Current Heart Failure Reports

, Volume 8, Issue 2, pp 147–153 | Cite as

Pathophysiology and Treatment Options for Cardiac Anorexia

  • Marat Fudim
  • Gabriel Wagman
  • Rebecca Altschul
  • Evin Yucel
  • Michelle Bloom
  • Timothy J. Vittorio


The anorexia–cachexia syndrome (ACS) occurs in many chronic illnesses, such as cancer, AIDS, and chronic obstructive pulmonary disease in addition to chronic congestive heart failure (CHF). Comparable to other chronic states, the ACS complicates CHF and impacts its prognosis; however, the available treatment options for this syndrome remain unsatisfactory. This review article focuses on the complex pathophysiology of cardiac anorexia. We focus on the recent data demonstrating the relationships between central appetite-regulating structures, inflammatory processes, and neurohormonal activation, and their respective roles in the development of anorexia. We then describe the different treatment options and discuss some future prospects for the management for cardiac anorexia.


Anorexia Cachexia Neurohormonal Chronic heart failure 



No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lloyd-Jones DM, Larson MG, Leip EP, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Rosamond W, Flegal K, Friday G, et al. Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation [serial on the Internet]. 2007;115(5): Available at;
  3. 3.
    Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292(3):344–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Bleumink GS, Knetsch AM, Sturkenboom MC, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure The Rotterdam Study. Eur Heart J. 2004;25(18):1614–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Stephens NA, Fearon KCH. Anorexia, cachexia and nutrition. Medicine. 2008;36(2):78–81.CrossRefGoogle Scholar
  6. 6.
    • von Haehling S, Lainscak M, Springer J, et al. Cardiac cachexia: a systematic overview. Pharmacol Ther. 2009;121(3):227-52. This extensive article reviews the complex pathophysiology of cardiac cachexia and CHF, with particular focus on immunological, metabolic, and hormonal aspects. CrossRefGoogle Scholar
  7. 7.
    Muscaritoli M, Anker SD, Argiles J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases“ and ”nutrition in geriatrics”. Clin Nutr. 2010;29(2):154–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Maltoni M, Pirovano M, Scarpi E, et al. Prediction of survival of patients terminally ill with cancer. Results of an Italian prospective multicentric study. Cancer. 1995;75(10):2613–22.PubMedCrossRefGoogle Scholar
  9. 9.
    Kalantar-Zadeh K, Block G, McAllister CJ, et al. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am J Clin Nutr. 2004;80(2):299–307.PubMedGoogle Scholar
  10. 10.
    Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet [serial on the Internet]. 1997;349(9058): Available at
  11. 11.
    Anker SD, Swan JW, Volterrani M, et al. The influence of muscle mass, strength, fatigability and blood flow on exercise capacity in cachectic and non-cachectic patients with chronic heart failure. Eur Heart J. 1997;18(2):259–69.PubMedGoogle Scholar
  12. 12.
    Freeman LM. The pathophysiology of cardiac cachexia. Curr Opin Support Palliat Care. 2009;3(4):276–81.PubMedCrossRefGoogle Scholar
  13. 13.
    King D, Smith ML, Chapman TJ, et al. Fat malabsorption in elderly patients with cardiac cachexia. Age Ageing. 1996;25(2):144–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Witte KK, Clark AL. Micronutrients and their supplementation in chronic cardiac failure. An update beyond theoretical perspectives. Heart Fail Rev. 2006;11(1):65–74.PubMedCrossRefGoogle Scholar
  15. 15.
    Arutyunov GP, Kostyukevich OI, Serov RA, et al. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol. 2008;125(2):240–5.PubMedCrossRefGoogle Scholar
  16. 16.
    •• Sandek A, Doehner W, Anker SD, et al. Nutrition in heart failure: an update. Curr Opin Clin Nutr Metab Care. 2009;12(4):384-91. This review highlights the current knowledge of nutritional abnormalities that may occur in CHF. Furthermore, the article discusses the regulation of feeding and nutritional strategies as supportive treatment options of CHF. PubMedCrossRefGoogle Scholar
  17. 17.
    Kalantar-Zadeh K, Anker SD, Horwich TB, et al. Nutritional and anti-inflammatory interventions in chronic heart failure. Am J Cardiol. 2008;101(11A):89E–103E.PubMedCrossRefGoogle Scholar
  18. 18.
    Horwich TB, Kalantar-Zadeh K, MacLellan RW, et al. Albumin levels predict survival in patients with systolic heart failure. Am Heart J. 2008;155(5):883–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Soukoulis V, Dihu JB, Sole M, et al. Micronutrient deficiencies an unmet need in heart failure. J Am Coll Cardiol. 2009;54(18):1660–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89(2):381–410.PubMedCrossRefGoogle Scholar
  21. 21.
    Inui A. Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer J Clin. 2002;52(2):72–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Lesman-Leegte I, Jaarsma T, Sanderman R. Depressive symptoms are prominent among elderly hospitalised heart failure patients. Eur J Heart Fail. 2006;8(6):634–40.PubMedCrossRefGoogle Scholar
  23. 23.
    Evans WJ, Morley JE, Argiles J, et al. Cachexia: a new definition. Clin Nutr. 2008;27(6):793–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Deboer MD. Animal models of anorexia and cachexia. Expert Opin Drug Discov. 2009;4(11):1145–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Laviano A, Meguid MM, Rossi-Fanelli F. Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol. 2003;4(11):686–94.PubMedCrossRefGoogle Scholar
  26. 26.
    •• Laviano A, Inui A, Marks DL, et al. Neural control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol Metab. 2008;295(5):E1000-8. This article takes a close look at the role of hypothalamic pathways in the pathogenesis of anorexia. PubMedCrossRefGoogle Scholar
  27. 27.
    Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8(5):571–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Tritos NA, Vicent D, Gillette J, et al. Functional interactions between melanin-concentrating hormone, neuropeptide Y, and anorectic neuropeptides in the rat hypothalamus. Diabetes. 1998;47(11):1687–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Scarlett J, Bowe D, Batra A, et al. Genetic and Pharmacologic Blockade of Central Melanocortin Signaling Attenuates Cardiac Cachexia in Rodent Models of Heart Failure. J Endocrinol. 2010.Google Scholar
  30. 30.
    Kung T, Springer J, Doehner W, et al. Novel treatment approaches to cachexia and sarcopenia: highlights from the 5th Cachexia Conference. Expert Opin Investig Drugs. 2010;19(4):579–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Krude H, Biebermann H, Luck W, et al. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet. 1998;19(2):155–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Yeo GS, Farooqi IS, Aminian S, et al. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet. 1998;20(2):111–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Joppa MA, Gogas KR, Foster AC, et al. Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83-132)) prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. Peptides. 2007;28(3):636–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Jatoi A, Loprinzi CL, Sloan JA, et al. Neuropeptide Y, leptin, and cholecystokinin 8 in patients with advanced cancer and anorexia: a North Central Cancer Treatment Group exploratory investigation. Cancer. 2001;92(3):629–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Edwards CM, Abusnana S, Sunter D, et al. The effect of the orexins on food intake: comparison with neuropeptide Y, melanin-concentrating hormone and galanin. J Endocrinol. 1999;160(3):R7–R12.PubMedCrossRefGoogle Scholar
  36. 36.
    Maisel AS, Scott NA, Motulsky HJ, et al. Elevation of plasma neuropeptide Y levels in congestive heart failure. Am J Med. 1989;86(1):43–8.PubMedCrossRefGoogle Scholar
  37. 37.
    • Woods SC, D’Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S37–50. This article reviews our knowledge on the influence of hormonal signals on food intake and their clinical significance. PubMedCrossRefGoogle Scholar
  38. 38.
    Morley JE, Farr SA. Cachexia and neuropeptide Y. Nutrition. 2008;24(9):815–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.PubMedCrossRefGoogle Scholar
  40. 40.
    Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.PubMedCrossRefGoogle Scholar
  41. 41.
    Garcia JM, Polvino WJ. Effect on body weight and safety of RC-1291, a novel, orally available ghrelin mimetic and growth hormone secretagogue: results of a phase I, randomized, placebo-controlled, multiple-dose study in healthy volunteers. Oncologist. 2007;12(5):594–600.PubMedCrossRefGoogle Scholar
  42. 42.
    Druce MR, Wren AM, Park AJ, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes Lond. 2005;29(9):1130–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Lundholm K, Gunnebo L, Korner U, et al. Effects by daily long term provision of ghrelin to unselected weight-losing cancer patients: a randomized double-blind study. Cancer. 2010;116(8):2044–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Arvat E, Di Vito L, Broglio F, et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. J Endocrinol Investig. 2000;23(8):493–5.Google Scholar
  45. 45.
    Sun Y, Wang P, Zheng H, et al. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci USA. 2004;101(13):4679–84.PubMedCrossRefGoogle Scholar
  46. 46.
    Morton GJ, Cummings DE, Baskin DG, et al. Central nervous system control of food intake and body weight. Nature. 2006;443(7109):289–95.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004;145(6):2607–12.PubMedCrossRefGoogle Scholar
  48. 48.
    DeBoer MD, Zhu XX, Levasseur P, et al. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia. Endocrinology. 2007;148(6):3004–12.PubMedCrossRefGoogle Scholar
  49. 49.
    Nagaya N, Uematsu M, Kojima M, et al. Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation. 2001;104(17):2034–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Nagaya N, Uematsu M, Kojima M, et al. Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation. 2001;104(12):1430–5.PubMedCrossRefGoogle Scholar
  51. 51.
    Xu XB, Pang JJ, Cao JM, et al. GH-releasing peptides improve cardiac dysfunction and cachexia and suppress stress-related hormones and cardiomyocyte apoptosis in rats with heart failure. Am J Physiol Heart Circ Physiol. 2005;289(4):H1643–51.PubMedCrossRefGoogle Scholar
  52. 52.
    Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110(24):3674–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Ashitani J, Matsumoto N, Nakazato M. Ghrelin and its therapeutic potential for cachectic patients. Peptides. 2009;30(10):1951–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Dixit VD, Schaffer EM, Pyle RS, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest. 2004;114(1):57–66.PubMedGoogle Scholar
  55. 55.
    Xia Q, Pang W, Pan H, et al. Effects of ghrelin on the proliferation and secretion of splenic T lymphocytes in mice. Regul Pept. 2004;122(3):173–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol. 2006;64(4):355–65.Google Scholar
  57. 57.
    Doehner W, Pflaum CD, Rauchhaus M, et al. Leptin, insulin sensitivity and growth hormone binding protein in chronic heart failure with and without cardiac cachexia. Eur J Endocrinol. 2001;145(6):727–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Filippatos GS, Tsilias K, Venetsanou K, et al. Leptin serum levels in cachectic heart failure patients. Relationship with tumor necrosis factor-alpha system. Int J Cardiol. 2000;76(2–3):117–22.PubMedCrossRefGoogle Scholar
  59. 59.
    El-Bindary EM, Darwish AZ. New biochemical markers in chronic heart failure. East Mediterr Health J. 2001;7(4–5):697–706.PubMedGoogle Scholar
  60. 60.
    Leyva F, Anker SD, Egerer K, et al. Hyperleptinaemia in chronic heart failure. Relationships with insulin. Eur Heart J. 1998;19(10):1547–51.PubMedCrossRefGoogle Scholar
  61. 61.
    Doehner W, Rauchhaus M, Godsland IF, et al. Insulin resistance in moderate chronic heart failure is related to hyperleptinaemia, but not to norepinephrine or TNF-alpha. Int J Cardiol. 2002;83(1):73–81.PubMedCrossRefGoogle Scholar
  62. 62.
    Tecott LH. Serotonin and the orchestration of energy balance. Cell Metab. 2007;6(5):352–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Heisler LK, Jobst EE, Sutton GM, et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron. 2006;51(2):239–49.PubMedCrossRefGoogle Scholar
  64. 64.
    Anker SD, von Haehling S. Inflammatory mediators in chronic heart failure: an overview. Heart. 2004;90(4):464–70.PubMedCrossRefGoogle Scholar
  65. 65.
    Anker SD, Egerer KR, Volk HD, et al. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol. 1997;79(10):1426–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Sharma R, Bolger AP, Rauchhaus M, et al. Cellular endotoxin desensitization in patients with severe chronic heart failure. Eur J Heart Fail. 2005;7(5):865–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353(9167):1838–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Ueta Y, Hashimoto H, Onuma E, et al. Hypothalamic neuropeptides and appetite response in anorexia-cachexia animal. Endocr J. 2007;54(6):831–8.PubMedCrossRefGoogle Scholar
  70. 70.
    Yeh SS, Blackwood K, Schuster MW. The cytokine basis of cachexia and its treatment: are they ready for prime time? J Am Med Dir Assoc. 2008;9(4):219–36.PubMedCrossRefGoogle Scholar
  71. 71.
    Buchanan JB, Johnson RW. Regulation of food intake by inflammatory cytokines in the brain. Neuroendocrinology. 2007;86(3):183–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Ek M, Kurosawa M, Lundeberg T, et al. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci. 1998;18(22):9471–9.PubMedGoogle Scholar
  73. 73.
    • DeBoer MD. Update on melanocortin interventions for cachexia: progress toward clinical application. Nutrition. 2010;26(2):146-51. This report describes the pathophysiologic role of melanocortin in anorexia–cachexia syndrome and provides evidence for the efficacy of melanocortin antagonists. PubMedCrossRefGoogle Scholar
  74. 74.
    Scarlett JM, Jobst EE, Enriori PJ, et al. Regulation of central melanocortin signaling by interleukin-1 beta. Endocrinology. 2007;148(9):4217–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Janoschek R, Plum L, Koch L, et al. gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor. Proc Natl Acad Sci USA. 2006;103(28):10707–12.PubMedCrossRefGoogle Scholar
  76. 76.
    Reyes TM, Sawchenko PE. Involvement of the arcuate nucleus of the hypothalamus in interleukin-1-induced anorexia. J Neurosci. 2002;22(12):5091–9.PubMedGoogle Scholar
  77. 77.
    Plata-Salaman CR. Meal patterns in response to the intracerebroventricular administration of interleukin-1 beta in rats. Physiol Behav. 1994;55(4):727–33.PubMedCrossRefGoogle Scholar
  78. 78.
    Sarraf P, Frederich RC, Turner EM, et al. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J Exp Med. 1997;185(1):171–5.PubMedCrossRefGoogle Scholar
  79. 79.
    Hryniewicz K, Androne AS, Hudaihed A, Katz SD. Partial reversal of cachexia by beta-adrenergic receptor blocker therapy in patients with chronic heart failure. J Card Fail. 2003;9(6):464–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Anker SD, Negassa A, Coats AJ, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361(9363):1077–83.PubMedCrossRefGoogle Scholar
  81. 81.
    Steffen BT, Lees SJ, Booth FW. Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J Appl Physiol. 2008;105(6):1950–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Shaw S, Shah M, Williams S. Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail. 2009;11:113–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Silverberg DS, Wexler D, Iaina A, et al. Immunological mechanisms of pentoxifylline in chronic heart failure. Eur J Heart Fail. 2009;11(7):728.PubMedCrossRefGoogle Scholar
  84. 84.
    Butler H, Korbonits M. Cannabinoids for clinicians: the rise and fall of the cannabinoid antagonists. Eur J Endocrinol. 2009;161(5):655–62.PubMedCrossRefGoogle Scholar
  85. 85.
    Turcotte D, Le Dorze JA, Esfahani F, et al. Examining the roles of cannabinoids in pain and other therapeutic indications: a review. Expert Opin Pharmacother. 2010;11(1):17–31.PubMedCrossRefGoogle Scholar
  86. 86.
    Gamber KM, Macarthur H, Westfall TC. Cannabinoids augment the release of neuropeptide Y in the rat hypothalamus. Neuropharmacology. 2005;49(5):646–52.PubMedGoogle Scholar
  87. 87.
    Facchinetti F, Del Giudice E, Furegato S, et al. Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia. 2003;41(2):161–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marat Fudim
    • 1
  • Gabriel Wagman
    • 2
  • Rebecca Altschul
    • 3
  • Evin Yucel
    • 4
  • Michelle Bloom
    • 2
  • Timothy J. Vittorio
    • 2
  1. 1.Heinrich-Heine-UniversitätDüsseldorfGermany
  2. 2.Zena and Michael A. Wiener Cardiovascular InstituteMount Sinai Medical CenterNew YorkUSA
  3. 3.Department of MedicineMount Sinai School of MedicineNew YorkUSA
  4. 4.Department of MedicineState University of New York at BrooklynBrooklynUSA

Personalised recommendations