Microbial Profiles of Cirrhosis in the Human Small Intestine

  • Tien S. Dong
  • Jonathan P. Jacobs
  • Shehnaz K. HussainEmail author
Stomach and Duodenum (J Pisegna and J Benhammou, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Stomach and Duodenum


Purpose of Review

The aim of this review is to summarize the recent literature on associations of small intestinal microbial and bile acid profiles with liver cirrhosis and its complications.

Recent Findings

Recent studies into the duodenal microbiome of patients with cirrhosis have linked the microbiome to certain etiologies of chronic liver disease as well as complications of cirrhosis. In particular, microbial differences in the duodenum of patients with cirrhosis have been linked to the presence of hepatic encephalopathy and varices.


While the fecal microbiome of patients with liver cirrhosis is well characterized, the small intestinal microbiome of cirrhotic patients is an active area of research. This review focuses on the current understanding of the small intestinal microbiome in human cirrhosis as well as future directions of the field.


Microbiome Bile acids Cirrhosis Hepatic encephalopathy Portal hypertension Ascites 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology. 2005;41:422–33.CrossRefGoogle Scholar
  2. 2.
    Chu H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2019;68:359–70.CrossRefGoogle Scholar
  3. 3.
    Shalapour S, Lin X-J, Bastian IN, Brain J, Burt AD, Aksenov AA, et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature. 2017;551:340–5.CrossRefGoogle Scholar
  4. 4.
    Cruz-Ramón V, Chinchilla-López P, Ramírez-Pérez O, Méndez-Sánchez N. Bile acids in nonalcoholic fatty liver disease: new concepts and therapeutic advances. Ann Hepatol. 2017;16:s58–67.CrossRefGoogle Scholar
  5. 5.
    Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol. 2005;54:1093–101.CrossRefGoogle Scholar
  6. 6.
    Onishi JC, Campbell S, Moreau M, Patel F, Brooks AI, Zhou YX, et al. Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets. Microbiology. 2017;163:1189–97.CrossRefGoogle Scholar
  7. 7.
    Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CCGM, Troost FJ, et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 2012;6:1415–26.CrossRefGoogle Scholar
  8. 8.
    Angelakis E, Armougom F, Carrière F, Bachar D, Laugier R, Lagier J-C, et al. A metagenomic investigation of the duodenal microbiota reveals links with obesity. PLoS One. 2015;10:e0137784.CrossRefGoogle Scholar
  9. 9.
    Wacklin P, Laurikka P, Lindfors K, Collin P, Salmi T, Lähdeaho ML, et al. Altered duodenal microbiota composition in celiac disease patients suffering from persistent symptoms on a long-term gluten-free diet. Am J Gastroenterol. 2014;109:1933–41.CrossRefGoogle Scholar
  10. 10.
    Steed H, Macfarlane GT, Blackett KL, Macfarlane S, Miller MH, Bahrami B, et al. Bacterial translocation in cirrhosis is not caused by an abnormal small bowel gut microbiota. FEMS Immunol Med Microbiol. 2011;63:346–54.CrossRefGoogle Scholar
  11. 11.
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326:1694–7.CrossRefGoogle Scholar
  12. 12.
    •• Chen Y, Ji F, Guo J, Shi D, Fang D, Li L. Dysbiosis of small intestinal microbiota in liver cirrhosis and its association with etiology. Sci Rep. 2016;6:34055. One of three articles that actually examined the microbiome of cirrhotic patients in the small intestine.CrossRefGoogle Scholar
  13. 13.
    •• Bajaj JS, Kakiyama G, Zhao D, et al. Continued alcohol misuse in human cirrhosis is associated with an impaired gut-liver Axis. Alcohol Clin Exp Res. 2017;41:1857–65. One of three articles that actually examined the microbiome of cirrhotic patients in the small intestine.CrossRefGoogle Scholar
  14. 14.
    •• Jacobs JP, Dong TS, Agopian V, et al. Microbiome and bile acid profiles in duodenal aspirates from patients with liver cirrhosis: the microbiome, microbial markers and liver disease study. Hepatol Res. 2018;48:1108–17. One of three articles that actually examined the microbiome of cirrhotic patients in the small intestine. CrossRefGoogle Scholar
  15. 15.
    Aly AM, Adel A, El-Gendy AO, Essam TM, Aziz RK. Gut microbiome alterations in patients with stage 4 hepatitis C. Gut Pathog. 2016;8:42.CrossRefGoogle Scholar
  16. 16.
    Als-Nielsen B, Gluud LL, Gluud C. Nonabsorbable disaccharides for hepatic encephalopathy. Cochrane Database Syst Rev. 2004;4:CD003044.Google Scholar
  17. 17.
    Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362:1071–81.CrossRefGoogle Scholar
  18. 18.
    Bajaj JS. Review article: potential mechanisms of action of rifaximin in the management of hepatic encephalopathy and other complications of cirrhosis. Aliment Pharmacol Ther. 2016;43(Suppl 1):11–26.CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Feng Y, Cao B, Tian Q. The effect of small intestinal bacterial overgrowth on minimal hepatic encephalopathy in patients with cirrhosis. Arch Med Sci. 2016;12:592–6.CrossRefGoogle Scholar
  20. 20.
    Gupta A, Dhiman RK, Kumari S, Rana S, Agarwal R, Duseja A, et al. Role of small intestinal bacterial overgrowth and delayed gastrointestinal transit time in cirrhotic patients with minimal hepatic encephalopathy. J Hepatol. 2010;53:849–55.CrossRefGoogle Scholar
  21. 21.
    • Mullish BH, McDonald JAK, Thursz MR, Marchesi JR. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66:1354–5. The only randomized clinical trial looking at fecal transplant in encephalopathy. CrossRefGoogle Scholar
  22. 22.
    Yüksel O, Köklü S, Arhan M, Yolcu OF, Ertuğrul I, Odemiş B, et al. Effects of esophageal varice eradication on portal hypertensive gastropathy and fundal varices: a retrospective and comparative study. Dig Dis Sci. 2006;51:27–30.CrossRefGoogle Scholar
  23. 23.
    Scarpellini E, Valenza V, Gabrielli M, Lauritano EC, Perotti G, Merra G, et al. Intestinal permeability in cirrhotic patients with and without spontaneous bacterial peritonitis: is the ring closed? Am J Gastroenterol. 2010;105:323–7.CrossRefGoogle Scholar
  24. 24.
    Pascual S, Such J, Esteban A, et al. Intestinal permeability is increased in patients with advanced cirrhosis. Hepatogastroenterology. 2003;50:1482–6.PubMedGoogle Scholar
  25. 25.
    Campillo B, Pernet P, Bories PN, Richardet JP, Devanlay M, Aussel C. Intestinal permeability in liver cirrhosis: relationship with severe septic complications. Eur J Gastroenterol Hepatol. 1999;11:755–9.CrossRefGoogle Scholar
  26. 26.
    Parlesak A, Schäfer C, Schütz T, Bode JC, Bode C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol. 2000;32:742–7.CrossRefGoogle Scholar
  27. 27.
    Assimakopoulos SF, Tsamandas AC, Tsiaoussis GI, Karatza E, Triantos C, Vagianos CE, et al. Altered intestinal tight junctions’ expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Investig. 2012;42:439–46.CrossRefGoogle Scholar
  28. 28.
    Aranha MM, Cortez-Pinto H, Costa A, da Silva IBM, Camilo ME, de Moura MC, et al. Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol. 2008;20:519–25.CrossRefGoogle Scholar
  29. 29.
    Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–24.CrossRefGoogle Scholar
  30. 30.
    Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360:eaan5931. Scholar
  31. 31.
    Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury - what is the link? J Hepatol. 2017;67:619–31.CrossRefGoogle Scholar
  32. 32.
    Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature. 2013;499:97–101. Scholar
  33. 33.
    Chung GE, Yoon J-H, Lee J-H, Kim HY, Myung SJ, Yu SJ, et al. Ursodeoxycholic acid-induced inhibition of DLC1 protein degradation leads to suppression of hepatocellular carcinoma cell growth. Oncol Rep. 2011;25:1739–46.PubMedGoogle Scholar
  34. 34.
    Zhu L, Shan LJ, Liu YJ, Chen D, Xiao XG, Li Y. Ursodeoxycholic acid induces apoptosis of hepatocellular carcinoma cells in vitro. J Dig Dis. 2014;15:684–93.CrossRefGoogle Scholar
  35. 35.
    Liu H, Xu H-W, Zhang Y-Z, Huang Y, Han G-Q, Liang T-J, et al. Ursodeoxycholic acid induces apoptosis in hepatocellular carcinoma xenografts in mice. World J Gastroenterol. 2015;21:10367–74.CrossRefGoogle Scholar
  36. 36.
    Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24:392–400.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tien S. Dong
    • 1
  • Jonathan P. Jacobs
    • 1
    • 2
    • 3
  • Shehnaz K. Hussain
    • 4
    Email author
  1. 1.The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine and Human GeneticsDavid Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.UCLA Microbiome CenterDavid Geffen School of Medicine at UCLALos AngelesUSA
  4. 4.Samuel Oschin Comprehensive Cancer InstituteCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations