Current Heart Failure Reports

, Volume 11, Issue 1, pp 70–79

Exercise Intolerance in Chronic Heart Failure: The Role of Cortisol and the Catabolic State

  • Georgios Tzanis
  • Stavros Dimopoulos
  • Varvara Agapitou
  • Serafim Nanas
Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (AK Hasan, Section Editor)


Chronic heart failure (CHF) is a complex clinical syndrome leading to exercise intolerance due to muscular fatigue and dyspnea. Hemodynamics fail to explain the reduced exercise capacity, while a significant skeletal muscular pathology seems to constitute the main underlying mechanism for exercise intolerance in CHF patients. There have been proposed several metabolic, neurohormonal and immune system abnormalities leading to an anabolic/catabolic imbalance that plays a central role in the pathogenesis of the wasting process of skeletal muscle myopathy. The impairment of the anabolic axes is associated with the severity of symptoms and the poor outcome in CHF, whereas increased cortisol levels are predictive of exercise intolerance, ventilatory inefficiency and chronotropic incompetence, suggesting a significant contributing mechanism to the limited functional status. Exercise training and device therapy could have beneficial effects in preventing and treating muscle wasting in CHF. However, specific anabolic treatment needs more investigation to prove possible beneficial effects.


Chronic heart failure Exercise intolerance Skeletal muscle Myopathy Catabolism Cachexia Cortisol Hormones 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Anker SD, Ponikowski P, Varney S, Chua TP, Clark AL, Webb-Peploe KM, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349(9058):1050–3. doi:10.1016/S0140-6736(96)07015-8.PubMedCrossRefGoogle Scholar
  2. 2.
    Katz AM, Katz PB. Diseases of the heart in the works of Hippocrates. Br Heart J. 1962;24:257–64.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93(9):1137–46. doi:10.1136/hrt.2003.025270.PubMedCrossRefGoogle Scholar
  4. 4.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–e245. doi:10.1161/CIR.0b013e31828124ad.PubMedCrossRefGoogle Scholar
  5. 5.
    Franciosa JA, Baker BJ, Seth L. Pulmonary versus systemic hemodynamics in determining exercise capacity of patients with chronic left ventricular failure. Am Heart J. 1985;110(4):807–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson JR, Martin JL, Ferraro N. Impaired skeletal muscle nutritive flow during exercise in patients with congestive heart failure: role of cardiac pump dysfunction as determined by the effect of dobutamine. Am J Cardiol. 1984;53(9):1308–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Wilson JR, Mancini DM, Dunkman WB. Exertional fatigue due to skeletal muscle dysfunction in patients with heart failure. Circulation. 1993;87(2):470–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Massie B, Conway M, Yonge R, Frostick S, Ledingham J, Sleight P, et al. Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation. 1987;76(5):1009–19.PubMedCrossRefGoogle Scholar
  9. 9.
    Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H. Alterations of skeletal muscle in chronic heart failure. Circulation. 1992;85(5):1751–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Coats AJ, Clark AL, Piepoli M, Volterrani M, Poole-Wilson PA. Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J. 1994;72(2 Suppl):S36–9.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Piepoli MF, Kaczmarek A, Francis DP, Davies LC, Rauchhaus M, Jankowska EA, et al. Reduced peripheral skeletal muscle mass and abnormal reflex physiology in chronic heart failure. Circulation. 2006;114(2):126–34. doi:10.1161/CIRCULATIONAHA.105.605980.PubMedCrossRefGoogle Scholar
  12. 12.
    • Middlekauff HR. Making the case for skeletal myopathy as the major limitation of exercise capacity in heart failure. Circ Heart Fail. 2010;3(4):537–46. doi:10.1161/CIRCHEARTFAILURE.109.903773. This is a review paper focusing on the role of skeletal muscle myopathy in the exercise limitation of the heart failure patient.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Myers J, Gullestad L, Vagelos R, Do D, Bellin D, Ross H, et al. Clinical, hemodynamic, and cardiopulmonary exercise test determinants of survival in patients referred for evaluation of heart failure. Ann Intern Med. 1998;129(4):286–93.PubMedCrossRefGoogle Scholar
  14. 14.
    • Arena R, Myers J, Abella J, Pinkstaff S, Brubaker P, Kitzman DW, et al. Cardiopulmonary exercise testing is equally prognostic in young, middle-aged and older individuals diagnosed with heart failure. International journal of cardiology. 2011;151(3):278–83. doi:10.1016/j.ijcard.2010.05.056. This is a multicenter trial investigating the prognostic role of cardiopulmonary exercise testing in patients with heart failure that focuses not only on elderly (as in other studies) but also on middle-aged and younger patients.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Mehra MR, Kobashigawa J, Starling R, Russell S, Uber PA, Parameshwar J, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates–2006. J Heart Lung Transplant. 2006;25(9):1024–42. doi:10.1016/j.healun.2006.06.008.PubMedCrossRefGoogle Scholar
  16. 16.
    Nanas SN, Nanas JN, Sakellariou D, Dimopoulos SK, Drakos SG, Kapsimalakou SG, et al. VE/VCO2 slope is associated with abnormal resting haemodynamics and is a predictor of long-term survival in chronic heart failure. European journal of heart failure. 2006;8(4):420–7. doi:10.1016/j.ejheart.2005.10.003.PubMedCrossRefGoogle Scholar
  17. 17.
    Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361(9363):1077–83. doi:10.1016/S0140-6736(03)12892-9.PubMedCrossRefGoogle Scholar
  18. 18.
    Narumi T, Arimoto T, Funayama A, Kadowaki S, Otaki Y, Nishiyama S, et al. The prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol. 2013. doi:10.1016/j.jjcc.2013.05.007.PubMedGoogle Scholar
  19. 19.
    • Manetos C, Dimopoulos S, Tzanis G, Vakrou S, Tasoulis A, Kapelios C, et al. Skeletal muscle microcirculatory abnormalities are associated with exercise intolerance, ventilatory inefficiency, and impaired autonomic control in heart failure. J Heart Lung Transplant. 2011;30(12):1403–8. doi:10.1016/j.healun.2011.08.020. This study investigates microcirculatory alterations of heart failure patients by using Near-InfraRed Spectroscopy methodology and its association with the CHF severity as assessed by cardiopulmonary exercise testing parameters.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsutsui H, Kinugawa S, Matsushima S. Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 2011;301(6):H2181–90. doi:10.1152/ajpheart.00554.2011.PubMedCrossRefGoogle Scholar
  21. 21.
    Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol. 1999;33(4):959–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Harrington D, Anker SD, Chua TP, Webb-Peploe KM, Ponikowski PP, Poole-Wilson PA, et al. Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am Coll Cardiol. 1997;30(7):1758–64.PubMedCrossRefGoogle Scholar
  23. 23.
    Schulze PC, Linke A, Schoene N, Winkler SM, Adams V, Conradi S, et al. Functional and morphological skeletal muscle abnormalities correlate with reduced electromyographic activity in chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2004;11(2):155–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, et al. Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation. 1989;80(5):1338–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Okita K, Yonezawa K, Nishijima H, Hanada A, Nagai T, Murakami T, et al. Muscle high-energy metabolites and metabolic capacity in patients with heart failure. Med Sci Sports Exerc. 2001;33(3):442–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Sullivan MJ, Green HJ, Cobb FR. Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation. 1990;81(2):518–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Schaufelberger M, Eriksson BO, Grimby G, Held P, Swedberg K. Skeletal muscle alterations in patients with chronic heart failure. Eur Heart J. 1997;18(6):971–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schachat FH, et al. Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II-III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol. 1999;33(7):1956–63.PubMedCrossRefGoogle Scholar
  29. 29.
    Vescovo G, Serafini F, Facchin L, Tenderini P, Carraro U, Dalla Libera L, et al. Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart. 1996;76(4):337–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Lipkin DP, Jones DA, Round JM, Poole-Wilson PA. Abnormalities of skeletal muscle in patients with chronic heart failure. International journal of cardiology. 1988;18(2):187–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Massie BM, Simonini A, Sahgal P, Wells L, Dudley GA. Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure. J Am Coll Cardiol. 1996;27(1):140–5. doi:10.1016/0735-1097(95)00416-5.PubMedCrossRefGoogle Scholar
  32. 32.
    Anker SD, Chua TP, Ponikowski P, Harrington D, Swan JW, Kox WJ, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96(2):526–34.PubMedCrossRefGoogle Scholar
  33. 33.
    Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004;90(4):464–70.PubMedCrossRefGoogle Scholar
  34. 34.
    Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB. Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J. 1998;12(10):871–80.PubMedGoogle Scholar
  35. 35.
    Moriyama Y, Yasue H, Yoshimura M, Mizuno Y, Nishiyama K, Tsunoda R, et al. The plasma levels of dehydroepiandrosterone sulfate are decreased in patients with chronic heart failure in proportion to the severity. J Clin Endocrinol Metab. 2000;85(5):1834–40.PubMedGoogle Scholar
  36. 36.
    Kontoleon PE, Anastasiou-Nana MI, Papapetrou PD, Alexopoulos G, Ktenas V, Rapti AC, et al. Hormonal profile in patients with congestive heart failure. International journal of cardiology. 2003;87(2–3):179–83.PubMedCrossRefGoogle Scholar
  37. 37.
    Jankowska EA, Biel B, Majda J, Szklarska A, Lopuszanska M, Medras M, et al. Anabolic deficiency in men with chronic heart failure: prevalence and detrimental impact on survival. Circulation. 2006;114(17):1829–37. doi:10.1161/CIRCULATIONAHA.106.649426.PubMedCrossRefGoogle Scholar
  38. 38.
    •• Pastor-Perez FJ, Manzano-Fernandez S, Garrido Bravo IP, Nicolas F, Tornel PL, Lax A, et al. Anabolic status and functional impairment in men with mild chronic heart failure. Am J Cardiol. 2011;108(6):862–6. doi:10.1016/j.amjcard.2011.05.016. This study investigates the role of hormonal anabolic impairment showing its association with exercise intolerance in heart failure.PubMedCrossRefGoogle Scholar
  39. 39.
    Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Yu J, et al. Reduction of insulin-like growth factor-I expression in the skeletal muscle of noncachectic patients with chronic heart failure. J Am Coll Cardiol. 2002;39(7):1175–81.PubMedCrossRefGoogle Scholar
  40. 40.
    • Guder G, Frantz S, Bauersachs J, Allolio B, Ertl G, Angermann CE, et al. Low circulating androgens and mortality risk in heart failure. Heart. 2010;96(7):504–9. doi:10.1136/hrt.2009.181065. This is a prospective cohort study about anabolic sex steroid deficiency in heart failure and its association with poor prognosis.PubMedCrossRefGoogle Scholar
  41. 41.
    • Wehr E, Pilz S, Boehm BO, Marz W, Grammer T, Obermayer-Pietsch B. Low free testosterone is associated with heart failure mortality in older men referred for coronary angiography. European journal of heart failure. 2011;13(5):482–8. doi:10.1093/eurjhf/hfr007. This is a prospective study that included 2078 patients referred for coronary angiography showing that low free testosterone levels are associated with heart failure mortality.PubMedCrossRefGoogle Scholar
  42. 42.
    Mangieri E, Croce CT, Tanzilli G, Lomurno A, Mangiaracina F, Bonifacio V, et al. Blood levels of somatotropic hormone in patients with various degrees of heart failure. G Ital Cardiol. 1994;24(7):845–52.PubMedGoogle Scholar
  43. 43.
    Anker SD, Volterrani M, Pflaum CD, Strasburger CJ, Osterziel KJ, Doehner W, et al. Acquired growth hormone resistance in patients with chronic heart failure: implications for therapy with growth hormone. J Am Coll Cardiol. 2001;38(2):443–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris PC. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation. 1989;80(2):299–305.PubMedCrossRefGoogle Scholar
  45. 45.
    Anker SD, Ponikowski PP, Clark AL, Leyva F, Rauchhaus M, Kemp M, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J. 1999;20(9):683–93. doi:10.1053/euhj.1998.1446.PubMedCrossRefGoogle Scholar
  46. 46.
    Yamaji M, Tsutamoto T, Kawahara C, Nishiyama K, Yamamoto T, Fujii M, et al. Serum cortisol as a useful predictor of cardiac events in patients with chronic heart failure: the impact of oxidative stress. Circ Heart Fail. 2009;2(6):608–15. doi:10.1161/CIRCHEARTFAILURE.109.868513.PubMedCrossRefGoogle Scholar
  47. 47.
    Guder G, Bauersachs J, Frantz S, Weismann D, Allolio B, Ertl G, et al. Complementary and incremental mortality risk prediction by cortisol and aldosterone in chronic heart failure. Circulation. 2007;115(13):1754–61. doi:10.1161/CIRCULATIONAHA.106.653964.PubMedCrossRefGoogle Scholar
  48. 48.
    Anker SD, Clark AL, Kemp M, Salsbury C, Teixeira MM, Hellewell PG, et al. Tumor necrosis factor and steroid metabolism in chronic heart failure: possible relation to muscle wasting. J Am Coll Cardiol. 1997;30(4):997–1001.PubMedCrossRefGoogle Scholar
  49. 49.
    •• Pereg D, Chan J, Russell E, Berlin T, Mosseri M, Seabrook JA et al. Cortisol and testosterone in hair as biological markers of systolic heart failure. Psychoneuroendocrinology. 2013. doi:10.1016/j.psyneuen.2013.07.015. This is a prospective study that evaluated hair cortisol levels in patients with heart failure. The results of this study showed that hair cortisol levels correlate with heart failure severity as assessed by exercise capacity (metabolic equivalents) and NYHA classes.
  50. 50.
    Jankowska EA, Filippatos G, Ponikowska B, Borodulin-Nadzieja L, Anker SD, Banasiak W, et al. Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. Journal of cardiac failure. 2009;15(5):442–50. doi:10.1016/j.cardfail.2008.12.011.PubMedCrossRefGoogle Scholar
  51. 51.
    Brotman DJ, Golden SH, Wittstein IS. The cardiovascular toll of stress. Lancet. 2007;370(9592):1089–100. doi:10.1016/S0140-6736(07)61305-1.PubMedCrossRefGoogle Scholar
  52. 52.
    Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10(1):15–22. doi:10.1007/s10741-005-2344-2.PubMedCrossRefGoogle Scholar
  53. 53.
    Burniston JG, Saini A, Tan LB, Goldspink DF. Aldosterone induces myocyte apoptosis in the heart and skeletal muscles of rats in vivo. J Mol Cell Cardiol. 2005;39(2):395–9. doi:10.1016/j.yjmcc.2005.04.001.PubMedCrossRefGoogle Scholar
  54. 54.
    Tomaschitz A, Ritz E, Pieske B, Fahrleitner-Pammer A, Kienreich K, Horina JH, et al. Aldosterone and parathyroid hormone: a precarious couple for cardiovascular disease. Cardiovascular research. 2012;94(1):10–9. doi:10.1093/cvr/cvs092.PubMedCrossRefGoogle Scholar
  55. 55.
    Agapitou V, Dimopoulos S, Mpouchla A, Samartzis L, Tseliou E, Kaldara E, et al. Serum intact parathyroid hormone levels independently predict exercise capacity in stable heart failure patients. International journal of cardiology. 2011;146(3):462–4. doi:10.1016/j.ijcard.2010.10.123.PubMedCrossRefGoogle Scholar
  56. 56.
    Schierbeck LL, Jensen TS, Bang U, Jensen G, Kober L, Jensen JE. Parathyroid hormone and vitamin D–markers for cardiovascular and all cause mortality in heart failure. European journal of heart failure. 2011;13(6):626–32. doi:10.1093/eurjhf/hfr016.PubMedCrossRefGoogle Scholar
  57. 57.
    •• Agapitou V, Dimopoulos S, Kapelios C, Karatzanos E, Manetos C, Georgantas A, et al. Hormonal imbalance in relation to exercise intolerance and ventilatory inefficiency in chronic heart failure. J Heart Lung Transplant. 2013;32(4):431–6. doi:10.1016/j.healun.2012.12.011. This is a prospective study that demonstrates the anabolic deficiency and the enhanced catabolic status in heart failure and the association with exercise intolerance. The results of this study have shown that cortisol and dehydroepiandrosterone levels were both independent predictors of VO 2 peak, while cortisol was the only independent predictor of ventilatory inefficiency (Ve/Vco 2 slope).PubMedCrossRefGoogle Scholar
  58. 58.
    Brillon DJ, Zheng B, Campbell RG, Matthews DE. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Am J Physiol. 1995;268(3 Pt 1):E501–13.PubMedGoogle Scholar
  59. 59.
    Gore DC, Jahoor F, Wolfe RR, Herndon DN. Acute response of human muscle protein to catabolic hormones. Ann Surg. 1993;218(5):679–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Gelfand RA, Matthews DE, Bier DM, Sherwin RS. Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest. 1984;74(6):2238–48. doi:10.1172/JCI111650.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Qi D, Rodrigues B. Glucocorticoids produce whole body insulin resistance with changes in cardiac metabolism. Am J Physiol Endocrinol Metab. 2007;292(3):E654–67. doi:10.1152/ajpendo.00453.2006.PubMedCrossRefGoogle Scholar
  62. 62.
    Simmons PS, Miles JM, Gerich JE, Haymond MW. Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest. 1984;73(2):412–20. doi:10.1172/JCI111227.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Rossi R, Tauchmanova L, Luciano A, Di Martino M, Battista C, Del Viscovo L, et al. Subclinical Cushing's syndrome in patients with adrenal incidentaloma: clinical and biochemical features. J Clin Endocrinol Metab. 2000;85(4):1440–8.PubMedGoogle Scholar
  64. 64.
    Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, et al. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42(5):861–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol. 1997;29(5):1067–73.PubMedCrossRefGoogle Scholar
  66. 66.
    Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol. 1995;25(6):1239–49. doi:10.1016/0735-1097(94)00568-B.PubMedCrossRefGoogle Scholar
  67. 67.
    • Erbs S, Hollriegel R, Linke A, Beck EB, Adams V, Gielen S, et al. Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail. 2010;3(4):486–94. doi:10.1161/CIRCHEARTFAILURE.109.868992. This is a randomized trial providing evidence of the beneficial effects of exercise training in patients with advanced heart failure. Exercise training improved LV function, exercise capacity, and peripheral circulation (endothelial function, and skeletal muscle neovascularization).PubMedCrossRefGoogle Scholar
  68. 68.
    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation. 2007;115(24):3086–94. doi:10.1161/CIRCULATIONAHA.106.675041.PubMedCrossRefGoogle Scholar
  69. 69.
    Gerovasili V, Drakos S, Kravari M, Malliaras K, Karatzanos E, Dimopoulos S, et al. Physical exercise improves the peripheral microcirculation of patients with chronic heart failure. Journal of cardiopulmonary rehabilitation and prevention. 2009;29(6):385–91. doi:10.1097/HCR.0b013e3181b4ca4e.PubMedCrossRefGoogle Scholar
  70. 70.
    Tasoulis A, Papazachou O, Dimopoulos S, Gerovasili V, Karatzanos E, Kyprianou T, et al. Effects of interval exercise training on respiratory drive in patients with chronic heart failure. Respir Med. 2010;104(10):1557–65. doi:10.1016/j.rmed.2010.03.009.PubMedCrossRefGoogle Scholar
  71. 71.
    Dimopoulos S, Anastasiou-Nana M, Sakellariou D, Drakos S, Kapsimalakou S, Maroulidis G, et al. Effects of exercise rehabilitation program on heart rate recovery in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2006;13(1):67–73.PubMedGoogle Scholar
  72. 72.
    Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, et al. Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2005;12(4):401–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Anagnostakou V, Chatzimichail K, Dimopoulos S, Karatzanos E, Papazachou O, Tasoulis A, et al. Effects of interval cycle training with or without strength training on vascular reactivity in heart failure patients. Journal of cardiac failure. 2011;17(7):585–91. doi:10.1016/j.cardfail.2011.02.009.PubMedCrossRefGoogle Scholar
  74. 74.
    Bouchla A, Karatzanos E, Dimopoulos S, Tasoulis A, Agapitou V, Diakos N, et al. The addition of strength training to aerobic interval training: effects on muscle strength and body composition in CHF patients. Journal of cardiopulmonary rehabilitation and prevention. 2011;31(1):47–51. doi:10.1097/HCR.0b013e3181e174d7.PubMedCrossRefGoogle Scholar
  75. 75.
    Tomczak CR, Paterson I, Haykowsky MJ, Lawrance R, Martellotto A, Pantano A, et al. Cardiac resynchronization therapy modulation of exercise left ventricular function and pulmonary O(2) uptake in heart failure. Am J Physiol Heart Circ Physiol. 2012;302(12):H2635–45. doi:10.1152/ajpheart.01119.2011.PubMedCrossRefGoogle Scholar
  76. 76.
    De Marco T, Wolfel E, Feldman AM, Lowes B, Higginbotham MB, Ghali JK, et al. Impact of cardiac resynchronization therapy on exercise performance, functional capacity, and quality of life in systolic heart failure with QRS prolongation: COMPANION trial sub-study. Journal of cardiac failure. 2008;14(1):9–18. doi:10.1016/j.cardfail.2007.08.003.PubMedCrossRefGoogle Scholar
  77. 77.
    Goldstein DJ, Oz MC, Rose EA. Implantable left ventricular assist devices. N Engl J Med. 1998;339(21):1522–33. doi:10.1056/NEJM199811193392107.PubMedCrossRefGoogle Scholar
  78. 78.
    Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43. doi:10.1056/NEJMoa012175.PubMedCrossRefGoogle Scholar
  79. 79.
    Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355(18):1873–84. doi:10.1056/NEJMoa053063.PubMedCrossRefGoogle Scholar
  80. 80.
    Lahpor J, Khaghani A, Hetzer R, Pavie A, Friedrich I, Sander K, et al. European results with a continuous-flow ventricular assist device for advanced heart-failure patients. Eur J Cardiothorac Surg. 2010;37(2):357–61. doi:10.1016/j.ejcts.2009.05.043.PubMedGoogle Scholar
  81. 81.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51. doi:10.1056/NEJMoa0909938.PubMedCrossRefGoogle Scholar
  82. 82.
    Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol. 2007;43(3):231–42. doi:10.1016/j.yjmcc.2007.05.020.PubMedCrossRefGoogle Scholar
  83. 83.
    Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7. doi:10.1161/CIRCULATIONAHA.108.814863.PubMedCrossRefGoogle Scholar
  84. 84.
    George I, Xydas S, Mancini DM, Lamanca J, DiTullio M, Marboe CC, et al. Effect of clenbuterol on cardiac and skeletal muscle function during left ventricular assist device support. J Heart Lung Transplant. 2006;25(9):1084–90. doi:10.1016/j.healun.2006.06.017.PubMedCrossRefGoogle Scholar
  85. 85.
    • Dimopoulos SK, Drakos SG, Terrovitis JV, Tzanis GS, Nanas SN. Improvement in respiratory muscle dysfunction with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2010;29(8):906–8. doi:10.1016/j.healun.2010.03.013. This prospective study has demonstrated for the first time that left ventricular assist device implantation induces a significant improvement in respiratory muscle function of heart failure patients in parallel with exercise capacity as assessed with a VO 2 peak.PubMedCrossRefGoogle Scholar
  86. 86.
    Osterziel KJ, Strohm O, Schuler J, Friedrich M, Hanlein D, Willenbrock R, et al. Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet. 1998;351(9111):1233–7. doi:10.1016/S0140-6736(97)11329-0.PubMedCrossRefGoogle Scholar
  87. 87.
    Acevedo M, Corbalan R, Chamorro G, Jalil J, Nazzal C, Campusano C, et al. Administration of growth hormone to patients with advanced cardiac heart failure: effects upon left ventricular function, exercise capacity, and neurohormonal status. International journal of cardiology. 2003;87(2–3):185–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Cittadini A, Saldamarco L, Marra AM, Arcopinto M, Carlomagno G, Imbriaco M, et al. Growth hormone deficiency in patients with chronic heart failure and beneficial effects of its correction. J Clin Endocrinol Metab. 2009;94(9):3329–36. doi:10.1210/jc.2009-0533.PubMedCrossRefGoogle Scholar
  89. 89.
    Pugh PJ, Jones RD, West JN, Jones TH, Channer KS. Testosterone treatment for men with chronic heart failure. Heart. 2004;90(4):446–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Malkin CJ, Pugh PJ, West JN, van Beek EJ, Jones TH, Channer KS. Testosterone therapy in men with moderate severity heart failure: a double-blind randomized placebo controlled trial. Eur Heart J. 2006;27(1):57–64. doi:10.1093/eurheartj/ehi443.PubMedCrossRefGoogle Scholar
  91. 91.
    Caminiti G, Volterrani M, Iellamo F, Marazzi G, Massaro R, Miceli M, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54(10):919–27. doi:10.1016/j.jacc.2009.04.078.PubMedCrossRefGoogle Scholar
  92. 92.
    • Iellamo F, Volterrani M, Caminiti G, Karam R, Massaro R, Fini M, et al. Testosterone therapy in women with chronic heart failure: a pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol. 2010;56(16):1310–6. doi:10.1016/j.jacc.2010.03.090. This is a double blind randomized control trial that investigated the role of testosterone supplementation in females with heart failure and showed an improvement in exercise capacity, insulin resistance and muscle strength.PubMedCrossRefGoogle Scholar
  93. 93.
    • Stout M, Tew GA, Doll H, Zwierska I, Woodroofe N, Channer KS, et al. Testosterone therapy during exercise rehabilitation in male patients with chronic heart failure who have low testosterone status: a double-blind randomized controlled feasibility study. Am Heart J. 2012;164(6):893–901. doi:10.1016/j.ahj.2012.09.016. This novel double blind randomized control trial investigated the role of testosterone supplementation and exercise training in male patients with hearing and testosterone deficiency. The study showed that testosterone supplementation alongside exercise training improved exercise capacity, muscle strength and quality of life.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Georgios Tzanis
    • 1
  • Stavros Dimopoulos
    • 1
  • Varvara Agapitou
    • 1
  • Serafim Nanas
    • 1
  1. 1.1st Critical Care Medicine Department, Cardiopulmonary Exercise Testing and Rehabilitation Laboratory, “Evgenidio Hospital”National & Kapodestrian University of AthensAthensGreece

Personalised recommendations