantation on the progression of familial amyloidotic polyneuropathy. Transplantation. 1998;65(7):918–25.PubMedCrossRefGoogle Scholar
  31. 31.
    Sharma P et al. Outcome of liver transplantation for familial amyloidotic polyneuropathy. Liver Transpl. 2003;9(12):1273–80.PubMedCrossRefGoogle Scholar
  32. 32.
    Ericzon BG et al. Liver transplantation halts the progress of familial amyloidotic polyneuropathy. Transplant Proc. 1995;27(1):1233.PubMedGoogle Scholar
  33. 33.
    Suhr OB et al. Liver transplantation in familial amyloidotic polyneuropathy. Follow-up of the first 20 Swedish patients. Transplantation. 1995;60(9):933–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Yamamoto S et al. Liver transplantation for familial amyloidotic polyneuropathy (FAP): a single-center experience over 16 years. Am J Transplant. 2007;7(11):2597–604.PubMedCrossRefGoogle Scholar
  35. 35.
    Okamoto S et al. Prognostic value of pre-transplant cardiomyopathy in Swedish liver transplanted patients for familial amyloidotic polyneuropathy. Amyloid. 2011;18 Suppl 1:171–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Nelson LM et al. Long-term outcome in patients treated with combined heart and liver transplantation for familial amyloidotic cardiomyopathy. Clin Transplant. 2013;27(2):203–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Hamour IM et al. Heart transplantation for homozygous familial transthyretin (TTR) V122I cardiac amyloidosis. Am J Transplant. 2008;8(5):1056–9.PubMedCrossRefGoogle Scholar
  38. 38.•
    Lachmann HJ. A new era in the treatment of amyloidosis? N Engl J Med. 2013;369(9):866–8. A very insightful editorial in response to the New England Journal publication about small interfering RNA treatment in TTR amyloid. This summarizes the current issues and strategies very well.PubMedCrossRefGoogle Scholar
  39. 39.••
    Coelho T et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–29. Along with antisense oligonucleotides, this is a major breakthrough and publication in the field. Getting published in the New England Journal of Medicine has brought transthyretin amyloidosis into greater awareness amongst physicians.PubMedCrossRefGoogle Scholar
  40. 40.
    Malik R, Roy I. Making sense of therapeutics using antisense technology. Expert Opin Drug Discov. 2011;6(5):507–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Ackermann EJ et al. Clinical development of an antisense therapy for the treatment of transthyretin-associated polyneuropathy. Amyloid. 2012;19 Suppl 1:43–4.PubMedCrossRefGoogle Scholar
  42. 42.
    Adamski-Werner SL et al. Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem. 2004;47(2):355–74.PubMedCrossRefGoogle Scholar
  43. 43.
    Gales L et al. Human transthyretin in complex with iododiflunisal: structural features associated with a potent amyloid inhibitor. Biochem J. 2005;388(Pt 2):615–21.PubMedGoogle Scholar
  44. 44.
    Sekijima Y, Dendle MA, Kelly JW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid. 2006;13(4):236–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Castano A et al. Diflunisal for ATTR cardiac amyloidosis. Congest Heart Fail. 2012;18(6):315–9.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.••
    Berk JL et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA. 2013;310(24):2658–67. This is the only randomized placebo-controlled trial in transthyretin amyloidosis that has met its primary endpoint. This landmark clincial trial will likely lead to the approval of Diflunisal for the indication of FAP.Google Scholar
  47. 47.••
    Coelho T et al. Tafamidis for transthyretin familial amyloid polyneuropathy: a randomized, controlled trial. Neurology. 2012;79(8):785–92. This was the first randomized placebo-controlled trial in transthyretin amyloidosis. Although the primary endpoint was not met, the results led to the approval of Tafamdis in Europe.Google Scholar
  48. 48.
    Cardoso I, Saraiva MJ. Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB J. 2006;20(2):234–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Ward JE et al. Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood. 2011;118(25):6610–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Cardoso I et al. Synergy of combined doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models. J Transl Med. 2010;8:74.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Obici L et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid. 2012;19 Suppl 1:34–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Ferreira N et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett. 2009;583(22):3569–76.PubMedCrossRefGoogle Scholar
  53. 53.
    Ferreira N, Saraiva MJ, Almeida MR. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett. 2011;585(15):2424–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Palhano FL et al. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J Am Chem Soc. 2013;135(20):7503–10.PubMedCrossRefGoogle Scholar
  55. 55.
    Miyata M et al. The crystal structure of the green tea polyphenol (-)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site. Biochemistry. 2010;49(29):6104–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Mereles D et al. Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol. 2010;99(8):483–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Kristen AV et al. Green tea halts progression of cardiac transthyretin amyloidosis: an observational report. Clin Res Cardiol. 2012;101(10):805–13.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Pepys MB et al. Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin Exp Immunol. 1979;38(2):284–93.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Hohenester E et al. Crystal structure of a decameric complex of human serum amyloid P component with bound dAMP. J Mol Biol. 1997;269(4):570–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Botto M et al. Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med. 1997;3(8):855–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Bodin K et al. Antibodies to human serum amyloid P component eliminate visceral amyloid deposits. Nature. 2010;468(7320):93–7.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Section of Heart Failure and Cardiac TransplantationCleveland ClinicClevelandUSA

Personalised recommendations