Advertisement

Current Heart Failure Reports

, Volume 6, Issue 3, pp 142–153 | Cite as

Assessment of myocardial ischemia and viability using cardiac magnetic resonance

  • Nuno Bettencourt
  • Amedeo Chiribiri
  • Andreas Schuster
  • Eike NagelEmail author
Article

Abstract

In the past decade, cardiac magnetic resonance (CMR) has evolved dramatically. Its clinical applications are now a major tool in the diagnosis and prognostic assessment of patients with ischemic heart disease. CMR can be used for detection and quantification of ischemia and for viability assessment using different techniques that are now well validated. Scar can be easily detected using contrast enhancement (late gadolinium enhancement). Ischemia detection is usually achieved with stress CMR techniques, whereas prediction for the recovery of function (detection of dysfunctional but viable myocardial segments) can be deduced from scar and stress imaging. Although determination of which approach is better may depend on the population group, the major advantage of CMR is the ability to integrate different information about anatomy, wall motion, myocardial perfusion, and tissue characterization in a single comprehensive examination.

Keywords

Single Photon Emission Compute Tomography Cardiovascular Magnetic Resonance Cardiovascular Magnetic Resonance Dobutamine Late Gadolinium Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Rahimroola SH: The hibernating myocardium. Am Heart J 1989, 117:211–221.CrossRefGoogle Scholar
  2. 2.
    Hendel RC, Patel MR, Kramer CM, et al.: ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 2006, 48:1475–1497.PubMedCrossRefGoogle Scholar
  3. 3.
    Nagel E, Lorenz C, Baer F, et al.: Stress cardiovascular magnetic resonance: consensus panel report. J Cardiovasc Magn Reson 2001, 3:267–281.PubMedCrossRefGoogle Scholar
  4. 4.
    Wahl A, Paetsch I, Gollesch A, et al.: Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases. European Heart J 2004, 25:1230–1236.CrossRefGoogle Scholar
  5. 5.
    Nagel E, Lehmkuhl HB, Klein C, et al.: Influence of image quality on the diagnostic accuracy of dobutamine stress magnetic resonance imaging in comparison with dobutamine stress echocardiography for the noninvasive detection of myocardial ischemia [in German]. Zeitschrift für Kardiologie 1999, 88:622–630.PubMedCrossRefGoogle Scholar
  6. 6.
    Nandalur KR, Dwamena BA, Choudhri AF, et al.: Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis. J Am Coll Cardiol 2007, 50:1343–1353.PubMedCrossRefGoogle Scholar
  7. 7.
    Nagel E, Lehmkuhl HB, Bocksch W, et al.: Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 1999, 99:763–770.PubMedGoogle Scholar
  8. 8.
    Kuijpers D, Ho KY, van Dijkman PR, et al.: Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 2003, 107:1592–1597.PubMedCrossRefGoogle Scholar
  9. 9.
    Korosoglou G, Futterer S, Humpert PM, et al.: Strainencoded cardiac MR during high-dose dobutamine stress testing: comparison to cine imaging and to myocardial tagging. J Magn Reson Imaging 2009, 29:1053–1061.PubMedCrossRefGoogle Scholar
  10. 10.
    Syed MA, Paterson DI, Ingkanisorn WP, et al.: Reproducibility and inter-observer variability of dobutamine stress CMR in patients with severe coronary disease: implications for clinical research. J Cardiovasc Magn Reson 2005, 7:763–768.PubMedCrossRefGoogle Scholar
  11. 11.
    Paetsch I, Jahnke C, Ferrari VA, et al.: Determination of interobserver variability for identifying inducible left ventricular wall motion abnormalities during dobutamine stress magnetic resonance imaging. European Heart J 2006, 27:1459–1464.CrossRefGoogle Scholar
  12. 12.
    Hundley WG, Morgan TM, Neagle CM, et al.: Magnetic resonance imaging determination of cardiac prognosis. Circulation 2002, 106:2328–2333.PubMedCrossRefGoogle Scholar
  13. 13.
    Rerkpattanapipat P, Morgan TM, Neagle CM, et al.: Assessment of preoperative cardiac risk with magnetic resonance imaging. Am J Cardiol 2002, 90:416–419.PubMedCrossRefGoogle Scholar
  14. 14.
    Dall’Armellina E, Morgan TM, Mandapaka S, et al.: Prediction of cardiac events in patients with reduced left ventricular ejection fraction with dobutamine cardiovascular magnetic resonance assessment of Wall Motion Score Index. J Am Coll Cardiol 2008, 52:279–286.PubMedCrossRefGoogle Scholar
  15. 15.
    Jahnke C, Nagel E, Gebker R, et al.: Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion and dobutamine stress wall motion imaging. Circulation 2007, 115:1769–1776.PubMedCrossRefGoogle Scholar
  16. 16.
    Rerkpattanapipat P, Little WC, Clark HP, et al.: Effect of the transmural extent of myocardial scar on left ventricular systolic wall thickening during intravenous dobutamine administration. Am J Cardiol 2005, 95:495–498.PubMedCrossRefGoogle Scholar
  17. 17.
    Wellnhofer E, Olariu A, Klein C, et al.: Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 2004, 109:2172–2174.PubMedCrossRefGoogle Scholar
  18. 18.
    Gutberlet M, Fröhlich M, Mehl S, et al.: Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization. Euro Radiol 2005, 15:872–880.CrossRefGoogle Scholar
  19. 19.
    Bove CM, DiMaria JM, Voros S, et al.: Dobutamine response and myocardial infarct transmurality: functional improvement after coronary artery bypass grafting-initial experience. Radiology 2006, 240:835–841.PubMedCrossRefGoogle Scholar
  20. 20.
    Bree D, Wollmuth JR, Cupps BP, et al.: Low-dose dobutamine tissue-tagged magnetic resonance imaging with 3-dimensional strain analysis allows assessment of myocardial viability in patients with ischemic cardiomyopathy. Circulation 2006, 114:I33–36.PubMedCrossRefGoogle Scholar
  21. 21.
    Al-Saadi N, Gross M, Paetsch I, et al.: Dobutamine induced myocardial perfusion reserve index with cardiovascular MR in patients with coronary artery disease. J Cardiovasc Magn Reson 2002, 4:471–480.PubMedCrossRefGoogle Scholar
  22. 22.
    Rieber J, Huber A, Erhard I, et al.: Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 2006, 27:1465–1471.PubMedCrossRefGoogle Scholar
  23. 23.
    Kühl HP, Katoh M, Buhr C, et al.: Comparison of magnetic resonance perfusion imaging versus invasive fractional flow reserve for assessment of the hemodynamic significance of epicardial coronary artery stenosis. Am J Cardiol 2007, 99:1090–1095.PubMedCrossRefGoogle Scholar
  24. 24.
    Costa M, Shoemaker S, Futamatsu H, et al.: Quantitative magnetic resonance perfusion imaging detects anatomic and physiologic coronary artery disease as measured by coronary angiography and fractional flow reserve. J Am Coll Cardiol 2007, 50:514–522.PubMedCrossRefGoogle Scholar
  25. 25.
    Futamatsu H, Klassen C, Pilla M, et al.: Diagnostic accuracy of quantitative cardiac MRI evaluation compared to stress single-photon-emission computed tomography. Int J Cardiovasc Imaging 2008, 24:293–299.PubMedCrossRefGoogle Scholar
  26. 26.
    Klem I, Heitner JF, Shah DJ, et al.: Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 2006, 47:1630–1638.PubMedCrossRefGoogle Scholar
  27. 27.
    Plein S, Greenwood JP, Ridgway JP, et al.: Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 2004, 44:2173–2181.PubMedCrossRefGoogle Scholar
  28. 28.
    Klein C, Nagel E, Gebker R, et al.: Magnetic resonance adenosine perfusion imaging in patients after coronary artery bypass graft surgery. J Am Coll Cardiol 2009, 2:437.Google Scholar
  29. 29.
    Ishida N, Sakuma H, Motoyasu M, et al.: Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 2003, 229:209–216.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee DC, Simonetti OP, Harris KR, et al.: Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 2004, 110:58–65.PubMedCrossRefGoogle Scholar
  31. 31.
    Schwitter J, Nanz D, Kneifel S, et al.: Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 2001, 103:2230–2235.PubMedGoogle Scholar
  32. 32.
    Schwitter J, Wacker CM, van Rossum AC, et al.: MRIMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 2008, 29:480–489.PubMedCrossRefGoogle Scholar
  33. 33.
    Ingkanisorn WP, Kwong RY, Bohme NS, et al.: Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 2006, 47:1427–1432.PubMedCrossRefGoogle Scholar
  34. 34.
    Doesch C, Seeger A, Doering J, et al.: Risk stratification by adenosine stress cardiac magnetic resonance in patients with coronary artery stenoses of intermediate angiographic severity. J Am Coll Cardiol 2009, 2:424.Google Scholar
  35. 35.
    Kim RJ, Albert TS, Wible JH, et al.: Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 2008, 117:629–637.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim RJ, Fieno DS, Parrish TB, et al.: Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999, 100:1992–2002.PubMedGoogle Scholar
  37. 37.
    Kim RJ, Wu E, Rafael A, et al.: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000, 343:1445–1453.PubMedCrossRefGoogle Scholar
  38. 38.
    Choi KM, Kim RJ, Gubernikoff G, et al.: Transmural extent of acute myocardial infarction predicts long-term improvement in contractile function. Circulation 2001, 104:1101–1107.PubMedCrossRefGoogle Scholar
  39. 39.
    Kitagawa K, Sakuma H, Hirano T, et al.: Acute myocardial infarction: myocardial viability assessment in patients early thereafter comparison of contrast-enhanced MR imaging with resting (201)Tl SPECT. Single photon emission computed tomography. Radiology 2003, 226:138–144.PubMedCrossRefGoogle Scholar
  40. 40.
    Wagner A, Mahrholdt H, Holly TA, et al.: Contrastenhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003, 361:374–379.PubMedCrossRefGoogle Scholar
  41. 41.
    Klein C, Nekolla SG, Bengel FM, et al.: Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002, 105:162–167.PubMedCrossRefGoogle Scholar
  42. 42.
    Lund GK, Stork A, Saeed M, et al.: Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 2004, 232:49–57.PubMedCrossRefGoogle Scholar
  43. 43.
    Roes SD, Kaandorp TA, Marsan NA, et al.: Agreement and disagreement between contrast-enhanced magnetic resonance imaging and nuclear imaging for assessment of myocardial viability. Eur J Nucl Med Mol Imaging 2009, 36:594–601.PubMedCrossRefGoogle Scholar
  44. 44.
    Hoffmann R, Stempl K, Kühl H, et al.: Integrated analysis of cardiac tissue structure and function for improved identification of reversible myocardial dysfunction. Coron Artery Dis 2009, 20:21–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Bello D, Shah DJ, Farah GM, et al.: Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 2003, 108:1945–1953.PubMedCrossRefGoogle Scholar
  46. 46.
    Vosseler M, Abegunewardene N, Hoffmann N, et al.: Area at risk and viability after myocardial ischemia and reperfusion can be determined by contrast-enhanced cardiac magnetic resonance imaging. Eur Surg Res 2009, 43:13–23.PubMedCrossRefGoogle Scholar
  47. 47.
    Beek AM, Bondarenko O, Afsharzada F, et al.: Quantification of late gadolinium enhanced CMR in viability assessment in chronic ischemic heart disease: a comparison to functional outcome. J Cardiovasc Magnetic Reson 2009, 11:6.CrossRefGoogle Scholar
  48. 48.
    Orn S, Manhenke C, Anand IS, et al.: Effect of left ventricular scar size, location, and transmurality on left ventricular remodeling with healed myocardial infarction. Am J Cardiol 2007, 99:1109–1114.PubMedCrossRefGoogle Scholar
  49. 49.
    Bello D, Fieno DS, Kim RJ, et al.: Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 2005, 45:1104–1108.PubMedCrossRefGoogle Scholar
  50. 50.
    Yan AT, Shayne AJ, Brown KA, et al.: Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 2006, 114:32–39.PubMedCrossRefGoogle Scholar
  51. 51.
    Chan J, Khafagi F, Young A, et al.: Impact of coronary revascularization and transmural extent of scar on regional left ventricular remodelling. Eur Heart J 2008, 29:1608–1617.PubMedCrossRefGoogle Scholar
  52. 52.
    Kwong RY, Chan AK, Brown KA, et al.: Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 2006, 113:2733–2743.PubMedCrossRefGoogle Scholar
  53. 53.
    Hombach V, Grebe O, Merkle N, et al.: Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 2005, 26:549–557.PubMedCrossRefGoogle Scholar
  54. 54.
    Baks T, van Geuns RJ, Biagini E, et al.: Effects of primary angioplasty for acute myocardial infarction on early and late infarct size and left ventricular wall characteristics. J Am Coll Cardiol 2006, 47:40–44.PubMedCrossRefGoogle Scholar
  55. 55.
    Mahrholdt H, Wagner A, Holly TA, et al.: Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 2002, 106:2322–2327.PubMedCrossRefGoogle Scholar
  56. 56.
    Thiele H, Kappl MJ, Conradi S, et al.: Reproducibility of chronic and acute infarct size measurement by delayed enhancement-magnetic resonance imaging. J Am Coll Cardiol 2006, 47:1641–1645.PubMedCrossRefGoogle Scholar
  57. 57.
    Pennell DJ, Underwood SR, Manzara CC, et al.: Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 1992, 70:34–40.PubMedCrossRefGoogle Scholar
  58. 58.
    van Rugge FP, Holman ER, van der Wall EE, et al.: Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 1993, 14:456–463.PubMedGoogle Scholar
  59. 59.
    van Rugge FP, van der Wall EE, Spanjersberg SJ, et al.: Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 1994, 90:127–138.PubMedGoogle Scholar
  60. 60.
    Baer FM, Voth E, Theissen P, et al.: Coronary artery disease: findings with GRE MR imaging and Tc-99mmethoxyisobutyl-isonitrile SPECT during simultaneous dobutamine stress. Radiology 1994, 193:203–209.PubMedGoogle Scholar
  61. 61.
    Hundley WG, Hamilton CA, Thomas MS, et al.: Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 1999, 100:1697–1702.PubMedGoogle Scholar
  62. 62.
    van Dijkman PR, Kuijpers DA, Blom BM, et al.: Dobutamine stress magnetic resonance imaging: a valuable method in the noninvasive diagnosis of ischemic heart disease. J Electrocardiol 2002, 35(Suppl):57–59.PubMedCrossRefGoogle Scholar
  63. 63.
    Paetsch I, Jahnke C, Wahl A, et al.: Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004, 110:835–842.PubMedCrossRefGoogle Scholar
  64. 64.
    Wahl A, Paetsch I, Roethemeyer S, et al.: High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization in patients with wall motion abnormalities at rest. Radiology 2004, 233:210–216.PubMedCrossRefGoogle Scholar
  65. 65.
    Jahnke C, Paetsch I, Gebker R, et al.: Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. Radiology 2006, 241:718–728.PubMedCrossRefGoogle Scholar
  66. 66.
    Pilz G, Bernhardt P, Klos M, et al.: Clinical implication of adenosine-stress cardiac magnetic resonance imaging as potential gatekeeper prior to invasive examination in patients with AHA/ACC class II indication for coronary angiography. Clin Res Cardiol 2006, 95:531–538.PubMedCrossRefGoogle Scholar
  67. 67.
    Takase B, Nagata M, Kihara T, et al.: Whole-heart dipyridamole stress first-pass myocardial perfusion MRI for the detection of coronary artery disease. Japan Heart J 2004, 45:475–486.CrossRefGoogle Scholar
  68. 68.
    Doyle M, Fuisz A, Kortright E, et al.: The impact of myocardial flow reserve on the detection of coronary artery disease by perfusion imaging methods: an NHLBI WISE study. J Cardiovasc Magn Reson 2003, 5:475–485.PubMedCrossRefGoogle Scholar
  69. 69.
    Nagel E, Klein C, Paetsch I, et al.: Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003, 108:432–437.PubMedCrossRefGoogle Scholar
  70. 70.
    Plein S, Radjenovic A, Ridgway JP, et al.: Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 2005, 235:423–430.PubMedCrossRefGoogle Scholar
  71. 71.
    Wolff SD, Schwitter J, Coulden R, et al.: Myocardial firstpass perfusion magnetic resonance imaging: a multicenter dose-ranging study. Circulation 2004, 110:732–737.PubMedCrossRefGoogle Scholar
  72. 72.
    Giang TH, Nanz D, Coulden R, et al.: Detection of coronary artery disease by magnetic resonance myocardial perfusion imaging with various contrast medium doses: first European multi-centre experience. Eur Heart J 2004, 25:1657–1665.PubMedCrossRefGoogle Scholar
  73. 73.
    Baer FM, Voth E, Schneider CA, et al.: Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995, 91:1006–1015.PubMedGoogle Scholar
  74. 74.
    Dendale P, Franken PR, Holman E, et al.: Validation of low-dose dobutamine magnetic resonance imaging for assessment of myocardial viability after infarction by serial imaging. Am J Cardiol 1998, 82:375–377.PubMedCrossRefGoogle Scholar
  75. 75.
    Gunning MG, Anagnostopoulos C, Knight CJ, et al.: Comparison of 201Tl, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 1998, 98:1869–1874.PubMedGoogle Scholar
  76. 76.
    Sayad DE, Willett DL, Hundley WG, et al.: Dobutamine magnetic resonance imaging with myocardial tagging quantitatively predicts improvement in regional function after revascularization. Am J Cardiol 1998, 82:1149–1151.PubMedCrossRefGoogle Scholar
  77. 77.
    Baer FM, Theissen P, Schneider CA, et al.: Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 1998, 31:1040–1048.PubMedCrossRefGoogle Scholar
  78. 78.
    Geskin G, Kramer CM, Rogers WJ, et al.: Quantitative assessment of myocardial viability after infarction by dobutamine magnetic resonance tagging. Circulation 1998, 98:217–223.PubMedGoogle Scholar
  79. 79.
    Sandstede JJ, Bertsch G, Beer M, et al.: Detection of myocardial viability by low-dose dobutamine Cine MR imaging. Magn Reson Imaging 1999, 17:1437–1443.PubMedCrossRefGoogle Scholar
  80. 80.
    Baer FM, Theissen P, Crnac J, et al.: Head to head comparison of dobutamine-transoesophageal echocardiography and dobutamine-magnetic resonance imaging for the prediction of left ventricular functional recovery in patients with chronic coronary artery disease. Eur Heart J 2000, 21:981–991.PubMedCrossRefGoogle Scholar
  81. 81.
    Trent RJ, Waiter GD, Hillis GS, et al.: Dobutamine magnetic resonance imaging as a predictor of myocardial functional recovery after revascularisation. Heart 2000, 83:40–46.PubMedCrossRefGoogle Scholar
  82. 82.
    Lauerma K, Niemi P, Hänninen H, et al.: Multimodality MR imaging assessment of myocardial viability: combination of first-pass and late contrast enhancement to wall motion dynamics and comparison with FDG PET-initial experience. Radiology 2000, 217:729–736.PubMedGoogle Scholar
  83. 83.
    Selvanayagam JB, Kardos A, Francis JM, et al.: Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization. Circulation 2004, 110:1535–1541.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  • Nuno Bettencourt
  • Amedeo Chiribiri
  • Andreas Schuster
  • Eike Nagel
    • 1
    Email author
  1. 1.Division of Imaging Sciences, King’s College London British Heart Foundation CentreNational Institute for Health Research Biomedical Research Centre at Guy’s and Saint Thomas’ National Health Service Foundation Trust, The Rayne InstituteLondonUK

Personalised recommendations