Current Heart Failure Reports

, Volume 7, Issue 4, pp 202–211 | Cite as

Right Ventricular Failure: A Novel Era of Targeted Therapy

  • Dipanjan Banerjee
  • Francois Haddad
  • Roham T. Zamanian
  • Jayan Nagendran


There now is strong evidence to recognize the pivotal role of the right ventricle (RV) in heart disease and to establish it as a unique and separate entity than the left ventricle (LV). Here, we summarize the differences between the two ventricles, the diagnosis of RV failure, and the management of acute and chronic RV failure. We review the indices derived by echocardiography used to measure RV function, and novel biomarkers that may play a role diagnosing and prognosticating in RV-specific disease. There are new novel therapies that specifically target the RV in disease. For example, phosphodiesterase type 5 inhibitors improve contractility of the hypertrophied RV while sparing the normal LV in pulmonary arterial hypertension. The metabolism of the hypertrophied RV is another area for therapeutic exploitation by metabolic modulation. We also suggest future potential molecular targets that may be unique to the RV because they are upregulated in RV hypertrophy greater than in LV hypertrophy.


Heart failure Right ventricle Hypertrophy Biomarkers Therapy 



D. Banerjee: none; F. Haddad: none; R. T. Zamanian serves as a consultant for United Therapeutics and Gilead, has received a research grant from the Wall Center for Pulmonary Vascular Disease and the Entelligence Young Investigator Award, and has received payment for developing the Simply Speaking Education Program for pulmonary arterial hypertension; J. Nagendran: none.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    • Bangalore S, Yao SS, Chaudhry FA: Role of right ventricular wall motion abnormalities in risk stratification and prognosis of patients referred for stress echocardiography. J Am Coll Cardiol 2007, 50:1981–1989. This is an interesting study demonstrating that right ventricular reserve may have incremental value during stress echocardiography. PubMedCrossRefGoogle Scholar
  2. 2.
    de Groote P, Millaire A, Foucher-Hossein C, et al.: Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol 1998, 32:948–954.PubMedCrossRefGoogle Scholar
  3. 3.
    Ghio S, Gavazzi A, Campana C, et al.: Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 2001, 37:183–188.PubMedCrossRefGoogle Scholar
  4. 4.
    •• Meyer P, Filippatos GS, Ahmed MI, et al.: Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation 2010, 121:252–258. This recent study shows the incremental value of right ventricular function in patients with chronic heart failure in the modern era. PubMedCrossRefGoogle Scholar
  5. 5.
    •• Forfia PR, Fisher MR, Mathai SC, et al.: Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 2006, 174:1034–1041. This study demonstrates the value of a simple measure of right heart function in patients with pulmonary arterial hypertension. PubMedCrossRefGoogle Scholar
  6. 6.
    Goldhaber SZ, Visani L, De Rosa M: Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999, 353:1386–1389.PubMedCrossRefGoogle Scholar
  7. 7.
    D’Alonzo GE, Barst RJ, Ayres SM, et al.: Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991, 115:343–349.PubMedGoogle Scholar
  8. 8.
    Goldstein JA: Pathophysiology and management of right heart ischemia. J Am Coll Cardiol 2002, 40:841–853.PubMedCrossRefGoogle Scholar
  9. 9.
    Califf RM, Adams KF, McKenna WJ, et al.: A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J 1997, 134:44–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Yutzey KE, Kirby ML: Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Dev Dyn 2002, 223:307–320.PubMedCrossRefGoogle Scholar
  11. 11.
    Virágh S, Challice CE: Origin and differentiation of cardiac muscle cells in the mouse. J Ultrastruct Res 1973, 42:1–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Kelly RG, Brown NA, Buckingham ME: The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001, 1:435–440.PubMedCrossRefGoogle Scholar
  13. 13.
    Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al.: The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 2001, 238:97–109.PubMedCrossRefGoogle Scholar
  14. 14.
    Zaffran S, Kelly RG, Meilhac SM, et al.: Right ventricular myocardium derives from the anterior heart field. Circ Res 2004, 95:261–268.PubMedCrossRefGoogle Scholar
  15. 15.
    Hopkins WE, Waggoner AD: Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome. Am J Cardiol 2002, 89:34–38.PubMedCrossRefGoogle Scholar
  16. 16.
    •• Nagendran J, Archer SL, Soliman D, et al.: Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 2007, 116:238–248. This was the first study to demonstrate RV-specific upregulation of PDE5 in rats and humans and to define a role for RV-specific therapy targeting ventricular-specific upregulation of PDE5. PubMedCrossRefGoogle Scholar
  17. 17.
    Tedford RJ, Hemnes AR, Russell SD, et al.: PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail 2008, 1:213–219.PubMedCrossRefGoogle Scholar
  18. 18.
    Magga J, Vuolteenaho O, Tokola H, et al.: B-type natriuretic peptide: a myocyte-specific marker for characterizing load-induced alterations in cardiac gene expression. Ann Med 1998, 30(Suppl 1):39–45.PubMedGoogle Scholar
  19. 19.
    Tang WH, Francis GS: The year in heart failure. J Am Coll Cardiol 2005, 46:2125–2133.PubMedCrossRefGoogle Scholar
  20. 20.
    Colucci WS, Elkayam U, Horton DP, et al.: Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med 2000, 343:246–253. (Published errata appear in N Engl J Med 2000, 343:896 and N Engl J Med 2000, 343:1504.)Google Scholar
  21. 21.
    Michaels AD, Chatterjee K, De Marco T: Effects of intravenous nesiritide on pulmonary vascular hemodynamics in pulmonary hypertension. J Card Fail 2005, 11:425–431.PubMedCrossRefGoogle Scholar
  22. 22.
    Klinger JR, Thaker S, Houtchens J, et al.: Pulmonary hemodynamic responses to brain natriuretic peptide and sildenafil in patients with pulmonary arterial hypertension. Chest 2006, 129:417–425.PubMedCrossRefGoogle Scholar
  23. 23.
    Unverferth DV, Fetters JK, Unverferth BJ, et al.: Human myocardial histologic characteristics in congestive heart failure. Circulation 1983, 68:1194–1200.PubMedGoogle Scholar
  24. 24.
    Küçüker SA, Stetson SJ, Becker KA, et al.: Evidence of improved right ventricular structure after LVAD support in patients with end-stage cardiomyopathy. J Heart Lung Transplant 2004, 23:28–35.PubMedCrossRefGoogle Scholar
  25. 25.
    Modesti PA, Vanni S, Bertolozzi I, et al.: Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension 2004, 43:101–108.PubMedCrossRefGoogle Scholar
  26. 26.
    Urashima T, Zhao M, Wagner R, et al.: Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am J Physiol Heart Circ Physiol 2008, 295:H1351–H1368.PubMedCrossRefGoogle Scholar
  27. 27.
    •• Nagendran J, Gurtu V, Fu DZ, et al.: A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg 2008, 136:168-178, 178.e1–e3. According to the authors, the RV-specific metabolic changes that occur in RV hypertrophy can be targeted to improve contractility. Google Scholar
  28. 28.
    Lehtonen J, Sutinen S, Ikäheimo M, Pääkkö P: Electrocardiographic criteria for the diagnosis of right ventricular hypertrophy verified at autopsy. Chest 1988, 93:839–842.PubMedCrossRefGoogle Scholar
  29. 29.
    • Haddad F, Doyle R, Murphy DJ, Hunt SA: Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008, 117:1717–1731. This is a comprehensive review of RV disease in the current era. PubMedCrossRefGoogle Scholar
  30. 30.
    Tei C, Dujardin KS, Hodge DO, et al.: Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr 1996, 9:838–847.PubMedCrossRefGoogle Scholar
  31. 31.
    Meluzín J, Spinarová L, Bakala J, et al.: Pulsed Doppler tissue imaging of the velocity of tricuspid annular systolic motion; a new, rapid, and non-invasive method of evaluating right ventricular systolic function. Eur Heart J 2001, 22:340–348.PubMedCrossRefGoogle Scholar
  32. 32.
    Dell’Italia LJ, Walsh RA: Application of a time varying elastance model to right ventricular performance in man. Cardiovasc Res 1988, 22:864–874.PubMedCrossRefGoogle Scholar
  33. 33.
    Brimioulle S, Wauthy P, Ewalenko P, et al.: Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol 2003, 284:H1625–H1630.PubMedGoogle Scholar
  34. 34.
    Nagaya N, Nishikimi T, Uematsu M, et al.: Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 2000, 102:865–870.PubMedGoogle Scholar
  35. 35.
    Yap LB, Mukerjee D, Timms PM, et al.: Natriuretic peptides, respiratory disease, and the right heart. Chest 2004, 126:1330–1336.PubMedCrossRefGoogle Scholar
  36. 36.
    Oosterhof T, Tulevski II, Vliegen HW, et al.: Effects of volume and/or pressure overload secondary to congenital heart disease (tetralogy of fallot or pulmonary stenosis) on right ventricular function using cardiovascular magnetic resonance and B-type natriuretic peptide levels. Am J Cardiol 2006, 97:1051–1055.PubMedCrossRefGoogle Scholar
  37. 37.
    Konstantinides S, Geibel A, Olschewski M, et al.: Importance of cardiac troponins I and T in risk stratification of patients with acute pulmonary embolism. Circulation 2002, 106:1263–1268.PubMedCrossRefGoogle Scholar
  38. 38.
    Torbicki A, Kurzyna M, Kuca P, et al.: Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 2003, 108:844–848.PubMedCrossRefGoogle Scholar
  39. 39.
    Forfia PR, Mathai SC, Fisher MR, et al.: Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 2008, 177:1364–1369.PubMedCrossRefGoogle Scholar
  40. 40.
    •• Shah SJ, Thenappan T, Rich S, et al.: Association of serum creatinine with abnormal hemodynamics and mortality in pulmonary arterial hypertension. Circulation 2008, 117:2475–2483. This is a landmark study on the role of the cardiorenal syndrome in patients with pulmonary arterial hypertension.PubMedCrossRefGoogle Scholar
  41. 41.
    Dimopoulos K, Diller GP, Petraco R, et al.: Hyponatraemia: A strong predictor of mortality in adults with congenital heart disease. Eur Heart J 2010, 31:595–601.PubMedCrossRefGoogle Scholar
  42. 42.
    Giannakoulas G, Dimopoulos K, Bolger AP, et al.: Usefulness of natriuretic Peptide levels to predict mortality in adults with congenital heart disease. Am J Cardiol 2010, 105:869–873.PubMedCrossRefGoogle Scholar
  43. 43.
    Stepanenko A, Potapov EV, Krabatsch T, Hetzer R: Right ventricular failure after left ventricular assist device implantation with concomitant pulmonary embolectomy needing right ventricular assist device support in a patient with terminal heart failure and asymptomatic pulmonary thrombus. Interact Cardiovasc Thorac Surg, 10:154–155.PubMedCrossRefGoogle Scholar
  44. 44.
    Hunt SA, Abraham WT, Chin MH, et al.: 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 2009, 119:e391–e479. (Published erratum appears in Circulation 2010, 121:e258.)Google Scholar
  45. 45.
    Matthews JC, Dardas TF, Dorsch MP, Aaronson KD: Right-Sided Heart Failure: Diagnosis and Treatment Strategies. Curr Treat Options Cardiovasc Med 2008, 10:329–341.PubMedCrossRefGoogle Scholar
  46. 46.
    Dell’Italia LJ, Starling MR, Blumhardt R, et al.: Comparative effects of volume loading, dobutamine, and nitroprusside in patients with predominant right ventricular infarction. Circulation 1985, 72:1327–1335.PubMedGoogle Scholar
  47. 47.
    Vizza CD, Rocca GD, Roma AD, et al.: Acute hemodynamic effects of inhaled nitric oxide, dobutamine and a combination of the two in patients with mild to moderate secondary pulmonary hypertension. Crit Care 2001, 5:355–361.PubMedCrossRefGoogle Scholar
  48. 48.
    Lobato EB, Beaver T, Muehlschlegel J, et al.: Treatment with phosphodiesterase inhibitors type III and V: milrinone and sildenafil is an effective combination during thromboxane-induced acute pulmonary hypertension. Br J Anaesth 2006, 96:317–322.PubMedCrossRefGoogle Scholar
  49. 49.
    Kihara S, Kawai A, Fukuda T, et al.: Effects of milrinone for right ventricular failure after left ventricular assist device implantation. Heart Vessels 2002, 16:69–71.PubMedCrossRefGoogle Scholar
  50. 50.
    Solina A, Papp D, Ginsberg S, et al.: A comparison of inhaled nitric oxide and milrinone for the treatment of pulmonary hypertension in adult cardiac surgery patients. J Cardiothorac Vasc Anesth 2000, 14:12–17.PubMedCrossRefGoogle Scholar
  51. 51.
    Dang NC, Topkara VK, Mercando M, et al.: Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant 2006, 25:1–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Loh E, Stamler JS, Hare JM, et al.: Cardiovascular effects of inhaled nitric oxide in patients with left ventricular dysfunction. Circulation 1994, 90:2780–2785.PubMedGoogle Scholar
  53. 53.
    Mullens W, Abrahams Z, Francis GS, et al.: Sodium nitroprusside for advanced low-output heart failure. J Am Coll Cardiol 2008, 52:200–207.PubMedCrossRefGoogle Scholar
  54. 54.
    Quaife RA, Christian PE, Gilbert EM, et al.: Effects of carvedilol on right ventricular function in chronic heart failure. Am J Cardiol 1998, 81:247–250.PubMedCrossRefGoogle Scholar
  55. 55.
    Beck-da-Silva L, de Bold A, Davies R, et al.: Effect of bisoprolol on right ventricular function and brain natriuretic peptide in patients with heart failure. Congest Heart Fail 2004, 10:127–132.PubMedCrossRefGoogle Scholar
  56. 56.
    Tatli E, Kurum T, Aktoz M, Buyuklu M: Effects of carvedilol on right ventricular ejection fraction and cytokines levels in patients with systolic heart failure. Int J Cardiol 2008, 125:273–276.PubMedCrossRefGoogle Scholar
  57. 57.
    Packer M, McMurray J, Massie BM, et al.: Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure: results of a pilot study. J Card Fail 2005, 11:12–20.PubMedCrossRefGoogle Scholar
  58. 58.
    Anand I, McMurray J, Cohn JN, et al.: Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 2004, 364:347–354.PubMedCrossRefGoogle Scholar
  59. 59.
    McLaughlin VV, Archer SL, Badesch DB, et al.: ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation 2009, 119:2250–2294.PubMedCrossRefGoogle Scholar
  60. 60.
    Alaeddini J, Uber PA, Park MH, et al.: Efficacy and safety of sildenafil in the evaluation of pulmonary hypertension in severe heart failure. Am J Cardiol 2004, 94:1475–1477.PubMedCrossRefGoogle Scholar
  61. 61.
    Lewis GD, Shah R, Shahzad K, et al.: Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 2007, 116:1555–1562.PubMedCrossRefGoogle Scholar
  62. 62.
    Jabbour A, Keogh A, Hayward C, Macdonald P: Chronic sildenafil lowers transpulmonary gradient and improves cardiac output allowing successful heart transplantation. Eur J Heart Fail 2007, 9:674–677.PubMedCrossRefGoogle Scholar
  63. 63.
    Klodell CT Jr, Morey TE, Lobato EB, et al.: Effect of sildenafil on pulmonary artery pressure, systemic pressure, and nitric oxide utilization in patients with left ventricular assist devices. Ann Thorac Surg 2007, 83:68–71.PubMedCrossRefGoogle Scholar
  64. 64.
    Kulkarni A, Singh TP, Sarnaik A, et al.: Sildenafil for pulmonary hypertension after heart transplantation. J Heart Lung Transplant 2004, 23:1441–1444.PubMedCrossRefGoogle Scholar
  65. 65.
    Schermuly RT, Dony E, Ghofrani HA, et al.: Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005, 115:2811–2821.PubMedCrossRefGoogle Scholar
  66. 66.
    Kerkelä R, Grazette L, Yacobi R, et al.: Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 2006, 12:908–916.PubMedCrossRefGoogle Scholar
  67. 67.
    Grimminger F, Weimann G, Frey R, et al.: First acute haemodynamic study of soluble guanylate cyclase stimulator riociguat in pulmonary hypertension. Eur Respir J 2009, 33:785–792.PubMedCrossRefGoogle Scholar
  68. 68.
    Macchia A, Marchioli R, Marfisi R, et al.: A meta-analysis of trials of pulmonary hypertension: a clinical condition looking for drugs and research methodology. Am Heart J 2007, 153:1037–1047.PubMedCrossRefGoogle Scholar
  69. 69.
    Lorenz CH, Walker ES, Morgan VL, et al.: Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1999, 1:7–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Lang RM, Bierig M, Devereux RB, et al.: Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005, 18:1440–1463.PubMedCrossRefGoogle Scholar
  71. 71.
    Eidem BW, Tei C, O’Leary PW, et al.: Nongeometric quantitative assessment of right and left ventricular function: myocardial performance index in normal children and patients with Ebstein anomaly. J Am Soc Echocardiogr 1998, 11:849–856.PubMedCrossRefGoogle Scholar
  72. 72.
    Yeo TC, Dujardin KS, Tei C, et al.: Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol 1998, 81:1157–1161.PubMedCrossRefGoogle Scholar
  73. 73.
    Yoshifuku S, Otsuji Y, Takasaki K, et al.: Pseudonormalized Doppler total ejection isovolume (Tei) index in patients with right ventricular acute myocardial infarction. Am J Cardiol 2003, 91:527–531.PubMedCrossRefGoogle Scholar
  74. 74.
    Dell’Italia LJ: The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol 1991, 16:653–720.PubMedGoogle Scholar
  75. 75.
    Bendayan D, Shitrit D, Ygla M, et al.: Hyperuricemia as a prognostic factor in pulmonary arterial hypertension. Respir Med 2003, 97:130–133.PubMedCrossRefGoogle Scholar
  76. 76.
    Hoeper MM, Hohlfeld JM, Fabel H: Hyperuricaemia in patients with right or left heart failure. Eur Respir J 1999, 13:682–685.PubMedCrossRefGoogle Scholar
  77. 77.
    Nagaya N, Nishikimi T, Okano Y, et al.: Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 1998, 31:202–208.PubMedCrossRefGoogle Scholar
  78. 78.
    Fijalkowska A, Kurzyna M, Torbicki A, et al.: Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest 2006, 129:1313–1321.PubMedCrossRefGoogle Scholar
  79. 79.
    Allanore Y, Borderie D, Avouac J, et al.: High N-terminal pro-brain natriuretic peptide levels and low diffusing capacity for carbon monoxide as independent predictors of the occurrence of precapillary pulmonary arterial hypertension in patients with systemic sclerosis. Arthritis Rheum 2008, 58:284–291.PubMedCrossRefGoogle Scholar
  80. 80.
    Warwick G, Thomas PS, Yates DH: Biomarkers in pulmonary hypertension. Eur Respir J 2008, 32:503–512.PubMedCrossRefGoogle Scholar
  81. 81.
    Puls M, Dellas C, Lankeit M, et al.: Heart-type fatty acid-binding protein permits early risk stratification of pulmonary embolism. Eur Heart J 2007, 28:224–229.PubMedCrossRefGoogle Scholar
  82. 82.
    Nickel N, Kempf T, Tapken H, et al.: Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2008, 178:534–541.PubMedCrossRefGoogle Scholar
  83. 83.
    Lopes AA, Maeda NY: Circulating von Willebrand factor antigen as a predictor of short-term prognosis in pulmonary hypertension. Chest 1998, 114:1276–1282.PubMedCrossRefGoogle Scholar
  84. 84.
    Kielstein JT, Bode-Böger SM, Hesse G, et al.: Asymmetrical dimethylarginine in idiopathic pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2005, 25:1414–1418.PubMedCrossRefGoogle Scholar
  85. 85.
    Skoro-Sajer N, Mittermayer F, Panzenboeck A, et al.: Asymmetric dimethylarginine is increased in chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med 2007, 176:1154–1160.PubMedCrossRefGoogle Scholar
  86. 86.
    Eggers KM, Armstrong PW, Califf RM, et al.: ST2 and mortality in non-ST-segment elevation acute coronary syndrome. Am Heart J 2010, 159:788–794.PubMedCrossRefGoogle Scholar
  87. 87.
    Shah RV, Januzzi JL Jr: ST2: a novel remodeling biomarker in acute and chronic heart failure. Curr Heart Fail Rep 2010, 7:9–14.PubMedCrossRefGoogle Scholar
  88. 88.
    Peng T, Zamanian R, Krowka MJ, et al.: Plasma levels of S100A4 in portopulmonary hypertension. Biomarkers 2009, 14:156–160.PubMedCrossRefGoogle Scholar
  89. 89.
    Lawrie A, Waterman E, Southwood M, et al.: Evidence of a role for osteoprotegerin in the pathogenesis of pulmonary arterial hypertension. Am J Pathol 2008, 172:256–264.PubMedCrossRefGoogle Scholar
  90. 90.
    Uenoyama M, Ogata S, Nakanishi K, et al.: Osteopontin expression in normal and hypobaric hypoxia-exposed rats. Acta Physiol (Oxf) 2008, 193:291–301.CrossRefGoogle Scholar
  91. 91.
    Falcão-Pires I, Gonçalves N, Henriques-Coelho T, et al.: Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 2009, 296:H2007–H2014.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dipanjan Banerjee
    • 1
  • Francois Haddad
    • 1
  • Roham T. Zamanian
    • 2
  • Jayan Nagendran
    • 3
  1. 1.Division of Cardiovascular MedicineStanford University School of MedicineStanfordUSA
  2. 2.Division of Pulmonary and Critical Care Medicine, Vera Moulton Wall Center for Pulmonary Vascular DiseaseStanford School of MedicineStanfordUSA
  3. 3.Department of Cardiothoracic SurgeryStanford University School of MedicineStanfordUSA

Personalised recommendations