Advertisement

Back to the Colorectal Cancer Consensus Molecular Subtype Future

  • David G. MenterEmail author
  • Jennifer S. Davis
  • Bradley M. Broom
  • Michael J. Overman
  • Jeffrey Morris
  • Scott Kopetz
GI Oncology (R Bresalier, Section Editor)
  • 93 Downloads
Part of the following topical collections:
  1. Topical Collection on GI Oncology

Abstract

Purpose of Review

This review seeks to provide an informed prospective on the advances in molecular profiling and analysis of colorectal cancer (CRC). The goal is to provide a historical context and current summary on how advances in gene and protein sequencing technology along with computer capabilities led to our current bioinformatic advances in the field.

Recent Findings

An explosion of knowledge has occurred regarding genetic, epigenetic, and biochemical alterations associated with the evolution of colorectal cancer. This has led to the realization that CRC is a heterogeneous disease with molecular alterations often dictating natural history, response to treatment, and outcome. The consensus molecular subtypes (CMS) classification classifies CRC into four molecular subtypes with distinct biological characteristics, which may form the basis for clinical stratification and subtype-based targeted intervention.

Summary

This review summarizes new developments of a field moving “Back to the Future.” CRC molecular subtyping will better identify key subtype specific therapeutic targets and responses to therapy.

Keywords

Consensus molecular subtypes CMS Colorectal cancer RNAseq 

Abbreviations

CMS

consensus molecular subtype

MSI

microsatellite instability

NGS

bioinformatics, biostatistics, colorectal cancer, targeted therapy, precision medicine

Notes

Funding Information

This study was supported by Colorectal Cancer Moon Shot, Duncan Family Institute for Cancer Prevention and Risk Assessment, 1R01CA187238-01, 5R01CA172670-03 and 1R01CA184843-01A1, CA177909, and Cancer Center Support Grant (P30 CA016672).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 1944;79(2):137–58.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Hershey AD, Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol. 1952;36(1):39–56.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tamm C, Shapiro HS, Lipshitz R, Chargaff E. Distribution density of nucleotides within a desoxyribonucleic acid chain. J Biol Chem. 1953;203(2):673–88.PubMedPubMedCentralGoogle Scholar
  5. 5.
    • Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8. The structure of DNA follows that of protein. PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94(3):441–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    • Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 1958;181(4610):662–6. Bioinformatics beginnings in protein structural analysis. PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    • Edman P. A method for the determination of amino acid sequence in peptides. Arch Biochem. 1949;22(3):475. Beginnings of amino acid sequence determination. PubMedPubMedCentralGoogle Scholar
  10. 10.
    Sanger F, Thompson EO. The amino-acid sequence in the glycyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem J. 1953;53(3):353–66.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dayhoff MO. Computer aids to protein sequence determination. J Theor Biol. 1965;8(1):97–112.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    • Dayhoff MO, Ledley RS. Comprotein: a computer program to aid primary protein structure determination. In: Proceedings of the December 4–6, 1962, fall joint computer conference. New York, NY: ACM; 1962. p. 262–74. This is the first computer aided analysis tool that helped establish bionformatic type analyses. Google Scholar
  13. 13.
    Ledley RS. Digital electronic computers in biomedical science. Science. 1959;130(3384):1225–34.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zhou W, Dinh HQ, Ramjan Z, Weisenberger DJ, Nicolet CM, Shen H, et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat Genet. 2018;50(4):591–602.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ganesan A. Epigenetics: the first 25 centuries. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1748):1–4.Google Scholar
  16. 16.
    Ziegelstein RC. Personomics and precision medicine. Trans Am Clin Climatol Assoc. 2017;128:160–8.PubMedPubMedCentralGoogle Scholar
  17. 17.
    • Werner RJ, Kelly AD, Issa JJ. Epigenetics and precision oncology. Cancer J. 2017;23(5):262–9. This is an informative treatment of epigenetics in precision medicine. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Wang Q, Wang G, Liu C, He X. Prognostic value of CpG island methylator phenotype among hepatocellular carcinoma patients: a systematic review and meta-analysis. Int J Surg. 2018;54(Pt a):92–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    James de Bony E, Bizet M, Van Grembergen O, Hassabi B, Calonne E, Putmans P, et al. Comprehensive identification of long noncoding RNAs in colorectal cancer. Oncotarget. 2018;9(45):27605–29.PubMedPubMedCentralGoogle Scholar
  20. 20.
    • Mamlouk S, Childs LH, Aust D, Heim D, Melching F, Oliveira C, et al. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer. Nat Commun. 2017;8:14093. Molecular changes assoiated with tumor heterogeneity. PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Dunne PD, Lawler M. Intratumoural epigenetic heterogeneity in early invasive colorectal cancer: a prognostic imprint? Gastroenterology. 2017;152(6):1622–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Binder H, Hopp L, Schweiger MR, Hoffmann S, Juhling F, Kerick M, et al. Genomic and transcriptomic heterogeneity of colorectal tumours arising in lynch syndrome. J Pathol. 2017;243(2):242–54.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ogino S, Nishihara R, VanderWeele TJ, Wang M, Nishi A, Lochhead P, et al. Review article: the role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology. 2016;27(4):602–11.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Shu XS, Zhao Y, Sun Y, Zhong L, Cheng Y, Zhang Y, et al. The epigenetic modifier PBRM1 restricts the basal activity of the innate immune system by repressing retinoic acid-inducible gene-I-like receptor signalling and is a potential prognostic biomarker for colon cancer. J Pathol. 2018;244(1):36–48.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA Jr, et al. Integrative analysis of exogenous, endogenous, tumour and immune factors for precision medicine. Gut. 2018;67(6):1168–80.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hamada T, Soong TR, Masugi Y, Kosumi K, Nowak JA, da Silva A, et al. TIME (tumor immunity in the MicroEnvironment) classification based on tumor CD274 (PD-L1) expression status and tumor-infiltrating lymphocytes in colorectal carcinomas. Oncoimmunology. 2018;7(7):e1442999.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zewde M, Kiyotani K, Park JH, Fang H, Yap KL, Yew PY, et al. The era of immunogenomics/immunopharmacogenomics. J Hum Genet. 2018;63(8):865–75.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Pinto D, Pinto C, Guerra J, Pinheiro M, Santos R, Vedeld HM, et al. Contribution of MLH1 constitutional methylation for lynch syndrome diagnosis in patients with tumor MLH1 downregulation. Cancer Med. 2018;7(2):433–44.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rex DK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, Kaltenbach T, et al. Colorectal cancer screening: recommendations for physicians and patients from the U.S. multi-society task force on colorectal cancer. Gastroenterology. 2017;153(1):307–23.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Verma M. The role of epigenomics in the study of cancer biomarkers and in the development of diagnostic tools. Adv Exp Med Biol. 2015;867:59–80.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zeng H, He B, Yi C, Peng J. Liquid biopsies: DNA methylation analyses in circulating cell-free DNA. J Genet Genomics. 2018;45(4):185–92.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    • van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–26. An examination of next generation sequencing. PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Morin R, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh T, et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. BioTechniques. 2008;45(1):81–94.PubMedCrossRefGoogle Scholar
  34. 34.
    Slatko BE, Gardner AF, Ausubel FM. Overview of next-generation sequencing technologies. Curr Protoc Mol Biol. 2018;122(1):e59.PubMedCrossRefGoogle Scholar
  35. 35.
    • van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C. The third revolution in sequencing technology. Trends Genet. 2018;34(9):666–81. Highlighting our thrid generation of sequencing technology. PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mehrotra M, Singh RR, Loghavi S, Duose DY, Barkoh BA, Behrens C, et al. Detection of somatic mutations in cell-free DNA in plasma and correlation with overall survival in patients with solid tumors. Oncotarget. 2018;9(12):10259–71.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mohrmann L, Huang HJ, Hong DS, Tsimberidou AM, Fu S, Piha-Paul SA, et al. Liquid biopsies using plasma exosomal nucleic acids and plasma cell-free DNA compared with clinical outcomes of patients with advanced cancers. Clin Cancer Res. 2018;24(1):181–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    • Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90–4. Tumor evolution revealed by single cell squencing technology. PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    •• Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat Genet. 2016;48(10):1119–30. Punctuated evolution of cancer. PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Leung ML, Davis A, Gao R, Casasent A, Wang Y, Sei E, et al. Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Res. 2017;27(8):1287–99.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gauthier J, Vincent AT, Charette SJ, Derome N. A brief history of bioinformatics. Brief Bioinform. 2018:1–16.Google Scholar
  42. 42.
    Rice CM, Fuchs R, Higgins DG, Stoehr PJ, Cameron GN. The EMBL data library. Nucleic Acids Res. 1993;21(13):2967–71.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985;227(4693):1435–41. Bioinformatics tools begin to evolve. PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kanehisa M, Bork P. Bioinformatics in the post-sequence era. Nat Genet. 2003;33(Suppl):305–10.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Yi K, Ju YS. Patterns and mechanisms of structural variations in human cancer. Exp Mol Med. 2018;50(8):98.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Smyth E, Khan K, Valeri N. Translational research and application of basic biology to clinical trial development in GI cancers. Ann Transl Med. 2018;6(9):164.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Nuhn P, De Bono JS, Fizazi K, Freedland SJ, Grilli M, Kantoff PW, et al. Update on systemic prostate Cancer therapies: management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur Urol. 2019;75:88–99.Google Scholar
  49. 49.
    Terbuch A, Lopez J. Next generation Cancer vaccines-make it personal! Vaccines (Basel). 2018;6(3):52–68.Google Scholar
  50. 50.
    • Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature. 1987;327(6120):293–7. The importance of ras gene mutations in colorectal cancer. PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Peltomaki P, Sistonen P, Mecklin JP, Pylkkanen L, Jarvinen H, Simons JW, et al. Evidence supporting exclusion of the DCC gene and a portion of chromosome 18q as the locus for susceptibility to hereditary nonpolyposis colorectal carcinoma in five kindreds. Cancer Res. 1991;51(16):4135–40.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49–53.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989;244(4901):217–21.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    • Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, et al. APC mutations occur early during colorectal tumorigenesis. Nature. 1992;359(6392):235–7. APC mutations found in colorectal cancer. PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kinzler KW, Nilbert MC, Su LK, Vogelstein B, Bryan TM, Levy DB, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253(5020):661–5.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    • Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67. The Vogelgram. PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Collins FS, Barker AD. Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies. Sci Am. 2007;296(3):50–7.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Lee H, Palm J, Grimes SM, Ji HP. The cancer genome atlas clinical explorer: a web and mobile interface for identifying clinical-genomic driver associations. Genome Med. 2015;7:112.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    •• Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. The cancer genome atlas for human colon cancer. CrossRefGoogle Scholar
  60. 60.
    Roepman P, Schlicker A, Tabernero J, Majewski I, Tian S, Moreno V, et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer. 2014;134(3):552–62.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Budinska E, Popovici V, Tejpar S, D'Ario G, Lapique N, Sikora KO, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol. 2013;231(1):63–76.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Schlicker A, Beran G, Chresta CM, McWalter G, Pritchard A, Weston S, et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med Genet. 2012;5:66.Google Scholar
  63. 63.
    Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19(5):619–25.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19(5):614–8.CrossRefGoogle Scholar
  65. 65.
    Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10(5):e1001453.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Perez-Villamil B, Romera-Lopez A, Hernandez-Prieto S, Lopez-Campos G, Calles A, Lopez-Asenjo JA, et al. Colon cancer molecular subtypes identified by expression profiling and associated to stroma, mucinous type and different clinical behavior. BMC Cancer. 2012;12:260.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    •• Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6. Consensus molecular subtypes of colorectal cancer were revealed. PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wang W, Kandimalla R, Huang H, Zhu L, Li Y, Gao F, et al. Molecular subtyping of colorectal cancer: recent progress, new challenges and emerging opportunities. Semin Cancer Biol. 2018:1–16.Google Scholar
  69. 69.
    Wlodarczyk M, Wlodarczyk J, Siwinski P, Fichna J, Sobolewska-Wlodarczyk A. Genetic molecular subtypes in optimizing personalized adjuvant therapy in metastatic colorectal cancer. Curr Drug Targets. 2018;19:1731–7.Google Scholar
  70. 70.
    Smeby J, Sveen A, Merok MA, Danielsen SA, Eilertsen IA, Guren MG, et al. CMS-dependent prognostic impact of KRAS and BRAFV600E mutations in primary colorectal cancer. Ann Oncol. 2018;29(5):1227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lal N, White BS, Goussous G, Pickles O, Mason MJ, Beggs AD, et al. KRAS mutation and consensus molecular subtypes 2 and 3 are independently associated with reduced immune infiltration and reactivity in colorectal cancer. Clin Cancer Res. 2018;24(1):224–33.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Passot G, Denbo JW, Yamashita S, Kopetz SE, Chun YS, Maru D, et al. Is hepatectomy justified for patients with RAS mutant colorectal liver metastases? An analysis of 524 patients undergoing curative liver resection. Surgery. 2017;161(2):332–40.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Chun YS, Passot G, Yamashita S, Nusrat M, Katsonis P, Loree JM, et al. Deleterious effect of RAS and evolutionary high-risk TP53 double mutation in colorectal liver metastases. Ann Surg. 2017;1–7.Google Scholar
  74. 74.
    Boutin AT, Liao WT, Wang M, Hwang SS, Karpinets TV, Cheung H, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 2017;31(4):370–82.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lee MS, Helms TL, Feng N, Gay J, Chang QE, Tian F, et al. Efficacy of the combination of MEK and CDK4/6 inhibitors in vitro and in vivo in KRAS mutant colorectal cancer models. Oncotarget. 2016;7(26):39595–608.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Al-Shamsi HO, Jones J, Fahmawi Y, Dahbour I, Tabash A, Abdel-Wahab R, et al. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern. J Gastrointest Oncol. 2016;7(6):882–902.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zimmitti G, Shindoh J, Mise Y, Kopetz S, Loyer EM, Andreou A, et al. RAS mutations predict radiologic and pathologic response in patients treated with chemotherapy before resection of colorectal liver metastases. Ann Surg Oncol. 2015;22(3):834–42.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Pereira AA, Rego JF, Morris V, Overman MJ, Eng C, Garrett CR, et al. Association between KRAS mutation and lung metastasis in advanced colorectal cancer. Br J Cancer. 2015;112(3):424–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hecht JR, Douillard JY, Schwartzberg L, Grothey A, Kopetz S, Rong A, et al. Extended RAS analysis for anti-epidermal growth factor therapy in patients with metastatic colorectal cancer. Cancer Treat Rev. 2015;41(8):653–9.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. (Non-V600) BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35(23):2624–30.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cohen R, Svrcek M, Dreyer C, Cervera P, Duval A, Pocard M, et al. New therapeutic opportunities based on DNA mismatch repair and BRAF status in metastatic colorectal cancer. Curr Oncol Rep. 2016;18(3):18.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kopetz S, Desai J, Chan E, Hecht JR, O'Dwyer PJ, Maru D, et al. Phase II pilot study of Vemurafenib in patients with metastatic BRAF-mutated colorectal cancer. J Clin Oncol. 2015;33(34):4032–8.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bruun J, Sveen A, Barros R, Eide PW, Eilertsen I, Kolberg M, et al. Prognostic, predictive, and pharmacogenomic assessments of CDX2 refine stratification of colorectal cancer. Mol Oncol. 2018;12:1639–55.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Montagut C, Argiles G, Ciardiello F, Poulsen TT, Dienstmann R, Kragh M, et al. Efficacy of Sym004 in patients with metastatic colorectal cancer with acquired resistance to anti-EGFR therapy and molecularly selected by circulating tumor DNA analyses: a phase 2 randomized clinical trial. JAMA Oncol. 2018;4(4):e175245.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Parseghian CM, Parikh NU, Wu JY, Jiang ZQ, Henderson L, Tian F, et al. Dual inhibition of EGFR and c-Src by Cetuximab and Dasatinib combined with FOLFOX chemotherapy in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23(15):4146–54.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Korphaisarn K, Loree JM, Nguyen V, Coulson R, Holla V, Litzenburger BC, et al. Genomic analysis of exceptional responder to regorafenib in treatment-refractory metastatic rectal cancer: a case report and review of the literature. Oncotarget. 2017;8(34):57882–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Yiu AJ, Yiu CY. Biomarkers in colorectal cancer. Anticancer Res. 2016;36(3):1093–102.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Sinicrope FA, Okamoto K, Kasi PM, Kawakami H. Molecular biomarkers in the personalized treatment of colorectal cancer. Clin Gastroenterol Hepatol. 2016;14(5):651–8.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Morelli MP, Overman MJ, Dasari A, Kazmi SM, Mazard T, Vilar E, et al. Characterizing the patterns of clonal selection in circulating tumor DNA from patients with colorectal cancer refractory to anti-EGFR treatment. Ann Oncol. 2015;26(4):731–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Liu X, George GC, Tsimberidou AM, Naing A, Wheler JJ, Kopetz S, et al. Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response. BMC Cancer. 2015;15:713.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lee MS, Kopetz S. Current and future approaches to target the epidermal growth factor receptor and its downstream signaling in metastatic colorectal cancer. Clin Colorectal Cancer. 2015;14(4):203–18.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Mehrotra M, Singh RR, Chen W, Huang RSP, Almohammedsalim AA, Barkoh BA, et al. Study of preanalytic and analytic variables for clinical next-generation sequencing of circulating cell-free nucleic acid. J Mol Diagn. 2017;19(4):514–24.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Loree JM, Bailey AM, Johnson AM, Yu Y, Wu W, Bristow CA, et al. Molecular landscape of ERBB2/ERBB3 mutated colorectal cancer. J Natl Cancer Inst. 2018;110:1409–17.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Campbell FC, Loughrey MB, McClements J, Deevi RK, Javadi A, Rainey L. Mechanistic insights into colorectal cancer phenomics from fundamental and organotypic model studies. Am J Pathol. 2018;188(9):1936–48.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Loree JM, Pereira AAL, Lam M, Willauer AN, Raghav K, Dasari A, et al. Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin Cancer Res. 2018;24(5):1062–72.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Fessler E, Drost J, van Hooff SR, Linnekamp JF, Wang X, Jansen M, et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med. 2016;8(7):745–60.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mizuno T, Cloyd JM, Vicente D, Omichi K, Chun YS, Kopetz SE, et al. SMAD4 gene mutation predicts poor prognosis in patients undergoing resection for colorectal liver metastases. Eur J Surg Oncol. 2018;44(5):684–92.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Rocha MR, Barcellos-de-Souza P, Sousa-Squiavinato ACM, Fernandes PV, de Oliveira IM, Boroni M, et al. Annexin A2 overexpression associates with colorectal cancer invasiveness and TGF-ss induced epithelial mesenchymal transition via Src/ANXA2/STAT3. Sci Rep. 2018;8(1):11285.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ubink I, van Eden WJ, Snaebjornsson P, Kok NFM, van Kuik J, van Grevenstein WMU, et al. Histopathological and molecular classification of colorectal cancer and corresponding peritoneal metastases. Br J Surg. 2018;105(2):e204–11.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Yamashita S, Chun YS, Kopetz SE, Vauthey JN. Biomarkers in colorectal liver metastases. Br J Surg. 2018;105(6):618–27.PubMedCrossRefGoogle Scholar
  101. 101.
    Fessler E, Jansen M, De Sousa EMF, Zhao L, Prasetyanti PR, Rodermond H, et al. A multidimensional network approach reveals microRNAs as determinants of the mesenchymal colorectal cancer subtype. Oncogene. 2016;35(46):6026–37.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Fessler E, Medema JP. Colorectal cancer subtypes: developmental origin and microenvironmental regulation. Trends Cancer. 2016;2(9):505–18.PubMedCrossRefGoogle Scholar
  103. 103.
    • Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines—a resource for biomedical studies. Mol Cancer. 2017;16(1):116. Consensus molecular subtypes revealed in colorectal cancer cell lines. PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Advani SM, Advani P, DeSantis SM, Brown D, VonVille HM, Lam M, et al. Clinical, pathological, and molecular characteristics of CpG island methylator phenotype in colorectal cancer: a systematic review and meta-analysis. Transl Oncol. 2018;11(5):1188–201.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget. 2018;9(27):18698–711.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lee MS, Menter DG, Kopetz S. Right versus left colon cancer biology: integrating the consensus molecular subtypes. J Natl Compr Cancer Netw. 2017;15(3):411–9.CrossRefGoogle Scholar
  107. 107.
    Linnekamp JF, Hooff SRV, Prasetyanti PR, Kandimalla R, Buikhuisen JY, Fessler E, et al. Consensus molecular subtypes of colorectal cancer are recapitulated in in vitro and in vivo models. Cell Death Differ. 2018;25(3):616–33.PubMedCrossRefGoogle Scholar
  108. 108.
    Prasetyanti PR, van Hooff SR, van Herwaarden T, de Vries N, Kalloe K, Rodermond H, et al. Capturing colorectal cancer inter-tumor heterogeneity in patient-derived xenograft (PDX) models. Int J Cancer. 2019;144:366–71.Google Scholar
  109. 109.
    Willyard C. The mice with human tumours: growing pains for a popular cancer model. Nature. 2018;560(7717):156–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Bramsen JB, Rasmussen MH, Ongen H, Mattesen TB, Orntoft MW, Arnadottir SS, et al. Molecular-subtype-specific biomarkers improve prediction of prognosis in colorectal cancer. Cell Rep. 2017;19(6):1268–80.PubMedCrossRefGoogle Scholar
  111. 111.
    • Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17(4):268. Consensus molecular subtypes in precision medicine. PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Kwon Y, Park M, Jang M, Yun S, Kim WK, Kim S, et al. Prognosis of stage III colorectal carcinomas with FOLFOX adjuvant chemotherapy can be predicted by molecular subtype. Oncotarget. 2017;8(24):39367–81.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Ten Hoorn S, Trinh A, de Jong J, Koens L, Vermeulen L. Classification of colorectal cancer in molecular subtypes by immunohistochemistry. Methods Mol Biol. 2018;1765:179–91.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Eide PW, Bruun J, Lothe RA, Sveen A. CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models. Sci Rep. 2017;7(1):16618.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    • Dunne PD, Alderdice M, O'Reilly PG, Roddy AC, McCorry AMB, Richman S, et al. Cancer-cell intrinsic gene expression signatures overcome intratumoural heterogeneity bias in colorectal cancer patient classification. Nat Commun. 2017;8:15657. Cancer intrinsic gene expression signatures found in colorectal cancer. PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Alderdice M, Richman SD, Gollins S, Stewart JP, Hurt C, Adams R, et al. Prospective patient stratification into robust cancer-cell intrinsic subtypes from colorectal cancer biopsies. J Pathol. 2018;245(1):19–28.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Allen WL, Dunne PD, McDade S, Scanlon E, Loughrey M, Coleman H, et al. Transcriptional subtyping and CD8 immunohistochemistry identifies poor prognosis stage II/III colorectal cancer patients who benefit from adjuvant chemotherapy. JCO Precis Oncol. 2018:1–18.Google Scholar
  118. 118.
    Lal N, Beggs AD, Willcox BE, Middleton GW. An immunogenomic stratification of colorectal cancer: implications for development of targeted immunotherapy. Oncoimmunology. 2015;4(3):e976052.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Dunne PD, O'Reilly PG, Coleman HG, Gray RT, Longley DB, Johnston PG, et al. Stratified analysis reveals chemokine-like factor (CKLF) as a potential prognostic marker in the MSI-immune consensus molecular subtype CMS1 of colorectal cancer. Oncotarget. 2016;7(24):36632–44.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    • Karpinski P, Rossowska J, Sasiadek MM. Immunological landscape of consensus clusters in colorectal cancer. Oncotarget. 2017;8(62):105299–311. Consensus immunologic clusters in colorectal cancer. PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Williams DS, Mouradov D, Jorissen RN, Newman MR, Amini E, Nickless DK, et al. Lymphocytic response to tumour and deficient DNA mismatch repair identify subtypes of stage II/III colorectal cancer associated with patient outcomes. Gut. 2018:1–10.Google Scholar
  122. 122.
    Lam M, Roszik J, Kanikarla-Marie P, Davis JS, Morris J, Kopetz S, et al. The potential role of platelets in the consensus molecular subtypes of colorectal cancer. Cancer Metastasis Rev. 2017;36(2):273–88.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    • Purcell RV, Visnovska M, Biggs PJ, Schmeier S, Frizelle FA. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep. 2017;7(1):11590. Microbiome associated with consensus molecular subtypes. PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci U S A. 2014;111(51):18321–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • David G. Menter
    • 1
    Email author
  • Jennifer S. Davis
    • 2
  • Bradley M. Broom
    • 3
  • Michael J. Overman
    • 1
  • Jeffrey Morris
    • 2
  • Scott Kopetz
    • 1
  1. 1.Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonUSA
  3. 3.Department of Bioinformatics and Computational BiologyThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations