Advertisement

Current Heart Failure Reports

, Volume 10, Issue 4, pp 427–433 | Cite as

Acute Heart Failure: Patient Characteristics and Pathophysiology

  • Catherine N. Marti
  • Vasiliki V. Georgiopoulou
  • Andreas P. Kalogeropoulos
Epidemiology of Heart Failure (J Butler, Section Editor)

Abstract

The number of hospitalizations for acute heart failure (HF) continues to increase and it remains the most common discharge diagnosis among Medicare beneficiaries. Prognosis after hospitalization for HF is poor, with high in-hospital mortality and even higher post-discharge mortality and rehospitalization rates. It is a complex clinical syndrome that varies widely with respect to clinical presentation and underlying pathophysiology. This paper reviews what is documented in the literature regarding the known pathophysiologic mechanisms reported in patients hospitalized for HF.

Keywords

Heart failure Hospitalization Acute Pathophysiology Endothelial function 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

Catherine N. Marti, Vasiliki V. Georgiopoulou, and Andreas P. Kalogeropoulos declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 2010;121:e46–215.PubMedCrossRefGoogle Scholar
  2. 2.
    • Gheorghiade M, Pang PS, O'Connor CM, et al. Clinical development of pharmacologic agents for acute heart failure syndromes: a proposal for a mechanistic translational phase. Am Heart J. 2011;161:224–32. This is a well-written review summarizing the methods of pharmacologic development in acute heart failure. The authors describe the need for a T1 or translational phase of research for acute heart failure syndrome clinical development in order to move toward greater success in acute heart failure clinical trials.PubMedCrossRefGoogle Scholar
  3. 3.
    Gheorghiade M, Zannad F, Sopko G, et al. Acute heart failure syndromes: current state and framework for future research. Circulation. 2005;112:3958–68.PubMedCrossRefGoogle Scholar
  4. 4.
    Fonarow GC, Abraham WT, Albert NM, et al. Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF): rationale and design. Am Heart J. 2004;148:43–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:e391–479.PubMedCrossRefGoogle Scholar
  6. 6.
    Adams Jr KF, Fonarow GC, Emerman CL, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Abraham WT, Fonarow GC, Albert NM, et al. Predictors of in-hospital mortality in patients hospitalized for heart failure: insights from the Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF). J Am Coll Cardiol. 2008;52:347–56.PubMedCrossRefGoogle Scholar
  8. 8.
    •• O'Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43. This is an important trial in acute heart failure. Nesiritide was not associated with an increase or a decrease in the rate of death and rehospitalization and had a small, nonsignificant effect on dyspnea when used in combination with other therapies. On the basis of these results, nesiritide cannot be recommended for routine use in the broad population of patients with acute heart failure.PubMedCrossRefGoogle Scholar
  9. 9.
    Fonarow GC, Stough WG, Abraham WT, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Fonarow GC. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med. 2003;4 Suppl 7:S21–30.PubMedGoogle Scholar
  11. 11.
    Kamath SA, Drazner MH, Wynne J, Fonarow GC, Yancy CW. Characteristics and outcomes in African American patients with decompensated heart failure. Arch Intern Med. 2008;168:1152–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Solomon SD, Anavekar N, Skali H, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112:3738–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Tribouilloy C, Rusinaru D, Leborgne L, et al. In-hospital mortality and prognostic factors in patients admitted for new-onset heart failure with preserved or reduced ejection fraction: a prospective observational study. Arch Cardiovasc Dis. 2008;101:226–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Verhaert D, Mullens W, Borowski A, et al. Right ventricular response to intensive medical therapy in advanced decompensated heart failure. Circ Heart Fail. 2010;3:340–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Meyer P, Filippatos GS, Ahmed MI, et al. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation. 2010;121:252–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Gottdiener JS, Kitzman DW, Aurigemma GP, Arnold AM, Manolio TA. Left atrial volume, geometry, and function in systolic and diastolic heart failure of persons > or = 65 years of age (the cardiovascular health study). Am J Cardiol. 2006;97:83–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rossi A, Dini FL, Faggiano P, et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart. 2011;97:1675–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Ramasubbu K, Deswal A, Chan W, Aguilar D, Bozkurt B. Echocardiographic changes during treatment of acute decompensated heart failure: insights from the ESCAPE trial. J Card Fail. 2012;18:792–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Nieminen MS, Brutsaert D, Dickstein K, et al. EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population. Eur Heart J. 2006;27:2725–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294:1625–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Braunwald E, Bristow MR. Congestive heart failure: fifty years of progress. Circulation. 2000;102:IV14–23.PubMedGoogle Scholar
  22. 22.
    Aronson D, Burger AJ. Neurohormonal prediction of mortality following admission for decompensated heart failure. Am J Cardiol. 2003;91:245–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Aronson D, Burger AJ. Neurohumoral activation and ventricular arrhythmias in patients with decompensated congestive heart failure: role of endothelin. Pacing Clin Electrophysiol. 2003;26:703–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Milo O, Cotter G, Kaluski E, et al. Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus nonischemic causes. Am J Cardiol. 2003;92:222–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Anand IS, Fisher LD, Chiang YT, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2003;107:1278–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Maisel A, Mueller C, Nowak R, et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol. 2010;55:2062–76.PubMedCrossRefGoogle Scholar
  29. 29.
    Goldsmith SR, Francis GS, Cowley Jr AW, Levine TB, Cohn JN. Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol. 1983;1:1385–90.PubMedCrossRefGoogle Scholar
  30. 30.
    Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–9.PubMedCrossRefGoogle Scholar
  31. 31.
    • Maisel A, Xue Y, Shah K, et al. Increased 90-day mortality in patients with acute heart failure with elevated copeptin: secondary results from the Biomarkers in Acute Heart Failure (BACH) study. Circ Heart Fail. 2011;4:613–20. This study showed significantly increased 90-day mortality, readmissions, and emergency department visits in patients with elevated copeptin, especially in those with hyponatremia. Copeptin was highly prognostic for 90-day adverse events in patients with acute HF, adding prognostic value to clinical predictors, serum sodium, and natriuretic peptides.PubMedCrossRefGoogle Scholar
  32. 32.
    Aronson D, Burger AJ. Intravenous nesiritide (human B-type natriuretic peptide) reduces plasma endothelin-1 levels in patients with decompensated congestive heart failure. Am J Cardiol. 2002;90:435–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kiowski W, Sutsch G, Hunziker P, et al. Evidence for endothelin-1-mediated vasoconstriction in severe chronic heart failure. Lancet. 1995;346:732–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Wei CM, Lerman A, Rodeheffer RJ, et al. Endothelin in human congestive heart failure. Circulation. 1994;89:1580–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Potocki M, Breidthardt T, Reichlin T, et al. Midregional pro-adrenomedullin in addition to b-type natriuretic peptides in the risk stratification of patients with acute dyspnea: an observational study. Crit Care. 2009;13:R122.PubMedCrossRefGoogle Scholar
  36. 36.
    Missov E, Mair J. A novel biochemical approach to congestive heart failure: cardiac troponin T. Am Heart J. 1999;138:95–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Metra M, Nodari S, Parrinello G, et al. The role of plasma biomarkers in acute heart failure. Serial changes and independent prognostic value of NT-proBNP and cardiac troponin-T. Eur J Heart Fail. 2007;9:776–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Gheorghiade M, Gattis Stough W, Adams Jr KF, Jaffe AS, Hasselblad V, O'Connor CM. The Pilot Randomized Study of Nesiritide Versus Dobutamine in Heart Failure (PRESERVD-HF). Am J Cardiol. 2005;96:18G–25.PubMedCrossRefGoogle Scholar
  39. 39.
    Horwich TB, Patel J, MacLellan WR, Fonarow GC. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108:833–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Peacock 4th WF, De Marco T, Fonarow GC, et al. Cardiac troponin and outcome in acute heart failure. N Engl J Med. 2008;358:2117–26.PubMedCrossRefGoogle Scholar
  41. 41.
    Bradham WS, Bozkurt B, Gunasinghe H, Mann D, Spinale FG. Tumor necrosis factor-alpha and myocardial remodeling in progression of heart failure: a current perspective. Cardiovasc Res. 2002;53:822–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 1996;27:1201–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Sato Y, Takatsu Y, Kataoka K, et al. Serial circulating concentrations of C-reactive protein, interleukin (IL)-4, and IL-6 in patients with acute left heart decompensation. Clin Cardiol. 1999;22:811–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Francis SE, Holden H, Holt CM, Duff GW. Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol. 1998;30:215–23.PubMedCrossRefGoogle Scholar
  46. 46.
    Mohler 3rd ER, Sorensen LC, Ghali JK, et al. Role of cytokines in the mechanism of action of amlodipine: the PRAISE Heart Failure Trial. Prospective randomized amlodipine survival evaluation. J Am Coll Cardiol. 1997;30:35–41.PubMedCrossRefGoogle Scholar
  47. 47.
    Tsutamoto T, Hisanaga T, Wada A, et al. Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol. 1998;31:391–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Aukrust P, Ueland T, Lien E, et al. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83:376–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Peschel T, Schonauer M, Thiele H, Anker SD, Schuler G, Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail. 2003;5:609–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Mueller C, Laule-Kilian K, Christ A, Brunner-La Rocca HP, Perruchoud AP. Inflammation and long-term mortality in acute congestive heart failure. Am Heart J. 2006;151:845–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Chin BS, Conway DS, Chung NA, Blann AD, Gibbs CR, Lip GY. Interleukin-6, tissue factor and von Willebrand factor in acute decompensated heart failure: relationship to treatment and prognosis. Blood Coagul Fibrinolysis. 2003;14:515–21.PubMedCrossRefGoogle Scholar
  52. 52.
    Miller AM, Liew FY. The IL-33/ST2 pathway—a new therapeutic target in cardiovascular disease. Pharmacol Ther. 2011;131:179–86.PubMedCrossRefGoogle Scholar
  53. 53.
    Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117:1538–49.PubMedCrossRefGoogle Scholar
  54. 54.
    Rehman SU, Mueller T, Januzzi Jr JL. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J Am Coll Cardiol. 2008;52:1458–65.PubMedCrossRefGoogle Scholar
  55. 55.
    Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555:589–606.PubMedCrossRefGoogle Scholar
  56. 56.
    Kadiiska MB, Gladen BC, Baird DD, et al. Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med. 2005;38:698–710.PubMedCrossRefGoogle Scholar
  57. 57.
    Kadiiska MB, Gladen BC, Baird DD, et al. Biomarkers of oxidative stress study III. Effects of the nonsteroidal anti-inflammatory agents indomethacin and meclofenamic acid on measurements of oxidative products of lipids in CCl4 poisoning. Free Radic Biol Med. 2005;38:711–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol. 2005;3:221–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.PubMedCrossRefGoogle Scholar
  60. 60.
    La Rocca G, Di Stefano A, Eleuteri E, et al. Oxidative stress induces myeloperoxidase expression in endocardial endothelial cells from patients with chronic heart failure. Basic Res Cardiol. 2009;104:307–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Brennan ML, Hazen SL. Emerging role of myeloperoxidase and oxidant stress markers in cardiovascular risk assessment. Curr Opin Lipidol. 2003;14:353–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science. 2002;296:2391–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Michowitz Y, Kisil S, Guzner-Gur H, et al. Usefulness of serum myeloperoxidase in prediction of mortality in patients with severe heart failure. Isr Med Assoc J. 2008;10:884–8.PubMedGoogle Scholar
  64. 64.
    Tang WH, Tong W, Troughton RW, et al. Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J Am Coll Cardiol. 2007;49:2364–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Pascual-Figal DA, Hurtado-Martinez JA, Redondo B, Antolinos MJ, Ruiperez JA, Valdes M. Hyperuricaemia and long-term outcome after hospital discharge in acute heart failure patients. Eur J Heart Fail. 2007;9:518–24.PubMedCrossRefGoogle Scholar
  66. 66.
    Spinale FG, Coker ML, Bond BR, Zellner JL. Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res. 2000;46:225–38.PubMedCrossRefGoogle Scholar
  67. 67.
    Li YY, McTiernan CF, Feldman AM. Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res. 2000;46:214–24.PubMedCrossRefGoogle Scholar
  68. 68.
    Dollery CM, McEwan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease. Circ Res. 1995;77:863–8.PubMedCrossRefGoogle Scholar
  69. 69.
    • Shirakabe A, Asai K, Hata N, et al. Clinical significance of matrix metalloproteinase (MMP)-2 in patients with acute heart failure. Int Heart J. 2010;51:404–10. Serum levels of matrix metalloproteinases-2 decrease with improvements in acute heart failure. Rapid decreases in matrix metalloproteinases-2 may be important for a better clinical outcome in patients with acute heart failure.PubMedCrossRefGoogle Scholar
  70. 70.
    Tziakas DN, Chalikias GK, Hatzinikolaou HI, et al. Levosimendan use reduces matrix metalloproteinase-2 in patients with decompensated heart failure. Cardiovasc Drugs Ther. 2005;19:399–402.PubMedCrossRefGoogle Scholar
  71. 71.
    Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8.PubMedCrossRefGoogle Scholar
  72. 72.
    van Kimmenade RR, Januzzi Jr JL, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48:1217–24.PubMedCrossRefGoogle Scholar
  73. 73.
    • Shah RV, Chen-Tournoux AA, Picard MH, van Kimmenade RR, Januzzi JL. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur J Heart Fail. 2010;12:826–32. In patients with acute decompensated heart failure, a single admission galectin-3 level predicts 4-year mortality, independent of echocardiographic markers of disease severity.PubMedCrossRefGoogle Scholar
  74. 74.
    Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339:321–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Bruneau BG, Piazza LA, de Bold AJ. BNP gene expression is specifically modulated by stretch and ET-1 in a new model of isolated rat atria. Am J Physiol. 1997;273:H2678–86.PubMedGoogle Scholar
  76. 76.
    Cowie MR, Jourdain P, Maisel A, et al. Clinical applications of B-type natriuretic peptide (BNP) testing. Eur Heart J. 2003;24:1710–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Bettencourt P, Azevedo A, Pimenta J, Frioes F, Ferreira S, Ferreira A. N-terminal-pro-brain natriuretic peptide predicts outcome after hospital discharge in heart failure patients. Circulation. 2004;110:2168–74.PubMedCrossRefGoogle Scholar
  78. 78.
    Fonarow GC, Peacock WF, Horwich TB, et al. Usefulness of B-type natriuretic peptide and cardiac troponin levels to predict in-hospital mortality from ADHERE. Am J Cardiol. 2008;101:231–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Schrier RW. Blood urea nitrogen and serum creatinine: not married in heart failure. Circ Heart Fail. 2008;1:2–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Kazory A. Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. Am J Cardiol. 2010;106:694–700.PubMedCrossRefGoogle Scholar
  81. 81.
    Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Fonarow GC, Adams Jr KF, Abraham WT, Yancy CW, Boscardin WJ. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293:572–80.PubMedCrossRefGoogle Scholar
  83. 83.
    Felker GM, Leimberger JD, Califf RM, et al. Risk stratification after hospitalization for decompensated heart failure. J Card Fail. 2004;10:460–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Aronson D, Mittleman MA, Burger AJ. Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure. Am J Cardiol. 2004;116:466–73.Google Scholar
  85. 85.
    Fonarow GC, Yancy CW, Albert NM, et al. Heart failure care in the outpatient cardiology practice setting: findings from IMPROVE HF. Circ Heart Fail. 2008;1:98–106.PubMedCrossRefGoogle Scholar
  86. 86.
    Klein L, Massie BM, Leimberger JD, et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail. 2008;1:25–33.PubMedCrossRefGoogle Scholar
  87. 87.
    • Manzano-Fernandez S, Januzzi Jr JL, Boronat-Garcia M, et al. Beta-trace protein and cystatin C as predictors of long-term outcomes in patients with acute heart failure. J Am Coll Cardiol. 2011;57:849–58. Among patients hospitalized with acute heart failure, beta-trace protein and cystatin C predict risk of death and/or heart failure hospitalization and are superior to standard measures of renal function for this indication.PubMedCrossRefGoogle Scholar
  88. 88.
    Yndestad A, Landro L, Ueland T, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;30:1229–36.PubMedCrossRefGoogle Scholar
  89. 89.
    • Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010;16:49–54. Elevated serum levels of neutrophil gelatinase-associated lipocalin at admission are associated with heightened risk of worsening renal function in patients admitted with acute heart failure.PubMedCrossRefGoogle Scholar
  90. 90.
    Bonventre JV, Yang L. Kidney injury molecule-1. Curr Opin Crit Care. 2010.Google Scholar
  91. 91.
    Damman K, Van Veldhuisen DJ, Navis G, et al. Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart. 2010;96:1297–302.PubMedCrossRefGoogle Scholar
  92. 92.
    Bauersachs J, Widder JD. Endothelial dysfunction in heart failure. Pharmacol Rep. 2008;60:119–26.PubMedGoogle Scholar
  93. 93.
    Massion PB, Feron O, Dessy C, Balligand JL. Nitric oxide and cardiac function: ten years after, and continuing. Circ Res. 2003;93:388–98.PubMedCrossRefGoogle Scholar
  94. 94.
    Sartori C, Allemann Y, Scherrer U. Pathogenesis of pulmonary edema: learning from high-altitude pulmonary edema. Respir Physiol Neurobiol. 2007;159:338–49.PubMedCrossRefGoogle Scholar
  95. 95.
    Sartori C, Lepori M, Scherrer U. Interaction between nitric oxide and the cholinergic and sympathetic nervous system in cardiovascular control in humans. Pharmacol Ther. 2005;106:209–20.PubMedCrossRefGoogle Scholar
  96. 96.
    Bech JN, Nielsen CB, Ivarsen P, Jensen KT, Pedersen EB. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans. Am J Physiol. 1998;274:F914–23.PubMedGoogle Scholar
  97. 97.
    Kalantar-Zadeh K, Block G, Horwich T, Fonarow GC. Reverse epidemiology of conventional cardiovascular risk factors in patients with chronic heart failure. J Am Coll Cardiol. 2004;43:1439–44.PubMedCrossRefGoogle Scholar
  98. 98.
    Guder G, Frantz S, Bauersachs J, et al. Reverse epidemiology in systolic and nonsystolic heart failure: cumulative prognostic benefit of classical cardiovascular risk factors. Circ Heart Fail. 2009;2:563–71.PubMedCrossRefGoogle Scholar
  99. 99.
    Horwich TB, Hernandez AF, Dai D, Yancy CW, Fonarow GC. Cholesterol levels and in-hospital mortality in patients with acute decompensated heart failure. Am Heart J. 2008;156:1170–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Gheorghiade M, Abraham WT, Albert NM, et al. Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA. 2006;296:2217–26.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Catherine N. Marti
    • 1
  • Vasiliki V. Georgiopoulou
    • 1
  • Andreas P. Kalogeropoulos
    • 1
    • 2
  1. 1.Division of CardiologyEmory UniversityAtlantaUSA
  2. 2.Emory Clinical Cardiovascular InstituteAtlantaUSA

Personalised recommendations