Advertisement

Current Heart Failure Reports

, Volume 8, Issue 3, pp 184–192 | Cite as

Beta-3 Adrenoceptors as New Therapeutic Targets for Cardiovascular Pathologies

  • Chantal GauthierEmail author
  • Bertrand Rozec
  • Boris Manoury
  • Jean-Luc Balligand
Article

Abstract

Catecholamines play a key role in the regulation of cardiovascular function, classically through ß1/2-adrenoreceptors (AR) activation. After ß3-AR cloning in the late 1980s, convincing evidence for ß3-AR expression and function in cardiovascular tissues recently initiated a reexamination of their involvement in the pathophysiology of cardiovascular diseases. Their upregulation in diseased cardiovascular tissues and resistance to desensitization suggest they may be attractive therapeutic targets. They may substitute for inoperant ß1/2-AR to mediate vasodilation in diabetic or atherosclerotic vessels. In cardiac ventricle, their contractile effects are functionally antipathetic to those of ß1/2-AR; in normal heart, ß3-ARs may mediate a moderate negative inotropic effect, but in heart failure, it may protect against adverse effects of excessive catecholamine stimulation by action on excitation-contraction coupling, electrophysiology, or remodelling. Thus, prospective studies in animals and patients at different stages of heart failure should lead to identify the best therapeutic window to use ß3-AR agonists and/or antagonists.

Keywords

ß3-adrenoceptor Adrenergic receptor ß-blocker Heart Vessels Nitric oxide Nitric oxide synthase NO NOS Remodeling Electrophysiology Contractility Heart failure Hypertension Diabetes Myocardial infarction Diabetes Catecholamine Nebivolol Cyclic guanosine monophosphate cGMP Cyclic adenosine monophosphate cAMP Messenger RNA mRNA Ventricular remodeling Cardiomyocytes Excitation-contraction coupling 

Notes

Acknowledgements

Work supported by grants from the Federation Française de Cardiologie, the Fondation de France and Association Française contre les Myopathies (AFM)to CG and by grants from the Fonds National de la Recherche Scientifique, the Fondation Leducq, Politique Scientifique Fédérale (PAI P6/30) and Communauté Française de Belgique (ARC) to JLB.

Disclosures

No potential conflicts of interest relevant to this article were reported.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Vrydag W, Michel MC. Tools to study beta3-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 2007;374:385–98.PubMedCrossRefGoogle Scholar
  2. 2.
    Ursino MG, Vasina V, Raschi E, et al. The beta3-adrenoceptor as a therapeutic target: current perspectives. Pharmacol Res. 2009;59:221–34.PubMedCrossRefGoogle Scholar
  3. 3.
    •• Rozec B, Erfanian M, Laurent K, et al. Nebivolol, a vasodilating selective beta(1)-blocker, is a beta(3)-adrenoceptor agonist in the nonfailing transplanted human heart. J Am Coll Cardiol 2009;53:1532–38. This study reports, for the first time, a ß 3 -adrenoceptor agonism for nebivolol, a β-blocker with vasodilating properties. This data is important because β 3 -adrenoceptors are increased in heart failure and nebivolol is recommended to treat this pathology, even in elderly patients. PubMedCrossRefGoogle Scholar
  4. 4.
    Dessy C, Saliez J, Ghisdal P, et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation. 2005;112:1198–205.PubMedCrossRefGoogle Scholar
  5. 5.
    Tran Quang T, Rozec B, Audigane L, Gauthier C. Investigation of the different adrenoceptor targets of nebivolol enantiomers in rat thoracic aorta. Br J Pharmacol. 2009;156:601–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Candelore MR, Deng L, Tota L, et al. Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther. 1999;290:649–55.PubMedGoogle Scholar
  7. 7.
    Audigane L, Kerfant BG, El Harchi A, et al. Rabbit, a relevant model for the study of cardiac beta 3-adrenoceptors. Exp Physiol. 2009;94:400–11.PubMedCrossRefGoogle Scholar
  8. 8.
    Bundgaard H, Liu CC, Garcia A, et al. ß(3) adrenergic stimulation of the cardiac Na+−K + pump by reversal of an inhibitory oxidative modification. Circulation. 2010;122:2699–708.PubMedCrossRefGoogle Scholar
  9. 9.
    Skeberdis VA, Gendviliene V, Zablockaite D, et al. beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J Clin Invest. 2008;118:3219–27.PubMedGoogle Scholar
  10. 10.
    Christ T, Molenaar P, Klenowski PM, et al. Human atrial β(1L)-adrenoceptor but not β3-adrenoceptor activation increases force and Ca(2+) current at physiological temperature. Br J Pharmacol. 2011;162:823–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Rozec B, Gauthier C. beta3-adrenoceptors in the cardiovascular system: putative roles in human pathologies. Pharmacol Ther. 2006;111:652–73.PubMedCrossRefGoogle Scholar
  12. 12.
    Dessy C, Balligand JL. Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. Adv Pharmacol. 2010;59:135–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Barbier J, Mouas C, Rannou-Bekono F, Carré F. Existence of beta(3)-adrenoceptors in rat heart: functional implications. Clin Exp Pharmacol Physiol. 2007;34:796–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Angelone T, Filice E, Quintieri AM, et al. Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol (Oxf). 2008;193:229–39.CrossRefGoogle Scholar
  15. 15.
    Casadei B. Beta 3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol (Oxf). 2008;193:203.CrossRefGoogle Scholar
  16. 16.
    Mazza R, Angelone T, Pasqua T, Gattuso A. Physiological evidence for ß3-adrenoceptor in frog (Rana esculenta) heart. Gen Comp Endocrinol. 2010;169:151–7.PubMedCrossRefGoogle Scholar
  17. 17.
    • Ufer C, Germack R. Cross-regulation between beta 1- and beta 3-adrenoceptors following chronic beta-adrenergic stimulation in neonatal rat cardiomyocytes. Br J Pharmacol 2009;158:300–13. This study reports that chronic stimulation of ß 1 - or ß 3 -adrenoceptors leads to an opposite regulation of the receptors at the expression and functional levels. The cross-talk between ß 1 - and ß 3 -adrenoceptors occurs via the activation of several protein kinases. PubMedCrossRefGoogle Scholar
  18. 18.
    Kawano F, Tanihata J, Sato S, et al. Effects of dexamethasone on the expression of beta(1)-, beta (2)- and beta (3)-adrenoceptor mRNAs in skeletal and left ventricle muscles in rats. J Physiol Sci. 2009;59:383–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Boivin B, Vaniotis G, Allen BG, Hébert TE. G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res. 2008;28:15–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Boivin B, Lavoie C, Vaniotis G, et al. Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular cardiomyocytes. Cardiovasc Res. 2006;71:69–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Vaniotis G, Del Duca D, Trieu P, et al. Nuclear ß-adrenergic receptors modulate gene expression in adult rat heart. Cell Signal. 2011;23:89–98.PubMedCrossRefGoogle Scholar
  22. 22.
    Xiao RP, Tomhave ED, Wang DJ, et al. Age-associated reductions in cardiac beta1- and beta2-adrenergic responses without changes in inhibitory G proteins or receptor kinases. J Clin Invest. 1998;101:1273–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen Z, Miao G, Liu M, et al. Age-related up-regulation of beta3-adrenergic receptor in heart-failure rats. J Recept Signal Transduct Res. 2010;30:227–33.PubMedCrossRefGoogle Scholar
  24. 24.
    Birenbaum A, Tesse A, Loyer X, et al. Involvement of beta 3-adrenoceptor in altered beta-adrenergic response in senescent heart: role of nitric oxide synthase 1-derived nitric oxide. Anesthesiology. 2008;109:1045–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Zaugg M, Schaub MC. Beta3-adrenergic receptor subtype signaling in senescent heart: nitric oxide intoxication or “endogenous” beta blockade for protection? Anesthesiology. 2008;109:956–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Oliver E, Martí D, Montó F, et al. The impact of alpha1-adrenoceptors up-regulation accompanied by the impairment of beta-adrenergic vasodilatation in hypertension. J Pharmacol Exp Ther. 2009;328:982–90.PubMedCrossRefGoogle Scholar
  27. 27.
    Guimarães S, Moura D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001;53:319–56.PubMedGoogle Scholar
  28. 28.
    Chruscinski A, Brede ME, Meinel L, et al. Differential distribution of beta-adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)- or beta(2)-adrenergic receptors. Mol Pharmacol. 2001;60:955–62.PubMedGoogle Scholar
  29. 29.
    Al Zubair K, Bexis S, Docherty JR. Relaxations to beta-adrenoceptor subtype selective agonists in wild-type and NOS-3-KO mouse mesenteric arteries. Eur J Pharmacol. 2008;587:216–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Figueroa XF, Poblete I, Fernández R, et al. NO production and eNOS phosphorylation induced by epinephrine through the activation of beta-adrenoceptors. Am J Physiol Heart Circ Physiol. 2009;297:H134–43.PubMedCrossRefGoogle Scholar
  31. 31.
    Trebicka J, Hennenberg M, Schulze Pröbsting A, et al. Role of beta3-adrenoceptors for intrahepatic resistance and portal hypertension in liver cirrhosis. Hepatology. 2009;50:1924–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Mori A, Miwa T, Sakamoto K, et al. Pharmacological evidence for the presence of functional beta(3)-adrenoceptors in rat retinal blood vessels. Naunyn Schmiedebergs Arch Pharmacol. 2010;382:119–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Karadas B, Kaya T, Cetin M, et al. Effects of formoterol and BRL 37344 on human umbilical arteries in vitro in normotensive and pre-eclamptic pregnancy. Vascul Pharmacol. 2007;46:360–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Hynes PG, Friel AM, Smith TJ, Morrison JJ. Beta-adrenoceptor subtype expression in human placenta and umbilical arteries in normal and preeclamptic pregnancies. Hypertens Pregnancy. 2008;27:169–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Frazier EP, Michel-Reher MB, van Loenen P, et al. Lack of evidence that nebivolol is a β3-adrenoceptor agonist. Eur J Pharmacol. 2011;654:86–91.PubMedCrossRefGoogle Scholar
  36. 36.
    •• Sorrentino SA, Doerries C, Manes C, et al. Nebivolol exerts beneficial effects on endothelial function, early endothelial progenitor cells, myocardial neovascularization, and left ventricular dysfunction early after myocardial infarction beyond conventional ß1-blockade. J Am Coll Cardiol 2011;57:601–11. This study provides novel evidence that nebivolol treatment is associated with beneficial effects on left ventricular dysfunction, cardiomyocyte hypertrophy, and survival early after myocardial infarction, likely independent of β 1 -adrenoceptor blocking effects. Those effects may be at least partly related to nebivolol activating β 3 -adrenoceptors that may increase eNOS-dependent NO availability by both prevention of NADPH oxidase activation and stimulation of eNOS. PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou L, Zhang P, Cheng Z, et al. Altered circadian rhythm of cardiac ß3-adrenoceptor activity following myocardial infarction in the rat. Basic Res Cardiol. 2011;106:37–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou S, Jung BC, Tan AY, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm. 2008;5:131–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Li H, Liu Y, Huang H, et al. Activation of ß3-adrenergic receptor inhibits ventricular arrhythmia in heart failure through calcium handling. Tohoku J Exp Med. 2010;222:167–74.PubMedCrossRefGoogle Scholar
  40. 40.
    • Napp A, Brixius K, Pott C, et al. Effects of the beta3-adrenergic agonist BRL 37344 on endothelial nitric oxide synthase phosphorylation and force of contraction in human failing myocardium. J Card Fail 2009;15:57–67. This study shows a preserved β 3 -adrenergic negative inotropic effect without evidence for eNOS activation in cardiac myocytes and in combination with evidence for a predominant expression of the β 3 -adrenoceptor in endothelium may offer the possibility of β 3 -adrenergic paracrine signaling in human failing myocardium. This would presuppose a still-intact ß 3 -adrenergic signaling cascade with preserved ß 3 -adrenergic eNOS activation in the endothelium of failing human hearts. PubMedCrossRefGoogle Scholar
  41. 41.
    Balligand JL. beta(3)-Adrenoceptor stimulation on top of beta(1)-adrenoceptor blockade “Stop or Encore?”. J Am Coll Cardiol. 2009;53:1539–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Berg T, Piercey BW, Jensen J. Role of beta1-3-adrenoceptors in blood pressure control at rest and during tyramine-induced norepinephrine release in spontaneously hypertensive rats. Hypertension. 2010;55:1224–30.PubMedCrossRefGoogle Scholar
  43. 43.
    Mallem MY, Toumaniantz G, Serpillon S, et al. Impairment of the low-affinity state beta1-adrenoceptor-induced relaxation in spontaneously hypertensive rats. Br J Pharmacol. 2004;143:599–605.PubMedCrossRefGoogle Scholar
  44. 44.
    Feldman RD, Gros R. Defective vasodilatory mechanisms in hypertension: a G-protein-coupled receptor perspective. Curr Opin Nephrol Hypertens. 2006;15:135–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Pettersson US, Henriksnäs J, Jansson L. Reversal of high pancreatic islet and white adipose tissue blood flow in type 2 diabetic GK rats by administration of the beta3-adrenoceptor inhibitor SR-59230A. Am J Physiol Endocrinol Metab. 2009;297:E490–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Le Douairon Lahaye S, Rebillard A, Zguira MS, et al. Effects of exercise training combined with insulin treatment on cardiac NOS1 signaling pathways in type 1 diabetic rats. Mol Cell Biochem. 2011;347:53–62.PubMedCrossRefGoogle Scholar
  47. 47.
    Arioglu E, Guner S, Ozakca I, et al. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors. Mol Cell Biochem. 2010;335:59–66.PubMedCrossRefGoogle Scholar
  48. 48.
    Moniotte S, Belge C, Sekkali B, et al. Sepsis is associated with an upregulation of functional beta3 adrenoceptors in the myocardium. Eur J Heart Fail. 2007;9:1163–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Vrydag W, Alewijnse AE, Michel MC. Do gene polymorphisms alone or in combination affect the function of human beta3-adrenoceptors? Br J Pharmacol. 2009;156:127–34.PubMedCrossRefGoogle Scholar
  50. 50.
    Zafarmand MH, van der Schouw YT, Grobbee DE, et al. T64A polymorphism in beta3-adrenergic receptor gene (ADRB3) and coronary heart disease: a case-cohort study and meta-analysis. J Intern Med. 2008;263:79–89.PubMedCrossRefGoogle Scholar
  51. 51.
    • Moniotte S, Kobzik L, Feron O, Trochu JN, Gauthier C, Balligand JL. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation. 2001;103(12):1649–55. This paper describes the upregulation of beta3-AR in human ventricular tissue from ischemic and failing hearts compared with non-failing controls and the associated perturbed balance between beta1-2 and beta3 AR functional responses in similar human cardiac tissues.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chantal Gauthier
    • 1
    • 2
    • 3
    • 4
    Email author
  • Bertrand Rozec
    • 1
    • 2
    • 3
    • 4
    • 5
  • Boris Manoury
    • 6
  • Jean-Luc Balligand
    • 6
  1. 1.INSERM, UMR-915, l’institut du thoraxNantesFrance
  2. 2.CNRS ERL3147NantesFrance
  3. 3.Université de NantesNantesFrance
  4. 4.CHU Nantes, l’institut du thoraxNantesFrance
  5. 5.CHU Nantes, Pole d’Anesthésie-RéanimationNantesFrance
  6. 6.Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et CliniqueUniversité Catholique de LouvainBrusselsBelgium

Personalised recommendations