Current Heart Failure Reports

, Volume 11, Issue 1, pp 103–110

Management of Aortic Insufficiency in the Continuous Flow Left Ventricular Assist Device Population

Nonpharmacologic Therapy: Surgery, Ventricular Assist Devices, Biventricular Pacing, and Exercise (AK Hasan, Section Editor)


With the current generation of continuous-flow (CF) left ventricular assist devices (LVADs), patients are able to be supported for longer periods of time. As a result, there has been increasing focus on long-term complications from prolonged mechanical circulatory support, such as acquired aortic insufficiency (AI). In the presence of an LVAD, AI leads to a blind circulatory loop, with a portion of LVAD output regurgitating through the aortic valve (AV) into the left ventricle and back again through the device, limiting effective forward flow and ultimately leading to organ malperfusion and increased left ventricular diastolic pressures. The AV also experiences abnormal biomechanics as a result of limited valve opening in the presence of a CF LVAD. Increased shear stress, elevated transvalvular pressure gradients, and decreased valve open time all contribute to acquired AI. The prognosis of moderate to severe AI in LVAD patients is generally poor and leads to a higher rate of AV replacement and potentially reduced survival. However, there are no evidence-based guidelines for management of this challenging population. In severe AI, experts generally advocate AV replacement or repair, while lesser degrees of AI can be managed medically and/or with adjustments in pump parameters.


Aortic insufficiency Left ventricular assist device Valvular disorder End-stage heart failure Aortic valve replacement/repair Mechanical circulatory support Continuous flow 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    ( [cited 2013 8/1/2013])
  2. 2.
    Rose AG, Park SJ, Bank AJ, Miller LW. Partial aortic valve fusion induced by left ventricular assist device. Ann Thorac Surg. 2000;70(4):1270–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Cowger J, Pagani FD, Haft JW, Romano MA, Aaronson KD, Kolias TJ. The development of aortic insufficiency in left ventricular assist device-supported patientsclinical perspective. Circ Heart Fail. 2010;3(6):668–74.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Hatano M, Kinugawa K, Shiga T, Kato N, Endo M, Hisagi M, et al. Less frequent opening of the aortic valve and a continuous flow pump are risk factors for postoperative onset of aortic insufficiency in patients with a left ventricular assist device. Circ J. 2011;75(5):1147.PubMedCrossRefGoogle Scholar
  5. 5.
    Pak S-W, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, et al. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant. 2010;29(10):1172–6.PubMedCrossRefGoogle Scholar
  6. 6.
    • Rajagopal K, Daneshmand MA, Patel CB, Ganapathi AM, Schechter MA, Rogers JG, et al. Natural history and clinical effect of aortic valve regurgitation after left ventricular assist device implantation. The Journal of thoracic and cardiovascular surgery. 2013. Retrospective review of the development and characterization of AI in the LVAD population. Google Scholar
  7. 7.
    Soleimani B, Haouzi A, Manoskey A, Stephenson ER, El-Banayosy A, Pae WE. Development of aortic insufficiency in patients supported with continuous flow left ventricular assist devices. ASAIO J. 2012;58(4):326–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Mano A, Gorcsan J, Teuteberg J, Bermudez C, Bhama J, McNamara D, et al. 38 Incidence and impact of de novo aortic insufficiency following continuous flow LVADs implantation. J Heart Lung Transplant. 2012;31(4):S22.CrossRefGoogle Scholar
  9. 9.
    Aggarwal A, Raghuvir R, Macaluso G, Gallagher C, Tatooles A, Pappas P, et al. Development of aortic insufficiency after heart mate ii left ventricular assist device implantation in 71 patients. J Am Coll Cardiol. 2012;59(13s1):E1017.CrossRefGoogle Scholar
  10. 10.
    Spiegelstein D, Rosner C, Desai S, Edwards L, Elliott T, Burton N, et al. Acquired aortic insufficiency with 2nd versus 3rd generation continuous flow left ventricular assist device. J Heart Lung Transplant. 2013;32(4):S225.CrossRefGoogle Scholar
  11. 11.
    Lebowitz NE, Bella JN, Roman MJ, Liu JE, Fishman DP, Paranicas M, et al. Prevalence and correlates of aortic regurgitation in American Indians: the Strong Heart Study. J Am Coll Cardiol. 2000;36(2):461–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Singh JP, Evans JC, Levy D, Larson MG, Freed LA, Fuller DL, et al. Prevalence and clinical determinants of mitral, tricuspid, and aortic regurgitation (the Framingham Heart Study). Am J Cardiol. 1999;83(6):897–902.PubMedCrossRefGoogle Scholar
  13. 13.
    Haghi D, Suselbeck T, Saur J. Aortic regurgitation during left ventricular assist device support. J Heart Lung Transplant. 2007;26(11):1220–1 [Case ReportsLetter].PubMedCrossRefGoogle Scholar
  14. 14.
    Martina J, de Jonge N, Sukkel E, Lahpor J. Left ventricular assist device-related systolic aortic regurgitation. Circulation. 2011;124(4):487–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Toda K, Fujita T, Domae K, Shimahara Y, Kobayashi J, Nakatani T. Late aortic insufficiency related to poor prognosis during left ventricular assist device support. Ann Thorac Surg. 2011;92(3):929–34.PubMedCrossRefGoogle Scholar
  16. 16.
    •• John R, Mantz K, Eckman P, Rose A, May-Newman K. Aortic valve pathophysiology during left ventricular assist device support. J Heart Lung Transplant. 2010;29(12):1321–9. Excellent comprehensive review of aortic valve pathophysiology during LVAD support.PubMedCrossRefGoogle Scholar
  17. 17.
    Thubrikar M, Klemchuk PP. The aortic valve. Boca Raton: CRC Press; 1990.Google Scholar
  18. 18.
    Balachandran K, Sucosky P, Jo H, Yoganathan AP. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol. 2009;296(3):H756–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Phil Trans R Soc B Biol Sci. 2007;362(1484):1369–91.CrossRefGoogle Scholar
  20. 20.
    Tuzun E, Rutten M, Dat M, van de Vosse F, Kadipasaoglu C, de Mol B. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop. J Surg Res. 2011;171(2):443–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Atance J, Yost MJ, Carver W. Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. J Cell Physiol. 2004;200(3):377–86.PubMedCrossRefGoogle Scholar
  22. 22.
    El-Hamamsy I, Balachandran K, Yacoub MH, Stevens LM, Sarathchandra P, Taylor PM, et al. Endothelium-dependent regulation of the mechanical properties of aortic valve cusps. J Am Coll Cardiol. 2009;53(16):1448–55.PubMedCrossRefGoogle Scholar
  23. 23.
    Gudi SR, Lee AA, Clark CB, Frangos JA. Equibiaxial strain and strain rate stimulate early activation of G proteins in cardiac fibroblasts. Am J Physiol Cell Physiol. 1998;274(5):C1424–8.Google Scholar
  24. 24.
    Lee AA, Delhaas T, McCulloch AD, Villarreal FJ. Differential responses of adult cardiac fibroblasts to < i > in vitro</i > biaxial strain patterns. J Mol Cell Cardiol. 1999;31(10):1833–43.PubMedCrossRefGoogle Scholar
  25. 25.
    Xing Y, Warnock JN, He Z, Hilbert SL, Yoganathan AP. Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude and frequency dependent manner. Ann Biomed Eng. 2004;32(11):1461–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Weston MW, Yoganathan AP. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann Biomed Eng. 2001;29(9):752–63.PubMedCrossRefGoogle Scholar
  27. 27.
    Thubrikar M, Aouad J, Nolan S. Comparison of the in vivo and in vitro mechanical properties of aortic valve leaflets. J Thorac Cardiovasc Surg. 1986;92(1):29.PubMedGoogle Scholar
  28. 28.
    Bonow RO, Mann DL, Zipes DP, Libby P. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set: Saunders; 2011.Google Scholar
  29. 29.
    Otto CM. Calcific aortic stenosis–time to look more closely at the valve. N Engl J Med. 2008;359(13):1395.PubMedCrossRefGoogle Scholar
  30. 30.
    Mudd JO, Cuda JD, Halushka M, Soderlund KA, Conte JV, Russell SD. Fusion of aortic valve commissures in patients supported by a continuous axial flow left ventricular assist device. J Heart Lung Transplant. 2008;27(12):1269–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Dagum P, Green GR, Nistal FJ, Daughters GT, Timek TA, Foppiano LE, et al. Deformational dynamics of the aortic root: modes and physiologic determinants. Circulation. 1999;100 suppl 2:II-54–62.Google Scholar
  32. 32.
    Gundiah N, Kam K, Matthews PB, Guccione J, Dwyer HA, Saloner D, et al. Asymmetric mechanical properties of porcine aortic sinuses. Ann Thorac Surg. 2008;85(5):1631–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Furukawa K, Ohteki H, Cao Z-L, Doi K, Narita Y, Minato N, et al. Does dilatation of the sinotubular junction cause aortic regurgitation? Ann Thorac Surg. 1999;68(3):949–53.PubMedCrossRefGoogle Scholar
  34. 34.
    May-Newman K, Hillen B, Dembitsky W. Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J. 2006;52(2):132–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Litwak KN, Koenig SC, Tsukui H, Kihara S, Wu Z, Pantalos GM. Effects of left ventricular assist device support and outflow graft location upon aortic blood flow. ASAIO J. 2004;50(5):432–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Westaby S, Bertoni GB, Clelland C, Nishinaka T, Frazier O. Circulatory support with attenuated pulse pressure alters human aortic wall morphology. J Thorac Cardiovasc Surg. 2007;133(2):575–6.PubMedCrossRefGoogle Scholar
  37. 37.
    •• Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87. 2013 ISHLT Guidelines for mechanical circulatory support including recommendations on LVAD associated AI.PubMedCrossRefGoogle Scholar
  38. 38.
    Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4):S1–S39.PubMedCrossRefGoogle Scholar
  39. 39.
    Pal JD, Klodell CT, John R, Pagani FD, Rogers JG, Farrar DJ, et al. Low operative mortality with implantation of a continuous-flow left ventricular assist device and impact of concurrent cardiac procedures. Circulation. 2009;120(11 suppl 1):S215–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Garcia MAZ, Enriquez LA, Dembitsky W, May-Newman K. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. ASAIO J. 2008;54(3):237–44.CrossRefGoogle Scholar
  41. 41.
    Feldman CM, Silver MA, Sobieski MA, Slaughter MS. Management of aortic insufficiency with continuous flow left ventricular assist devices: bioprosthetic valve replacement. J Heart Lung Transplant. 2006;25(12):1410.PubMedCrossRefGoogle Scholar
  42. 42.
    Rao V, Slater JP, Edwards NM, Naka Y, Oz MC. Surgical management of valvular disease in patients requiring left ventricular assist device support. Ann Thorac Surg. 2001;71(5):1448–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Park SJ, Liao KK, Segurola R, Madhu K, Miller LW. Management of aortic insufficiency in patients with left ventricular assist devices: a simple coaptation stitch method (Park's stitch). J Thorac Cardiovasc Surg. 2004;127(1):264–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Cohn WE, Frazier O. The sandwich plug technique: simple, effective, and rapid closure of a mechanical aortic valve prosthesis at left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2011;142(2):455–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Baum C, Seiffert M, Treede H, Reichenspurner H, Deuse T. Concomitant transcatheter aortic valve and left ventricular assist device implantation. ASAIO J. 2013;59(1):90–2.PubMedCrossRefGoogle Scholar
  46. 46.
    Menon AK, Dohmen G, Mahnken AH, Autschbach R. Successful combined procedure of HeartMate II left ventricular assist device implantation and minimally invasive transapical aortic valve replacement. J Thorac Cardiovasc Surg. 2011;142(3):708–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Swartz MT, Lowdermilk GA, Moroney DA, McBride LR. Ventricular assist device support in patients with mechanical heart valves. Ann Thorac Surg. 1999;68(6):2248–51.PubMedCrossRefGoogle Scholar
  48. 48.
    Lampert B, Weaver S, Scanlon A, Lockard K, Allen C, Kunz N, et al. 734 Blood pressure control in continuous flow left ventricular assist devices‚ Efficacy and impact on adverse events. J Heart Lung Transplant. 2012;31(4):S251.CrossRefGoogle Scholar
  49. 49.
    John R, Liao K, Colvin Ä, Adams M, Miller L, Joyce L, et al. Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J Thorac Cardiovasc Surg. 2008;136(5):1318–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96.PubMedCrossRefGoogle Scholar
  51. 51.
    Myers TJ, Frazier O, Mesina HS, Radovancevic B, Gregoric ID. Hemodynamics and patient safety during pump-off studies of an axial-flow left ventricular assist device. J Heart Lung Transplant. 2006;25(4):379–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Atkins BZ, Hashmi ZA, Ganapathi AM, Harrison JK, Hughes GC, Rogers JG, et al. Surgical correction of aortic valve insufficiency after left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2013.Google Scholar
  53. 53.
    Adamson RM, Dembitsky WP, Baradarian S, Chammas J, May-Newman K, Chillcott S, et al. Aortic valve closure associated with HeartMate left ventricular device support: technical considerations and long-term results. J Heart Lung Transplant. 2011;30(5):576–82.PubMedCrossRefGoogle Scholar
  54. 54.
    Freed BH, Paul JD, Bhave NM, Russo MJ, Jeevanandam V, Lang RM, et al. Percutaneous transcatheter closure of the native aortic valve to treat de novo aortic insufficiency after implantation of a left ventricular assist device. JACC Cardiovasc Interv. 2012;5(3):358–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Grohmann J, Blanke P, Benk C, Schlensak C. Trans-catheter closure of the native aortic valve with an amplatzer¬Æ occluder to treat progressive aortic regurgitation after implantation of a left-ventricular assist device. Eur J Cardiothorac Surg. 2011;39(6):e181–3.PubMedCrossRefGoogle Scholar
  56. 56.
    • Parikh KS, Mehrotra AK, Russo MJ, Lang RM, Anderson A, Jeevanandam V, et al. Percutaneous transcatheter aortic valve closure successfully treats left ventricular assist device‚associated aortic insufficiency and improves cardiac hemodynamics. JACC Cardiovasc Interv. 2013;6(1):84–9. Case series of 5 patients describing the effective use of percutaneous LVOT occluders to treat LVAD acquired AI.PubMedCrossRefGoogle Scholar
  57. 57.
    Russo MJ, Freed BH, Jeevanandam V, Hashmi M, Paul JD, Anderson A, et al. Percutaneous transcatheter closure of the aortic valve to treat cardiogenic shock in a left ventricular assist device patient with severe aortic insufficiency. Ann Thorac Surg. 2012;94(3):985–8.PubMedCrossRefGoogle Scholar
  58. 58.
    D'Ancona G, Pasic M, Buz S, Drews T, Dreysse S, Hetzer R, et al. TAVI for pure aortic valve insufficiency in a patient with a left ventricular assist device. Ann Thorac Surg. 2012;93(4):e89–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Khan S, Koerner MM, Pae W, Stephenson ER, Weber H, Brehm C, et al. Successful percutaneous transcatheter aortic valve replacement in multi-organ failure due to aortic bioprosthesis regurgitation in a patient with continuous-flow LVAD. J Heart Lung Transplant. 2013;32(6):659.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPittsburghUSA
  2. 2.Heart and Vascular InstituteUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations