Current Heart Failure Reports

, Volume 9, Issue 2, pp 117–127 | Cite as

Chemotherapy-Induced Cardiotoxicity

  • Amir Y. Shaikh
  • Jeffrey A. ShihEmail author
Management of Heart Failure (T Meyer, Section Editor)


Anthracycline-based chemotherapeutics have long been recognized as effective agents for treating a wide range of malignancies. However, their use is not without significant adverse cardiotoxic side effects. Strategies for prevention involve limiting free-radical production and subsequent cardiac myocyte damage. Dexrazoxane remains the most widely studied cardioprotective medication. Alternative agents may reduce cardiotoxicity but may still cause significant cardiovascular problems. The role of β-blockers and angiotensin-converting enzyme inhibitors in the treatment of heart failure is well proven. The role of these medications in the prevention and treatment of chemotherapy-induced cardiotoxicity is not well established.


Doxorubicin Anthracycline Trastuzumab Heart failure Cardiomyopathy Chemotherapy Management Tyrosine kinase inhibitors TKIs Cardiotoxicity Cardio-oncology 



No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Geiger S, Lange V, Suhl P, et al. Anticancer therapy induced cardiotoxicity: review of the literature. Anti Canc Drug. 2010;21(6):578–90.CrossRefGoogle Scholar
  2. 2.
    •• Smith LA, Cornelius VR, Plummer CJ, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010 Jun 29;10:337. This is a thorough review of the literature. Due to the small trials, meta-analyses are essential with regards to this topic. PubMedCrossRefGoogle Scholar
  3. 3.
    Zuppinger C, Suter TM. Cancer therapy-associated cardiotoxicity and signaling in the myocardium. J Cardiovasc Pharmacol. 2010;56(2):141–6.PubMedCrossRefGoogle Scholar
  4. 4.
    •• van Dalen EC, Michiels EM, Caron HN, et al. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. 2010 Mar 17;(3):CD005006. Review. Update in: Cochrane Database Syst Rev. 2010;(5):CD005006. This is an effective Cochrane review on preventing or reducing cardiotoxicity from anthracyclines. Google Scholar
  5. 5.
    Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic health conditions in survivors of childhood cancer. NEJM. 2006;355(15):1572–82.PubMedCrossRefGoogle Scholar
  6. 6.
    • Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009 Jun 16;53(24):2231–47. This is an excellent review on the topic. PubMedCrossRefGoogle Scholar
  7. 7.
    Shan K, Lincoff AM, Young JB. Anthracycline-induced cardiotoxicity. Ann Intern Med. 1996;125:47–58.PubMedGoogle Scholar
  8. 8.
    Sawyer DB, Peng X, Chen B, et al. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis. 2010;53(2):105–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Cardinale D, Colombo A, Torrisi R, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Seidman A, Hudis C, Pierri MK, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Ewer MS, Vooletich MT, Durand JB, et al. Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol. 2005;23(31):7820–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng H, Force T. Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53(2):114–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Yeh ET, Tong AT, Lenihan DJ, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004;109(25):3122–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Gharib MI, Burnett AK. Chemotherapy-induced cardiotoxicity: current practice and prospects of prophylaxis. Eur J Heart Fail. 2002;4(3):235–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Quezado ZM, Wilson WH, Cunnion RE, et al. High-dose ifosfamide is associated with severe, reversible cardiac dysfunction. Ann Intern Med. 1993;118(1):31–6.PubMedGoogle Scholar
  16. 16.
    Martin M, Pienkowski T, Mackey J, Breast Cancer International Research Group 001 Investigators, et al. Adjuvant docetaxel for node-positive breast cancer. N Engl J Med. 2005;352(22):2302–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Jain M, Townsend RR. Chemotherapy agents and hypertension: a focus on angiogenesis blockade. Curr Hypertens Rep. 2007;9(4):320–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Pande A, Lombardo J, Spangenthal E, et al. Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res. 2007;27(5B):3465–70.PubMedGoogle Scholar
  19. 19.
    Wu S, Chen JJ, Kudelka A, et al. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 2008;9(2):117–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Palumbo A, Rajkumar SV, Dimopoulos MA, International Myeloma Working Group, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23.PubMedCrossRefGoogle Scholar
  22. 22.
    Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21(19):3609–15.PubMedCrossRefGoogle Scholar
  23. 23.
    Albini A, Pennesi G, Donatelli F, et al. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Canc Inst. 2010;102(1):14–25.CrossRefGoogle Scholar
  24. 24.
    Ganz WI, Sridhar KS, Ganz SS, et al. Review of tests for monitoring doxorubicin-induced cardiomyopathy. Oncology. 1996;53:461–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Marchandise B, Schroeder E, Bosly A, et al. Early detection of doxorubicin cardiotoxicity: interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am Heart J. 1989;118(1):92–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Ewer MS, Ali MK, Gibbs HR, et al. Cardiac diastolic function in pediatric patients receiving doxorubicin. Acta Oncol. 1994;33(6):645–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Weesner KM, Bledsoe M, Chauvenet A, et al. Exercise echocardiography in the detection of anthracycline cardiotoxicity. Cancer. 1991;68(2):435–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Klewer SE, Goldberg SJ, Donnerstein RL, et al. Dobutamine stress echocardiography: a sensitive indicator of diminished myocardial function in asymptomatic doxorubicin-treated long-term survivors of childhood cancer. J Am Coll Cardiol. 1992;19(2):394–401.PubMedCrossRefGoogle Scholar
  29. 29.
    • Sawaya H, Sebag IA, Plana JC, et al. Early detection and predictor of cardiotoxicity in chemotherapy- treated patients. Am J Cardiol. 2011;107:1375–80. This is a recent article reviewing the risk factors, surveillance, and means of identifying cardiotoxicity. PubMedCrossRefGoogle Scholar
  30. 30.
    Cardinale D, Sandri MT, Martinoni A, et al. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol. 2000;36(2):517–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Cardinale D, Sandri MT, Colombo A, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.PubMedCrossRefGoogle Scholar
  32. 32.
    Cardinale D, Salvatici M, Sandri MT. Review: role of biomarkers in cardioncology. Clin Chem Lab Med. 2011 Sep 6.Google Scholar
  33. 33.
    Sandri MT, Salvatici M, Cardinale D, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51:1405–10.PubMedCrossRefGoogle Scholar
  34. 34.
    Lefrak EA, Pitha J, Rosenheim S, et al. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer. 1973;32:302–14.PubMedCrossRefGoogle Scholar
  35. 35.
    Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Ryberg M, Nielsen D, Cortese G, et al. New insight into epirubicin cardiac toxicity: competing risk analysis of 1097 breast cancer patients. J Natl Canc Inst. 2008;100:1058.CrossRefGoogle Scholar
  37. 37.
    Posner LE, Dukart G, Goldberg J, et al. Mitoxantrone: an overview of safety and toxicity. Investig New Drugs. 1985;3:123.Google Scholar
  38. 38.
    Cvetkovic RS, Scott LJ. Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy. Drugs. 2005;65:1005–24.PubMedCrossRefGoogle Scholar
  39. 39.
    Speyer JL, Green MD, Zeleniuch-Jacquotte A, et al. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J Clin Oncol. 1992;10:117–27.PubMedGoogle Scholar
  40. 40.
    Swain SM, Whaley FS, Gerber MC, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol. 1997;15:1318–32.PubMedGoogle Scholar
  41. 41.
    Venturini M, Michelotti A, Del Mastro L, et al. Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer. J Clin Oncol. 1996;14:3112–20.PubMedGoogle Scholar
  42. 42.
    Wexler LH, Andrich MP, Venzon D, et al. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol. 1996;14:362–72.PubMedGoogle Scholar
  43. 43.
    Lopez M, Vici P, Di Lauro K, et al. Randomized prospective clinical trial of highdose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas. J Clin Oncol. 1998;16:86–92.PubMedGoogle Scholar
  44. 44.
    Marty M, Espie M, Llombart A, Dexrazoxane Study G, et al. Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol. 2006;17:614–22.PubMedCrossRefGoogle Scholar
  45. 45.
    • van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2008:CD003917. This is a typical Cochrane review on cardioprotective strategies with anthracyclines. Google Scholar
  46. 46.
    Kalay N, Basar E, Ozdogru I, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48:2258–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Waldner R, Laschan C, Lohninger A, et al. Effects of doxorubicin-containing chemotherapy and a combination with L-carnitine on oxidative metabolism in patients with non-Hodgkin lymphoma. J Cancer Res Clin Oncol. 2006;132:121–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Myers C, Bonow R, Palmeri S, et al. A randomized controlled trial assessing the prevention of doxorubicin cardiomyopathy by N-acetylcysteine. Semin Oncol. 1983;10:53–5.PubMedGoogle Scholar
  49. 49.
    Nakamae H, Tsumura K, Terada Y, et al. Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone. Cancer. 2005;104:2492.PubMedCrossRefGoogle Scholar
  50. 50.
    al-Shabanah O, Mansour M, el-Kashef H, et al. Captopril ameliorates myocardial and hematological toxicities induced by adriamycin. Biochem Mol Biol Int. 1998;45:419–27.PubMedGoogle Scholar
  51. 51.
    Sacco G, Bigioni M, Evangelista S, et al. Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat. Eur J Pharmacol. 2001;414:71–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Vaynblat M, Shah HR, Bhaskaran D, et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail. 2002;4:583–6.PubMedCrossRefGoogle Scholar
  53. 53.
    • Cardinale D, Colombo A, Lamantia G, et al. Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20. This is a rare prospective study assessing treatment with standard heart failure medications. Unfortunately, there was no comparative placebo arm. PubMedCrossRefGoogle Scholar
  54. 54.
    Yoon GJ, Telli ML, Kao DP, et al. Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol. 2010;56:1644.PubMedCrossRefGoogle Scholar
  55. 55.
    Fazio S, Calmieri EA, Ferravate B, et al. Doxorubicin-induced cardiomyopathy treated with carvedilol. Clin Cardiol. 1998;21:777–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Noori A, Lindenfeld J, Wolfel E, et al. Beta-blockade in adriamycin-induced cardiomyopathy. J Card Fail. 2000;6:115–9.PubMedGoogle Scholar
  57. 57.
    Jensen BV, Skovsgaard T, Nielsen SL. Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients. Ann Oncol. 2002;13:699–709.PubMedCrossRefGoogle Scholar
  58. 58.
    Lipshultz SE, Lipsitz SR, Sallan SE, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20:517–22.Google Scholar
  59. 59.
    Tallaj JA, Franco V, Rayburn BK, et al. Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. J Heart Lung Transplant. 2005;24:201–19.CrossRefGoogle Scholar
  60. 60.
    Musci M, Loebe M, Grauhan O, et al. Heart transplantation for doxorubicin-induced congestive heart failure in children and adolescents. Transplant Proc. 1997;29(1–2):578–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Dorent R, Pavie A, Nataf P, et al. Heart transplantation is a valid therapeutic option for anthracycline cardiomyopathy. Transplant Proc. 1995;27(2):1683.PubMedGoogle Scholar
  62. 62.
    Christiansen S. Clinical management of doxorubicin-induced heart failure. J Cardiovasc Surg. 2011;52:13–7.Google Scholar
  63. 63.
    Harris L, Batist G, Belt R, TLC D-99 Study Group, et al. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer. 2002;94(1):25–36.PubMedCrossRefGoogle Scholar
  64. 64.
    Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol. 2001;19(5):1444–54.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Massachusetts Memorial Medical CenterWorcesterUSA

Personalised recommendations