Current Heart Failure Reports

, Volume 4, Issue 4, pp 198–203 | Cite as

The role of stem cells in the post-MI patient



Studies suggest that cardiac transfer of stem and progenitor cells can have a favorable impact on tissue perfusion and contractile performance after acute myocardial infarction (AMI). Although the mechanistic background of stem cell therapy is still intensely debated, stem cell therapy has been introduced into the clinical setting, where the first randomized, controlled trials indicate that it is feasible and safe in patients. Preliminary efficacy data indicate that stem cells have the potential to enhance myocardial perfusion and/or contractile performance in patients with AMI. The field now is rapidly moving toward intermediate-size, double-blind trials to gather more safety and efficacy data and the first insights into clinical end points. Ultimately, large outcome trials will be needed. At the same time, continued basic research is needed to elucidate the underlying mechanism of stem cell therapy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Wollert KC, Drexler H: Clinical applications of stem cells for the heart. Circ Res 2005, 96:151–163.PubMedCrossRefGoogle Scholar
  2. 2.
    Wagers AJ, Weissman IL: Plasticity of adult stem cells. Cell 2004, 116:639–648.PubMedCrossRefGoogle Scholar
  3. 3.
    Orlic D, Kajstura J, Chimenti S, et al.: Bone marrow cells regenerate infarcted myocardium. Nature 2001, 410:701–705.PubMedCrossRefGoogle Scholar
  4. 4.
    Torella D, Ellison GM, Mendez-Ferrer S, et al.: Resident human cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat Clin Pract Cardiovasc Med 2006, 3(Suppl 1):S8–S13.PubMedCrossRefGoogle Scholar
  5. 5.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al.: Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003, 425:968–973.PubMedCrossRefGoogle Scholar
  6. 6.
    Nygren JM, Jovinge S, Breitbach M, et al.: Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004, 10:494–501.PubMedCrossRefGoogle Scholar
  7. 7.
    Murry CE, Soonpaa MH, Reinecke H, et al.: Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004, 428:664–668.PubMedCrossRefGoogle Scholar
  8. 8.
    Balsam LB, Wagers AJ, Christensen JL, et al.: Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004, 428:668–673.PubMedCrossRefGoogle Scholar
  9. 9.
    Kamihata H, Matsubara H, Nishiue T, et al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 2001, 104:1046–1052.PubMedCrossRefGoogle Scholar
  10. 10.
    Kinnaird T, Stabile E, Burnett MS, et al.: Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 2004, 94:678–685.PubMedCrossRefGoogle Scholar
  11. 11.
    Abdel-Latif A, Bolli R, Tleyjeh IM, et al.: Adult bone marrow-derived cells for cardiac repair. Arch Intern Med 2007, 167:989–997.PubMedCrossRefGoogle Scholar
  12. 12.
    Frangogiannis NG: The mechanistic basis of infarct healing. Antioxid Redox Signal 2006, 8:1907–1939.PubMedCrossRefGoogle Scholar
  13. 13.
    Strauer BE, Brehm M, Zeus T, et al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002, 106:1913–1918.PubMedCrossRefGoogle Scholar
  14. 14.
    Hofmann M, Wollert KC, Meyer GP, et al.: Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 2005, 111:2198–2202.PubMedCrossRefGoogle Scholar
  15. 15.
    Orlic D, Kajstura J, Chimenti S, et al.: Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 2001, 98:10344–10349.PubMedCrossRefGoogle Scholar
  16. 16.
    Ohtsuka M, Takano H, Zou Y, et al.: Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J 2004, 18:851–853.PubMedGoogle Scholar
  17. 17.
    Minatoguchi S, Takemura G, Chen XH, et al.: Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 2004, 109:2572–2580.PubMedCrossRefGoogle Scholar
  18. 18.
    Harada M, Qin Y, Takano H, et al.: G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 2005, 11:305–311.PubMedCrossRefGoogle Scholar
  19. 19.
    Wollert KC, Meyer GP, Lotz J, et al.: Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004, 364:141–148.PubMedCrossRefGoogle Scholar
  20. 20.
    Schachinger V, Erbs S, Elsasser A, et al.: Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006, 355:1210–1221.PubMedCrossRefGoogle Scholar
  21. 21.
    Janssens S, Dubois C, Bogaert J, et al.: Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006, 367:113–121.PubMedCrossRefGoogle Scholar
  22. 22.
    Lunde K, Solheim S, Aakhus S, et al.: Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006, 355:1199–1209.PubMedCrossRefGoogle Scholar
  23. 23.
    Meyer GP, Wollert KC, Lotz J, et al.: Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006, 113:1287–1294.PubMedCrossRefGoogle Scholar
  24. 24.
    Schaefer A, Meyer GP, Fuchs M, et al.: Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. Eur Heart J 2006, 27:929–935.PubMedCrossRefGoogle Scholar
  25. 25.
    Schachinger V, Assmus B, Britten MB, et al.: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOP-CARE-AMI Trial. J Am Coll Cardiol 2004, 44:1690–1699.PubMedCrossRefGoogle Scholar
  26. 26.
    Assmus B, Honold J, Schachinger V, et al.: Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 2006, 355:1222–1232.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen SL, Fang WW, Ye F, et al.: Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004, 94:92–95.PubMedCrossRefGoogle Scholar
  28. 28.
    Vulliet PR, Greeley M, Halloran SM, et al.: Intra-coronary arterial injection of mesenchymal stromal cells and micro-infarction in dogs. Lancet 2004, 363:783–784.PubMedCrossRefGoogle Scholar
  29. 29.
    Mansour S, Vanderheyden M, De Bruyne B, et al.: Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J Am Coll Cardiol 2006, 47:1727–1730.PubMedCrossRefGoogle Scholar
  30. 30.
    Ince H, Petzsch M, Kleine HD, et al.: Preservation from left ventricular remodeling by front-integrated revascularization and stem cell liberation in evolving acute myocardial infarction by use of granulocyte-colony-stimulating factor (FIRSTLINE-AMI). Circulation 2005, 112:3097–3106.PubMedCrossRefGoogle Scholar
  31. 31.
    de Muinck ED, Simons M: Calling on reserves: granulocyte colony stimulating growth factor in cardiac repair. Circulation 2005, 112:3033–3035.PubMedCrossRefGoogle Scholar
  32. 32.
    Zohlnhofer D, Ott I, Mehilli J, et al.: Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006, 295:1003–1010.PubMedCrossRefGoogle Scholar
  33. 33.
    Ripa RS, Jorgensen E, Wang Y, et al.: Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006, 113:1983–1992.PubMedCrossRefGoogle Scholar
  34. 34.
    Bartunek J, Dimmeler S, Drexler H, et al.: The consensus of the task force of the European Society of Cardiology concerning the clinical investigation of the use of autologous adult stem cells for repair of the heart. Eur Heart J 2006, 27:1338–1340.PubMedCrossRefGoogle Scholar
  35. 35.
    Sasaki K, Heeschen C, Aicher A, et al.: Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci U S A 2006, 103:14537–14541.PubMedCrossRefGoogle Scholar
  36. 36.
    Kawamoto A, Murayama T, Kusano K, et al.: Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation 2004, 110:1398–1405.PubMedCrossRefGoogle Scholar
  37. 37.
    Gnecchi M, He H, Liang OD, et al.: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005, 11:367–368.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Cardiology and AngiologyHannover Medical SchoolHannoverGermany

Personalised recommendations