Pharmacologic management of the cardiorenal syndrome in heart failure

  • Henry Krum
  • Pupalan Iyngkaran
  • Suree Lekawanvijit
Article

Abstract

Cardiorenal syndrome describes the impairment of renal function and associated diuretic resistance in patients with heart failure and clinically manifest volume overload. The pathophysiology of this syndrome is poorly understood, but appears to be caused by impairment of tubuloglomerular feedback, neurohormonal activation, and other factors and therapies used in the management of heart failure. Early diagnosis of the cardiorenal syndrome by way of markers of renal injury and function is critical for timely interventions that may attenuate progression. Many novel therapies have been evaluated in the cardiorenal syndrome setting, including agents that block key local factors (eg, adenosine AI receptor antagonists), improve diuresis, aquaresis, and natriuresis, and augment natural vasodilator mechanisms to improve renal perfusion. Furthermore, device-based approaches such as ultrafiltration may also play an important therapeutic role.

References and Recommended Reading

  1. 1.
    United States Renal Data System: Excerpts from the USRDS 2007 annual data report: atlas of end-stage renal disease in the United States. Minneapolis, MN: USRDS; 2007.Google Scholar
  2. 2.
    Berl T, Henrich W: Kidney-heart interactions: epidemiology, pathogenesis, and treatment. Clin J Am Soc Nephrol 2006, 1:8–18.PubMedCrossRefGoogle Scholar
  3. 3.
    Guerin AP, Pannier B, Marchais SJ, London GM: Cardiovascular disease in the dialysis population: prognostic significance of arterial disorders. Curr Opin Nephrol Hypertens 2006, 15:105–110.PubMedCrossRefGoogle Scholar
  4. 4.
    Shlipak MG: Pharmacotherapy for heart failure on patients with renal insufficiency. Ann Intern Med 2003, 138:917–924.PubMedGoogle Scholar
  5. 5.
    Liang KV, Williams AW, Greene EL, Redfield MM: Acute decompensated heart failure and the cardiorenal syndrome. Crit Care Med 2008, 36(1 Suppl):S75–S88.PubMedCrossRefGoogle Scholar
  6. 6.
    Hillege HL, Nitsch D, Pfeffer MA, et al.: Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation 2006, 113:671–678.PubMedCrossRefGoogle Scholar
  7. 7.
    Ronco C, Haapio M, House AA, et al.: Cardiorenal syndrome. J Am Coll Cardiol 2008, 52:1527–1539.PubMedCrossRefGoogle Scholar
  8. 8.
    Boerrigter G, Burnett JC: Cardiorenal syndrome in decompensated heart failure: prognostic and therapeutic implications. Curr Heart Fail Rep 2004, 1:113–120.PubMedCrossRefGoogle Scholar
  9. 9.
    Wencker D: Acute cardiorenal syndrome: progression from congestive heart failure to congestive kidney failure. Curr Heart Fail Rep 2007, 4:134–138.PubMedCrossRefGoogle Scholar
  10. 10.
    Foley RN, Parfrey PS, Sarnak MJ: Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 1998, 9(12 Suppl):S16–S23.PubMedGoogle Scholar
  11. 11.
    Zimmermann J, Herrlinger S, Pruy A, et al.: Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int 1999, 55:648–658.PubMedCrossRefGoogle Scholar
  12. 12.
    Stenvinkel P, Barany P: Anaemia, rHuEPO resistance, and cardiovascular disease in end-stage renal failure: links to inflammation and oxidative stress. Nephrol Dial Transplant 2002, 17(Suppl 5):32–37.PubMedCrossRefGoogle Scholar
  13. 13.
    Jie KE, Verhaar MC, Cramer MJ, et al.: Erythropoietin and the cardiorenal syndrome: cellular mechanisms on the cardiorenal connectors. Am J Physiol Renal Physiol 2006, 291:F932–F944.PubMedCrossRefGoogle Scholar
  14. 14.
    Niwa T, Ise M: Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med 1994, 124:96–104.PubMedGoogle Scholar
  15. 15.
    Dou L, Jourde-Chiche N, Faure V, et al.: The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 2007, 5:1302–1308.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamamoto H, Tsuruoka S, Ioka T, et al.: Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int 2006, 69:1780–1785.PubMedCrossRefGoogle Scholar
  17. 17.
    Taki K, Tsuruta Y, Niwa T: Indoxyl sulfate and atherosclerotic risk factors in hemodialysis patients. Am J Nephrol 2007, 27:30–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Lekawanvijit S, Adrahtas A, Kelly DJ, et al.: Does indoxyl sulfate, a uremic toxin, have direct effects on cardiac fibroblasts and myocytes [abstract 1500]? Circulation 2008, 118(Suppl 2):S338.Google Scholar
  19. 19.
    Stevens LA, Coresh J, Greene T, Levey AS: Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med 2006, 354:2473–2483.PubMedCrossRefGoogle Scholar
  20. 20.
    Levey AS, Coresh J, Greene T, et al.: Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 2006, 145:247–254. [Published erratum appears in Ann Intern Med 2008, 149:519.]PubMedGoogle Scholar
  21. 21.
    Herget-Rosenthal S, Bokenkamp A, Hofmann W: How to estimate GFR-serum creatinine, serum cystatin C or equations? Clin Biochem 2007, 40:153–161.PubMedCrossRefGoogle Scholar
  22. 22.
    Bagshaw SM, Gibney RT: Conventional markers of kidney function. Crit Care Med 2008, 36(4 Suppl):S152–S158.PubMedCrossRefGoogle Scholar
  23. 23.
    Edelstein CL: Biomarkers of acute kidney injury. Adv Chron Kidney Dis 2008, 15:222–234.CrossRefGoogle Scholar
  24. 24.
    Waikar SS, Bonventre JV: Biomarkers for the diagnosis of acute kidney injury. Curr Opin Nephrol Hypertens 2007, 16:557–564.PubMedCrossRefGoogle Scholar
  25. 25.
    Coca SG, Yalavarthy R, Concato J, Parikh CR: Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int 2008, 73:1008–1016.PubMedCrossRefGoogle Scholar
  26. 26.
    Endre ZH, Westhuyzen J: Early detection of acute kidney injury: emerging new biomarkers. Nephrology (Carlton) 2008, 13:91–98. [Published erratum appears in Nephrology (Carlton) 2008, 13:268.]CrossRefGoogle Scholar
  27. 27.
    Ferguson MA, Vaidya VS, Bonventre JV: Biomarkers of nephrotoxic acute kidney injury. Toxicology 2008, 245:182–193.PubMedCrossRefGoogle Scholar
  28. 28.
    Filler G, Bokenkamp A, Hofmann W, et al.: Cystatin C as a marker of GFR-history, indications, and future research. Clin Biochem 2005, 38:1–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Herget-Rosenthal S, Marggraf G, Husing J, et al.: Early detection of acute renal failure by serum cystatin C. Kidney Int 2004, 66:1115–1122.PubMedCrossRefGoogle Scholar
  30. 30.
    Villa P, Jimenez M, Soriano MC, et al.: Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit Care 2005, 9:R139–R143.PubMedCrossRefGoogle Scholar
  31. 31.
    Shlipak MG, Sarnak MJ, Katz R, et al.: Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 2005, 352:2049–2060.PubMedCrossRefGoogle Scholar
  32. 32.
    Schrier RW: Pathophysiology of ischemic acute renal injury. In Diseases of the Kidney and Urinary Tract, edn 8. Philadelphia: Lippincott Williams and Wilkins; 2006.Google Scholar
  33. 33.
    Parikh CR, Devarajan P: New biomarkers of acute kidney injury. Crit Care Med 2008, 36(Suppl):S159–S165.PubMedCrossRefGoogle Scholar
  34. 34.
    Nickolas TL, O’Rourke MJ, Yang J, et al.: Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury. Ann Intern Med 2008, 148:810–819.PubMedGoogle Scholar
  35. 35.
    Mishra J, Tarabishi R, Mitsnefes MM, et al.: Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet 2005, 365:1231–1238.PubMedCrossRefGoogle Scholar
  36. 36.
    Mishra J, Mori K, Ma Q, et al.: Neutrophil gelatinase-associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol 2004, 24:307–315.PubMedCrossRefGoogle Scholar
  37. 37.
    Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL: Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 2005, 16:3046–3052.PubMedCrossRefGoogle Scholar
  38. 38.
    Parikh CR, Jani A, Mishra J, et al.: Urine NGAL and IL-18 are predictive biomarkers for delayed graft function following kidney transplantation. Am J Transplant 2006, 6:1639–1645.PubMedCrossRefGoogle Scholar
  39. 39.
    Parikh CR, Mishra J, Thiessen-Philbrook H, et al.: Urinary Il-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 2006, 70:199–203.PubMedCrossRefGoogle Scholar
  40. 40.
    Parikh CR, Jani A, Melnikov VY, et al.: Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 2004, 43:405–414.PubMedCrossRefGoogle Scholar
  41. 41.
    Liangos O, Perianayagam MC, Vaidya VS, et al.: Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 2007, 18:904–912.PubMedCrossRefGoogle Scholar
  42. 42.
    Vaidya VS, Ramirez V, Ichimura T, et al.: Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 2006, 290:F517–F529.PubMedCrossRefGoogle Scholar
  43. 43.
    Han WK, Bailly V, Abichandani R, et al.: Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 2002, 62:237–244.PubMedCrossRefGoogle Scholar
  44. 44.
    Petrie CJ, Mark PB, Weir RA: Broken pump or leaky filter? Renal dysfunction in heart failure a contemporary review. Int J Cardiol 2008, 128:154–165.PubMedCrossRefGoogle Scholar
  45. 45.
    Rastogi A, Fonarow GC: The cardiorenal connection in heart failure. Curr Cardiol Rep 2008, 10:190–197.PubMedCrossRefGoogle Scholar
  46. 46.
    Liu PP: Cardiorenal syndrome in heart failure: a cardiologist’s perspective. Can J Cardiol 2008, 24(Suppl B):25B–29B.PubMedGoogle Scholar
  47. 47.
    Lakhdar R, Al-Mallah MH, Lanfear DE: Safety and tolerability of angiotensin-converting enzyme inhibitor versus the combination of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker in patients with left ventricular dysfunction: a systematic review and metaanalysis of randomized controlled trials. J Card Fail 2008, 14:181–188.PubMedCrossRefGoogle Scholar
  48. 48.
    Ljungman S, Kjekshus J, Swedberg K: Renal function in severe congestive heart failure during treatment with enalapril (the Cooperative North Scandinavian Enalapril Survival Study [CONSENSUS] Trial). Am J Cardiol 1992, 70:479–487.PubMedCrossRefGoogle Scholar
  49. 49.
    Shlipak MG, Browner WS, Noguchi H, et al.: Comparison of the effects of angiotensin converting-enzyme inhibitors and beta-blockers on survival in elderly patients with reduced left ventricular function after myocardial infarction. Am J Med 2001, 110:425–433.PubMedCrossRefGoogle Scholar
  50. 50.
    Khan W, Deepak SM, Coppinger T, et al.: B-blocker treatment is associated with improvement in renal function and anaemia in patients with heart failure. Heart 2006, 92:1856–1857.PubMedCrossRefGoogle Scholar
  51. 51.
    Cice G, Ferrara L, D’Andrea A, et al.: Carvedilol increases two-year survival in dialysis patients with dilated cardiomyopathy. J Am Coll Cardiol 2003, 41:1438–1444.PubMedCrossRefGoogle Scholar
  52. 52.
    Mohammed SF, Korinek J, Chen HH, et al.: Nesiritide in acute decompensated heart failure: current status and future perspectives. Rev Cardiovasc Med 2008, 9:151–158.PubMedGoogle Scholar
  53. 53.
    Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial [no authors listed]. JAMA 2002, 287:1531–1540.Google Scholar
  54. 54.
    Sackner-Bernstein JD, Skopicki HA, Aaronson KD: Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 2005, 111:1487–1491. [Published erratum appears in Circulation 2005, 111:2274.]PubMedCrossRefGoogle Scholar
  55. 55.
    Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K: Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA 2005, 293:1900–1905.PubMedCrossRefGoogle Scholar
  56. 56.
    Scios, Inc: A study testing the effectiveness of nesiritide in patients with acute decompensated heart failure. NCT00475852. Accessible at http://clinicaltrials.gov/ct2/show/NCT00475852. Accessed on April 15, 2009.
  57. 57.
    Rai A, Whaley-Connell A, McFarlane S, Sowers JR: Hyponatremia, arginine vasopressin dysregulation, and vasopressin receptor antagonism. Am J Nephrol 2006, 26:579–589.PubMedCrossRefGoogle Scholar
  58. 58.
    Schrier RW, Gross P, Gheorghiade M, et al.: Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med 2006, 355:2099–2112.PubMedCrossRefGoogle Scholar
  59. 59.
    Krum H, Verbalis J, Muller M, Aronson D: Effective short- and long-term treatment of dilutional hyponatremia with satavaptan, a highly selective vasopressin V2 receptor antagonist: the DILIPO study [abstract]. Eur Heart J 2008, 29(Suppl):41.Google Scholar
  60. 60.
    Gheorghiade M, Gattis WA, O’Connor CM, et al.: Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA 2004, 291:1963–1971.PubMedCrossRefGoogle Scholar
  61. 61.
    Gheorghiade M, Konstam MA, Burnett JC Jr, et al.: Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA 2007, 297:1332–1343.PubMedCrossRefGoogle Scholar
  62. 62.
    Konstam MA, Gheorghiade M, Burnett JC Jr, et al.: Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA 2007, 297:1319–1331.PubMedCrossRefGoogle Scholar
  63. 63.
    Zeltser D, Rosansky S, van Rensburg H, et al.: Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol 2007, 27:447–457.PubMedCrossRefGoogle Scholar
  64. 64.
    Udelson JE, Smith WB, Hendrix GH, et al.: Acute hemodynamic effects of conivaptan, a dual V(1A) and V(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation 2001, 104:2417–2423.PubMedCrossRefGoogle Scholar
  65. 65.
    Kitakaze M, Minamino T, Node K, et al.: Adenosine and cardioprotection in the diseased heart. Jpn Circ J 1999, 63:231–243.PubMedCrossRefGoogle Scholar
  66. 66.
    Vallon V, Miracle C, Thomson S: Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail 2008, 10:176–187.PubMedCrossRefGoogle Scholar
  67. 67.
    Gottlieb SS, Skettino SL, Wolff A, et al.: Effects of BG9719 (CVT-124), an A1-adenosine receptor antagonist, and furosemide on glomerular filtration rate and natriuresis in patients with congestive heart failure. J Am Coll Cardiol 2000, 35:56–59.PubMedCrossRefGoogle Scholar
  68. 68.
    Givertz MM, Massie BM, Fields TK, et al.: The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 2007, 50:1551–1560.PubMedCrossRefGoogle Scholar
  69. 69.
    Cotter G, Dittrich HC, Weatherley BD, et al.: The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail 2008, 14:631–640.PubMedCrossRefGoogle Scholar
  70. 70.
    Schmidt HH, Schmidt PM, Stasch JP: NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol 2009, 191:309–339.PubMedCrossRefGoogle Scholar
  71. 71.
    Boerrigter G, Costello-Boerrigter LC, Cataliotti A, et al.: Targeting heme-oxidized soluble guanylate cyclase in experimental heart failure. Hypertension 2007, 49:1128–1133.PubMedCrossRefGoogle Scholar

Copyright information

© Current Medicine Group, LLC 2009

Authors and Affiliations

  • Henry Krum
    • 1
  • Pupalan Iyngkaran
  • Suree Lekawanvijit
  1. 1.Center of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive MedicineMonash University and Alfred HospitalMelbourneAustralia

Personalised recommendations