Advertisement

Obesity, Motility, Diet, and Intestinal Microbiota—Connecting the Dots

  • Maya Fayfman
  • Kristen Flint
  • Shanthi SrinivasanEmail author
Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract (S Rao, Editor)
Part of the following topical collections:
  1. Topical Collection on Neurogastroenterology and Motility Disorders of the Gastrointestinal Tract

Abstract

Purpose of Review

The goal of the present review is to explore the relationship between dietary changes and alterations in gut microbiota that contribute to disorders of gut motility and obesity.

Recent Findings

We review the microbiota changes that are seen in obesity, diarrhea, and constipation and look at potential mechanisms of how dysbiosis can predispose to these. We find that microbial metabolites, particularly short chain fatty acids, can lead to signaling changes in the host enterocytes. Microbial alteration leading to both motility disorders and obesity may be mediated by the release of hormones including glucagon-like peptides 1 and 2 (GLP-1, GLP-2) and polypeptide YY (PYY). These pathways provide avenues for microbiota-targeted interventions that can treat both disorders of motility and obesity.

Summary

In summary, multiple mechanisms contribute to the interplay between the microbial dysbiosis, obesity, and dysmotility.

Keywords

Gut microbiome Dysmotility Diarrhea Constipation Obesity 

Abbreviations

SCFAs

Short chain fatty acids

TLR

Toll-like receptor

FODMAP

Fermentable oligosaccharides, monosaccharides, disaccharides, and polyols

GLP

Glucagon-like peptide

GIP

Glucose-dependent insulinotropic polypeptide

Notes

Funding Information

SS is funded by NIH grant number NIH RO1 DK080684 and a VA Merit Award.

Compliance with Ethical Standards

Conflict of Interest

Maya Fayfman, Kristen Flint, and Shanthi Srinivasan declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23.  https://doi.org/10.1016/j.chom.2008.02.015.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One. 2013;8(8):e71108.  https://doi.org/10.1371/journal.pone.0071108.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.  https://doi.org/10.1038/4441022a.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085.  https://doi.org/10.1371/journal.pone.0009085.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.  https://doi.org/10.1073/pnas.0407076101.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.  https://doi.org/10.1126/science.1110591.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.  https://doi.org/10.1038/nature05414.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.  https://doi.org/10.1038/nature07540.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120.  https://doi.org/10.1186/s12866-017-1027-1.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang H, Hong T, Li N, Zang B, Wu X. Soluble dietary fiber improves energy homeostasis in obese mice by remodeling the gut microbiota. Biochem Biophys Res Commun. 2018;498(1):146–51.  https://doi.org/10.1016/j.bbrc.2018.02.017.CrossRefPubMedGoogle Scholar
  11. 11.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.  https://doi.org/10.1038/oby.2009.167.CrossRefGoogle Scholar
  12. 12.
    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32(11):1720–4.  https://doi.org/10.1038/ijo.2008.155.CrossRefGoogle Scholar
  13. 13.
    Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS One. 2014;9(1):e84689.  https://doi.org/10.1371/journal.pone.0084689.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8.  https://doi.org/10.1126/science.1208344.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Haro C, Montes-Borrego M, Rangel-Zuniga OA, Alcala-Diaz JF, Gomez-Delgado F, Perez-Martinez P, et al. Two healthy diets modulate gut microbial community improving insulin sensitivity in a human obese population. J Clin Endocrinol Metab. 2016;101(1):233–42.  https://doi.org/10.1210/jc.2015-3351.CrossRefPubMedGoogle Scholar
  16. 16.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.  https://doi.org/10.1038/nature12820.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6(2):121–31.  https://doi.org/10.1038/nrmicro1817.CrossRefPubMedGoogle Scholar
  18. 18.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311(8):806–14.  https://doi.org/10.1001/jama.2014.732.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.  https://doi.org/10.1016/S0140-6736(14)60460-8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    O'Brien MJ, Perez A, Scanlan AB, Alos VA, Whitaker RC, Foster GD, et al. PREVENT-DM comparative effectiveness trial of lifestyle intervention and metformin. Am J Prev Med. 2017;52(6):788–97.  https://doi.org/10.1016/j.amepre.2017.01.008.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Glechner A, Keuchel L, Affengruber L, Titscher V, Sommer I, Matyas N, et al. Effects of lifestyle changes on adults with prediabetes: a systematic review and meta-analysis. Prim Care Diabetes. 2018;12:393–408.  https://doi.org/10.1016/j.pcd.2018.07.003.CrossRefPubMedGoogle Scholar
  22. 22.
    Muniz Pedrogo DA, Jensen MD, Van Dyke CT, Murray JA, Woods JA, Chen J, et al. Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet. Mayo Clin Proc. 2018;93(8):1104–10.  https://doi.org/10.1016/j.mayocp.2018.02.019.CrossRefPubMedGoogle Scholar
  23. 23.
    Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–36.  https://doi.org/10.1136/gutjnl-2014-308778.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–68.  https://doi.org/10.1038/nm.4358.CrossRefPubMedGoogle Scholar
  25. 25.
    • Anitha M, Reichardt F, Tabatabavakili S, Nezami BG, Chassaing B, Mwangi S, et al. Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat diet fed mice. Cell Mol Gastroenterol Hepatol. 2016;2(3):328–39.  https://doi.org/10.1016/j.jcmgh.2015.12.008 The study suggests that intestinal dysbiosis in mice fed high-fat diets contributes to delayed intestinal motility and these changes may be mediated by TLR4-dependant neuronal loss. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reichardt F, Chassaing B, Nezami BG, Li G, Tabatabavakili S, Mwangi S, et al. Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling. J Physiol. 2017;595(5):1831–46.  https://doi.org/10.1113/JP273269.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem. 2003;278(13):11312–9.  https://doi.org/10.1074/jbc.M211609200.CrossRefPubMedGoogle Scholar
  28. 28.
    Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70(2):567–90.  https://doi.org/10.1152/physrev.1990.70.2.567.CrossRefPubMedGoogle Scholar
  29. 29.
    Hwang N, Eom T, Gupta SK, Jeong SY, Jeong DY, Kim YS et al. Genes and gut bacteria involved in luminal butyrate reduction caused by diet and loperamide. Genes (Basel). 2017;8(12). doi: https://doi.org/10.3390/genes8120350.CrossRefGoogle Scholar
  30. 30.
    Ge X, Zhao W, Ding C, Tian H, Xu L, Wang H, et al. Potential role of fecal microbiota from patients with slow transit constipation in the regulation of gastrointestinal motility. Sci Rep. 2017;7(1):441.  https://doi.org/10.1038/s41598-017-00612-y.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Deng Y, Li M, Mei L, Cong LM, Liu Y, Zhang BB, et al. Manipulation of intestinal dysbiosis by a bacterial mixture ameliorates loperamide-induced constipation in rats. Benefic Microbes. 2018;9(3):453–64.  https://doi.org/10.3920/BM2017.0062.CrossRefGoogle Scholar
  32. 32.
    Fukumoto S, Tatewaki M, Yamada T, Fujimiya M, Mantyh C, Voss M, et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am J Phys Regul Integr Comp Phys. 2003;284(5):R1269–76.  https://doi.org/10.1152/ajpregu.00442.2002.CrossRefGoogle Scholar
  33. 33.
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.  https://doi.org/10.1016/j.cell.2015.02.047.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tottey W, Feria-Gervasio D, Gaci N, Laillet B, Pujos E, Martin JF, et al. Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence. J Neurogastroenterol Motil. 2017;23(1):124–34.  https://doi.org/10.5056/jnm16042.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang L, Hu L, Yan S, Jiang T, Fang S, Wang G, et al. Effects of different oligosaccharides at various dosages on the composition of gut microbiota and short-chain fatty acids in mice with constipation. Food Funct. 2017;8(5):1966–78.  https://doi.org/10.1039/c7fo00031f.CrossRefPubMedGoogle Scholar
  36. 36.
    Hoek M, Merks RMH. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst Biol. 2017;11(1):56.  https://doi.org/10.1186/s12918-017-0430-4.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65(1):57–62.  https://doi.org/10.1136/gutjnl-2015-309618.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gallardo P, Izquierdo M, Vidal RM, Chamorro-Veloso N, Rossello-Mora R, O’Ryan M, et al. Distinctive gut microbiota is associated with diarrheagenic Escherichia coli infections in Chilean children. Front Cell Infect Microbiol. 2017;7:424.  https://doi.org/10.3389/fcimb.2017.00424.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R, Jernigan K, et al. Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome. 2015;3:45.  https://doi.org/10.1186/s40168-015-0109-2.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    The HC, Florez de Sessions P, Jie S, Pham Thanh D, Thompson CN, Nguyen Ngoc Minh C, et al. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes. 2018;9(1):38–54.  https://doi.org/10.1080/19490976.2017.1361093.CrossRefPubMedGoogle Scholar
  41. 41.
    Liu SX, Li YH, Dai WK, Li XS, Qiu CZ, Ruan ML, et al. Fecal microbiota transplantation induces remission of infantile allergic colitis through gut microbiota re-establishment. World J Gastroenterol. 2017;23(48):8570–81.  https://doi.org/10.3748/wjg.v23.i48.8570.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Johnsen PH, Hilpusch F, Cavanagh JP, Leikanger IS, Kolstad C, Valle PC, et al. Faecal microbiota transplantation versus placebo for moderate-to-severe irritable bowel syndrome: a double-blind, randomised, placebo-controlled, parallel-group, single-centre trial. Lancet Gastroenterol Hepatol. 2018;3(1):17–24.  https://doi.org/10.1016/S2468-1253(17)30338-2.CrossRefPubMedGoogle Scholar
  43. 43.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.  https://doi.org/10.1073/pnas.0504978102.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, et al. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe. 2018;23(1):41–53 e4.  https://doi.org/10.1016/j.chom.2017.11.003.CrossRefPubMedGoogle Scholar
  45. 45.
    Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17.  https://doi.org/10.2337/db08-1637.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Todesco T, Rao AV, Bosello O, Jenkins DJ. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am J Clin Nutr. 1991;54(5):860–5.CrossRefGoogle Scholar
  47. 47.
    Lindstrom J, Peltonen M, Eriksson JG, Louheranta A, Fogelholm M, Uusitupa M, et al. High-fibre, low-fat diet predicts long-term weight loss and decreased type 2 diabetes risk: the Finnish Diabetes Prevention Study. Diabetologia. 2006;49(5):912–20.  https://doi.org/10.1007/s00125-006-0198-3.CrossRefPubMedGoogle Scholar
  48. 48.
    Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.  https://doi.org/10.1152/physrev.00034.2006.CrossRefPubMedGoogle Scholar
  49. 49.
    Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240.  https://doi.org/10.1371/journal.pone.0035240.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54.  https://doi.org/10.1136/gutjnl-2014-307913.CrossRefPubMedGoogle Scholar
  51. 51.
    Grasset E, Puel A, Charpentier J, Collet X, Christensen JE, Terce F, et al. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab. 2017;26(1):278.  https://doi.org/10.1016/j.cmet.2017.06.003.CrossRefPubMedGoogle Scholar
  52. 52.
    • Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–6.  https://doi.org/10.1126/science.aao5774 This was a randomized clinical study showing that high fiber intake promoted increased production of short-chain fatty acids and improved glycemic control in patients with type 2 diabetes mellitus. CrossRefPubMedGoogle Scholar
  53. 53.
    Chassaing B, Raja SM, Lewis JD, Srinivasan S, Gewirtz AT. Colonic microbiota encroachment correlates with dysglycemia in humans. Cell Mol Gastroenterol Hepatol. 2017;4(2):205–21.  https://doi.org/10.1016/j.jcmgh.2017.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Fabbiano S, Suarez-Zamorano N, Chevalier C, Lazarevic V, Kieser S, Rigo D, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements. Cell Metab. 2018;28:907–921.e7.  https://doi.org/10.1016/j.cmet.2018.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Caputi V, Marsilio I, Filpa V, Cerantola S, Orso G, Bistoletti M, et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br J Pharmacol. 2017;174(20):3623–39.  https://doi.org/10.1111/bph.13965.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004;5(10):987–95.  https://doi.org/10.1038/ni1112.CrossRefPubMedGoogle Scholar
  57. 57.
    Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, et al. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology. 2013;145(6):1323–33.  https://doi.org/10.1053/j.gastro.2013.08.047.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Johnson S, Gerding DN. Fecal fixation: fecal microbiota transplantation for Clostridium difficile infection. Clin Infect Dis. 2017;64(3):272–4.  https://doi.org/10.1093/cid/ciw735.CrossRefPubMedGoogle Scholar
  59. 59.
    Bunnett NW. Neuro-humoral signalling by bile acids and the TGR5 receptor in the gastrointestinal tract. J Physiol. 2014;592(14):2943–50.  https://doi.org/10.1113/jphysiol.2014.271155.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Utsumi D, Matsumoto K, Amagase K, Horie S, Kato S. 5-HT3 receptors promote colonic inflammation via activation of substance P/neurokinin-1 receptors in dextran sulphate sodium-induced murine colitis. Br J Pharmacol. 2016;173(11):1835–49.  https://doi.org/10.1111/bph.13482.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zheng J, Yuan X, Zhang C, Jia P, Jiao S, Zhao X, et al. N-Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in high-fat diet-fed mice. J Diabetes. 2018;11:32–45.  https://doi.org/10.1111/1753-0407.12795.CrossRefPubMedGoogle Scholar
  62. 62.
    Anhe FF, Nachbar RT, Varin TV, Trottier J, Dudonne S, Le Barz M, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. 2018;68:453–64.  https://doi.org/10.1136/gutjnl-2017-315565.CrossRefGoogle Scholar
  63. 63.
    Wu TR, Lin CS, Chang CJ, Lin TL, Martel J, Ko YF, et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 2018;68:248–62.  https://doi.org/10.1136/gutjnl-2017-315458.CrossRefPubMedGoogle Scholar
  64. 64.
    Wang J, Qin C, He T, Qiu K, Sun W, Zhang X, et al. Alfalfa-containing diets alter luminal microbiota structure and short chain fatty acid sensing in the caecal mucosa of pigs. J Anim Sci Biotechnol. 2018;9:11.  https://doi.org/10.1186/s40104-017-0216-y.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Karl JP, Meydani M, Barnett JB, Vanegas SM, Goldin B, Kane A, et al. Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr. 2017;105(3):589–99.  https://doi.org/10.3945/ajcn.116.139683.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.  https://doi.org/10.1038/ismej.2010.118.CrossRefPubMedGoogle Scholar
  67. 67.
    • Staudacher HM, MCE L, Farquharson FM, Louis P, Fava F, Franciosi E, et al. A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores Bifidobacterium species: a randomized controlled trial. Gastroenterology. 2017;153(4):936–47.  https://doi.org/10.1053/j.gastro.2017.06.010 This study demonstrated that a diet low in fermentible carbohydrates was associated with improvement in gastrointestinal symptoms among patients with irritable bowel syndrome and correlated with lower abundance of Bifidobacterium species. CrossRefPubMedGoogle Scholar
  68. 68.
    Eswaran SL, Chey WD, Han-Markey T, Ball S, Jackson K. A randomized controlled trial comparing the low FODMAP diet vs. modified NICE guidelines in US adults with IBS-D. Am J Gastroenterol. 2016;111(12):1824–32.  https://doi.org/10.1038/ajg.2016.434.CrossRefPubMedGoogle Scholar
  69. 69.
    Marsh A, Eslick EM, Eslick GD. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur J Nutr. 2016;55(3):897–906.  https://doi.org/10.1007/s00394-015-0922-1.CrossRefPubMedGoogle Scholar
  70. 70.
    van Can J, Sloth B, Jensen CB, Flint A, Blaak EE, Saris WH. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes. 2014;38(6):784–93.  https://doi.org/10.1038/ijo.2013.162.CrossRefGoogle Scholar
  71. 71.
    Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci Rep. 2016;6:33251.  https://doi.org/10.1038/srep33251.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Zhao L, Chen Y, Xia F, Abudukerimu B, Zhang W, Guo Y, et al. A Glucagon-like peptide-1 receptor agonist lowers weight by modulating the structure of gut microbiota. Front Endocrinol (Lausanne). 2018;9:233.  https://doi.org/10.3389/fendo.2018.00233.CrossRefGoogle Scholar
  73. 73.
    Zheng H, Chen M, Li Y, Wang Y, Wei L, Liao Z, et al. Modulation of gut microbiome composition and function in experimental colitis treated with sulfasalazine. Front Microbiol. 2017;8:1703.  https://doi.org/10.3389/fmicb.2017.01703.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kang DW, DiBaise JK, Ilhan ZE, Crowell MD, Rideout JR, Caporaso JG, et al. Gut microbial and short-chain fatty acid profiles in adults with chronic constipation before and after treatment with lubiprostone. Anaerobe. 2015;33:33–41.  https://doi.org/10.1016/j.anaerobe.2015.01.005.CrossRefPubMedGoogle Scholar
  75. 75.
    Fodor AA, Pimentel M, Chey WD, Lembo A, Golden PL, Israel RJ, et al. Rifaximin is associated with modest, transient decreases in multiple taxa in the gut microbiota of patients with diarrhoea-predominant irritable bowel syndrome. Gut Microbes. 2018;10:1–28.  https://doi.org/10.1080/19490976.2018.1460013.CrossRefGoogle Scholar
  76. 76.
    Chassaing B, Miles-Brown J, Pellizzon M, Ulman E, Ricci M, Zhang L, et al. Lack of soluble fiber drives diet-induced adiposity in mice. Am J Physiol Gastrointest Liver Physiol. 2015;309(7):G528–41.  https://doi.org/10.1152/ajpgi.00172.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD, Mahillon J, et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin Nutr. 2015;34(3):501–7.  https://doi.org/10.1016/j.clnu.2014.06.001.CrossRefPubMedGoogle Scholar
  78. 78.
    Alexander C, Cross TL, Devendran S, Neumer F, Theis S, Ridlon JM, et al. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br J Nutr. 2018;120(6):711–20.  https://doi.org/10.1017/S0007114518001952.CrossRefPubMedGoogle Scholar
  79. 79.
    Roshanravan N, Mahdavi R, Alizadeh E, Jafarabadi MA, Hedayati M, Ghavami A, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm Metab Res. 2017;49(11):886–91.  https://doi.org/10.1055/s-0043-119089.CrossRefPubMedGoogle Scholar
  80. 80.
    Rahat-Rozenbloom S, Fernandes J, Cheng J, Wolever TMS. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur J Clin Nutr. 2017;71(8):953–8.  https://doi.org/10.1038/ejcn.2016.249.CrossRefPubMedGoogle Scholar
  81. 81.
    Guess ND, Dornhorst A, Oliver N, Frost GS. A randomised crossover trial: the effect of inulin on glucose homeostasis in subtypes of prediabetes. Ann Nutr Metab. 2016;68(1):26–34.  https://doi.org/10.1159/000441626.CrossRefPubMedGoogle Scholar
  82. 82.
    Miyamoto J, Watanabe K, Taira S, Kasubuchi M, Li X, Irie J, et al. Barley beta-glucan improves metabolic condition via short-chain fatty acids produced by gut microbial fermentation in high fat diet fed mice. PLoS One. 2018;13(4):e0196579.  https://doi.org/10.1371/journal.pone.0196579.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Prykhodko O, Sandberg J, Burleigh S, Bjorck I, Nilsson A, Fak Hallenius F. Impact of rye kernel-based evening meal on microbiota composition of young healthy lean volunteers with an emphasis on their hormonal and appetite regulations, and blood levels of brain-derived neurotrophic factor. Front Nutr. 2018;5:45.  https://doi.org/10.3389/fnut.2018.00045.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    van der Beek CM, Canfora EE, Kip AM, Gorissen SHM, Olde Damink SWM, van Eijk HM, et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism. 2018;87:25–35.  https://doi.org/10.1016/j.metabol.2018.06.009.CrossRefPubMedGoogle Scholar
  85. 85.
    Lee I, Shi L, Webb DL, Hellstrom PM, Riserus U, Landberg R. Effects of whole-grain rye porridge with added inulin and wheat gluten on appetite, gut fermentation and postprandial glucose metabolism: a randomised, cross-over, breakfast study. Br J Nutr. 2016;116(12):2139–49.  https://doi.org/10.1017/S0007114516004153.CrossRefPubMedGoogle Scholar
  86. 86.
    Simon MC, Strassburger K, Nowotny B, Kolb H, Nowotny P, Burkart V, et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care. 2015;38(10):1827–34.  https://doi.org/10.2337/dc14-2690.CrossRefGoogle Scholar
  87. 87.
    Stenman LK, Lehtinen MJ, Meland N, Christensen JE, Yeung N, Saarinen MT, et al. Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults-randomized controlled trial. EBioMedicine. 2016;13:190–200.  https://doi.org/10.1016/j.ebiom.2016.10.036.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Blatchford P, Stoklosinski H, Eady S, Wallace A, Butts C, Gearry R, et al. Consumption of kiwifruit capsules increases Faecalibacterium prausnitzii abundance in functionally constipated individuals: a randomised controlled human trial. J Nutr Sci. 2017;6:e52.  https://doi.org/10.1017/jns.2017.52.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Chen Y, Xiao S, Gong Z, Zhu X, Yang Q, Li Y, et al. Wuji Wan formula ameliorates diarrhea and disordered colonic motility in post-inflammation irritable bowel syndrome rats by modulating the gut microbiota. Front Microbiol. 2017;8:2307.  https://doi.org/10.3389/fmicb.2017.02307.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Jeong D, Kim DH, Kang IB, Kim H, Song KY, Kim HS, et al. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food Funct. 2017;8(2):680–6.  https://doi.org/10.1039/c6fo01559j.CrossRefPubMedGoogle Scholar
  91. 91.
    Kim SE, Choi SC, Park KS, Park MI, Shin JE, Lee TH, et al. Change of fecal flora and effectiveness of the short-term VSL#3 probiotic treatment in patients with functional constipation. J Neurogastroenterol Motil. 2015;21(1):111–20.  https://doi.org/10.5056/jnm14048.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hatanaka M, Yamamoto K, Suzuki N, Iio S, Takara T, Morita H, et al. Effect of Bacillus subtilis C-3102 on loose stools in healthy volunteers. Benefic Microbes. 2018;9(3):357–65.  https://doi.org/10.3920/BM2017.0103.CrossRefGoogle Scholar
  93. 93.
    Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol. 2014;109(10):1547–61; quiz 6, 62.  https://doi.org/10.1038/ajg.2014.202.CrossRefPubMedGoogle Scholar
  94. 94.
    Tremaroli V, Karlsson F, Werling M, Stahlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.  https://doi.org/10.1016/j.cmet.2015.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.  https://doi.org/10.1186/s13073-016-0312-1.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.  https://doi.org/10.1126/scitranslmed.3005687.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Cortez RV, Petry T, Caravatto P, Pessoa R, Sanabani SS, Martinez MB, et al. Shifts in intestinal microbiota after duodenal exclusion favor glycemic control and weight loss: a randomized controlled trial. Surg Obes Relat Dis. 2018;14:1748–54.  https://doi.org/10.1016/j.soard.2018.07.021.CrossRefPubMedGoogle Scholar
  98. 98.
    Murphy R, Tsai P, Jullig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.  https://doi.org/10.1007/s11695-016-2399-2.CrossRefPubMedGoogle Scholar
  99. 99.
    Fernandes R, Beserra BT, Mocellin MC, Kuntz MG, da Rosa JS, de Miranda RC, et al. Effects of prebiotic and synbiotic supplementation on inflammatory markers and anthropometric indices after Roux-en-Y gastric bypass: a randomized, triple-blind, placebo-controlled pilot study. J Clin Gastroenterol. 2016;50(3):208–17.  https://doi.org/10.1097/MCG.0000000000000328.CrossRefPubMedGoogle Scholar
  100. 100.
    Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6 e7.  https://doi.org/10.1053/j.gastro.2012.06.031.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maya Fayfman
    • 1
  • Kristen Flint
    • 1
  • Shanthi Srinivasan
    • 1
    • 2
    • 3
    Email author
  1. 1.Emory University School of MedicineAtlantaUSA
  2. 2.Atlanta Veterans Affairs Medical CenterDecaturUSA
  3. 3.Emory UniversityAtlantaUSA

Personalised recommendations