The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation, Dysbiosis, and the Increased Risk of Malignancy

Pediatric Gastroenterology (S Orenstein, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pediatric Gastroenterology

Abstract

Purpose of Review

Intestinal inflammation, dysbiosis, and increased gastrointestinal malignancy risks are well-described in patients with cystic fibrosis (CF). However, there is limited understanding of their pathophysiology. This review aims to discuss these issues and assess potential links between them.

Recent Findings

Evidence of links between intestinal inflammation and dysbiosis (an imbalance in intestinal microbial populations) exist. Recent studies have demonstrated reduction in intestinal inflammation with probiotic administration. Both bacterial dysbiosis and gut inflammation contribute to the suboptimal nutritional status seen in children with CF. Short-chain fatty acids may be reduced in the gut lumen as a result of bacterial imbalances and may promote inflammation. Inflammation and bacterial dysbiosis in CF may also contribute to emerging adult complications such as gastrointestinal malignancy. An increase in carcinogenic microbes and reduction in microbes protective against cancer have been found in CF, linking bacterial dysbiosis and cancer. Murine studies suggest the CF gene, cystic fibrosis transmembrane conductance regulator (CFTR) gene, itself may be a tumour suppressor gene.

Summary

The pathophysiology of interactions among intestinal inflammation, dysbiosis, and malignancy in CF is not clearly understood and requires further research.

Keywords

Cystic fibrosis Intestine Inflammation Dysbiosis Gastrointestinal neoplasms Gastrointestinal microbiome 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hamosh A, FitzSimmons SC, Macek Jr M, Knowles MR, Rosenstein BJ, Cutting GR. Comparison of the clinical manifestations of cystic fibrosis in black and white patients. J Pediatr. 1998;132:255–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Cystic Fibrosis Canada. The Canadian Cystic Fibrosis Registry. 2014 Annual Report. 2016. https://cysticfibrosis.uberflip.com/i/705240-cystic-fibrosis-canada-registry. Accessed 20 Sep 2016.
  3. 3.
    Pang T, Leach ST, Katz T, Jaffe A, Day AS, Ooi CY. Elevated fecal M2-pyruvate kinase in children with cystic fibrosis: a clue to the increased risk of intestinal malignancy in adulthood? J Gastroenterol and Hepatol. 2015;30:866–71. doi: 10.1111/jgh.12842.CrossRefGoogle Scholar
  4. 4.
    Maisonneuve P, FitzSimmons SC, Neglia JP, Campbell PW, Lowenfels AB. Cancer risk in nontransplanted and transplanted cystic fibrosis patients: a 10-year study. J Natl Cancer Inst. 2003;95:381–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Meyer KC, Francois ML, Thomas HK, Radford KL, Hawes DS, Mack TL, et al. Colon cancer in lung transplant recipients with CF: increased risk and results of screening. J Cyst Fibros. 2011;10:366–9. doi: 10.1016/j.jcf.2011.05.003.CrossRefPubMedGoogle Scholar
  6. 6.
    • Maisonneuve P, Marshall BC, Knapp EA, Lowenfels AB. Cancer risk in cystic fibrosis: a 20-year nationwide study from the United States. J Natl Cancer Inst. 2013;105:122–9. doi: 10.1093/jnci/djs481. provides scope, magnitude and evidence for gastrointestinal cancer risks.CrossRefPubMedGoogle Scholar
  7. 7.
    Neglia JP, FitzSimmons SC, Maisonneuve P, Schöni MH, Schöni-Affolter F, Corey M, et al. The risk of cancer among patients with cystic fibrosis. N Engl J Med. 1995;332:494–9. doi: 10.1056/NEJM199502233320803.CrossRefPubMedGoogle Scholar
  8. 8.
    •• Ooi CY, Durie PR. Cystic fibrosis from the gastroenterologist’s perspective. Nat Rev Gastroenterol Hepatol. 2016;13:175–85. doi: 10.1038/nrgastro.2015.226. Provides an up to date summary of gastrointestinal manifestations of CF.CrossRefPubMedGoogle Scholar
  9. 9.
    Ooi CY, Durie PR. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in pancreatitis. J Cyst Fibros. 2012;11:355–62. doi: 10.1016/j.jcf.2012.05.00.CrossRefPubMedGoogle Scholar
  10. 10.
    Garcia MA, Yang N, Quinton PM. Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Invest. 2009;119:2613–22. doi: 10.1172/JCI38662.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gelfond D, Ma C, Semler J, Borowitz D. Intestinal pH and gastrointestinal transit profiles in cystic fibrosis patients measured by wireless motility capsule. Dig Dis Sci. 2013;58:2275–81. doi: 10.1007/s10620-012-2209-1.CrossRefPubMedGoogle Scholar
  12. 12.
    De Lisle RC, Borowitz D. The cystic fibrosis intestine. Cold Spring Harb Perspect Med. 2013;3:a009753. doi: 10.1101/cshperspect.a009753.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Haller W, Ledder O, Lewindon PJ, Couper R, Gaskin KJ, Oliver M. Cystic fibrosis: an update for clinicians. Part 1: nutrition and gastrointestinal complications. J Gastroenterol Hepatol. 2014;29:1344–55. doi: 10.1111/jgh.12785.CrossRefPubMedGoogle Scholar
  14. 14.
    Hedsund C, Gregersen T, Joensson IM, Olesen HV, Krogh K. Gastrointestinal transit times and motility in patients with cystic fibrosis. Scand J Gastroenterol. 2012;47(8-9):920–6. doi: 10.3109/00365521.2012.699548.CrossRefPubMedGoogle Scholar
  15. 15.
    De Lisle RC. Altered transit and bacterial overgrowth in the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol. 2007;293:G104–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Mack DR, Flick JA, Durie PR, Rosenstein BJ, Ellis LE, Perman JA. Correlation of intestinal lactulose permeability with exocrine pancreatic dysfunction. J Pediatr. 1992;120:696–701.CrossRefPubMedGoogle Scholar
  17. 17.
    Van Elburg RM, Uil JJ, Van Aalderen WMC, Mulder CJJ, Heymans HSA. Intestinal permeability in exocrine pancreatic insufficiency due to cystic fibrosis or chronic pancreatitis. Pediatr Res. 1996;39:985–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Duytschaever G, Huys G, Boulanger L, De Boeck K, Vandamme P. Amoxicillin–clavulanic acid resistance in fecal Enterobacteriaceae from patients with cystic fibrosis and healthy siblings. J Cyst Fibros. 2013;12:780–3. doi: 10.1016/j.jcf.2013.06.006.CrossRefPubMedGoogle Scholar
  19. 19.
    • Manor O, Levy R, Pope CE, Hayden HS, Brittnacher MJ, Carr R, et al. Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis. Sci Rep. 2016;6:22493. doi: 10.1038/srep2249. Provides evidence for potential aetiological links between inflammation and bacterial dysbiosis.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dhaliwal J, Leach S, Katz T, Nahidi L, Pang T, Lee JM, et al. Intestinal inflammation and impact on growth in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2015;60:521–6. doi: 10.1097/MPG.0000000000000683.CrossRefPubMedGoogle Scholar
  21. 21.
    Ollero M, Junaidi O, Zaman MM, Tzameli I, Ferrando AA, Andersson C, et al. Decreased expression of peroxisome proliferator activated receptor gamma in cftr-/- mice. J Cell Physiol. 2004;200:235–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Freedman SD, Katz MH, Parker EM, Laposata M, Urman MY, Alvarez JG. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr -/- mice. Proc Natl Acad Sci U S A. 1999;96:13995–4000.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Norkina O, Kaur S, Ziemer D, De Lisle RC. Inflammation of the cystic fibrosis mouse small intestine. Am J Physiol Gastrointest Liver Physiol. 2004;286:G1032–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Crites KS-M, Morin G, Orlando V, Patey N, Cantin C, Martel J, et al. CFTR knockdown induces proinflammatory changes in intestinal epithelial cells. J Inflamm (Lond). 2015;12:62. doi: 10.1186/s12950-015-0107-y.CrossRefGoogle Scholar
  25. 25.
    Sun X, Olivier AK, Yi Y, Pope CE, Hayden HS, Liang B, et al. Gastrointestinal pathology in juvenile and adult CFTR-knockout ferrets. Am J Pathol. 2014;184:1309–22. doi: 10.1016/j.ajpath.2014.01.035.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Meyerholz DK, Stoltz DA, Pezzulo AA, Welsh MJ. Pathology of gastrointestinal organs in a porcine model of cystic fibrosis. Am J Path. 2010;176:1377–89. doi: 10.2353/ajpath.2010.090849.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yan Z, Stewart ZA, Sinn PL, Olsen JC, Hu J, McCray PB, et al. Ferret and pig models of cystic fibrosis: prospects and promise for gene therapy. Hum Gene Ther Clin Dev. 2015;26:38–49. doi: 10.1089/humc.2014.154.CrossRefPubMedGoogle Scholar
  28. 28.
    Uc A, Olivier Alicia K, Griffin Michelle A, Meyerholz David K, Yao J, Abu-El-Haija M, et al. Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond). 2015;128:131–42. doi: 10.1042/CS20140059.CrossRefGoogle Scholar
  29. 29.
    Smyth RL, Croft NM, O’Hea U, Marshall TG, Ferguson A. Intestinal inflammation in cystic fibrosis. Arch Dis Child. 2000;82:394–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Werlin SL, Benuri-Silbiger I, Kerem E, Adler SN, Goldin E, Zimmerman J, et al. Evidence of intestinal inflammation in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2010;51:304–8. doi: 10.1097/MPG.0b013e3181d1b013.PubMedGoogle Scholar
  31. 31.
    Lisowska A, Madry E, Pogorzelski A, Szydlowski J, Radzikowski A, Walkowiak J. Small intestine bacterial overgrowth does not correspond to intestinal inflammation in cystic fibrosis. Scand J Clin Lab Invest. 2010;70:322–6. doi: 10.3109/00365513.2010.486869.CrossRefPubMedGoogle Scholar
  32. 32.
    Bruzzese E, Raia V, Gaudiello G, Polito G, Buccigrossi V, Formicola V, et al. Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment Pharmacol Ther. 2004;20:813–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee JM, Leach ST, Katz T, Day AS, Jaffe A, Ooi CY. Update of faecal markers of inflammation in children with cystic fibrosis. Mediators Inflamm. 2012;2012:6. doi: 10.1155/2012/948367.Google Scholar
  34. 34.
    Vaos G, Kostakis ID, Zavras N, Chatzemichael A. The role of calprotectin in pediatric disease. Biomed Res Int. 2013;2013:542363. doi: 10.1155/2013/542363.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bjerke K, Halstensen TS, Jahnsen F, Pulford K, Brandtzaeg P. Distribution of macrophages and granulocytes expressing L1 protein (calprotectin) in human Peyer’s patches compared with normal ileal lamina propria and mesenteric lymph nodes. Gut. 1993;34:1357–63.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yang Q, Smith PB, Goldberg RN, Cotten CM. Dynamic change of fecal calprotectin in very low birth weight infants during the first month of life. Neonatology. 2008;94:267–71. doi: 10.1159/000151645.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rumman N, Sultan M, El-Chammas K, Goh V, Salzman N, Quintero D, et al. Calprotectin in cystic fibrosis. BMC Pediatr. 2014;14:133. doi: 10.1186/1471-2431-14-133.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    •• Bruzzese E, Callegari ML, Raia V, Viscovo S, Scotto R, Ferrari S, et al. Disrupted intestinal microbiota and intestinal inflammation in children with cystic fibrosis and its restoration with Lactobacillus GG: a randomised clinical trial. PLoS One. 2014;9:e87796. doi: 10.1371/journal.pone.0087796. provides links between inflammation and bacterial.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Raia V, Maiuri L, de Ritis G, de Vizia B, Vacca L, Conte R, et al. Evidence of chronic inflammation in morphologically normal small intestine of cystic fibrosis patients. Pediatr Res. 2000;47:344–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Smith VV, Schappi MG, Bisset WM, Kiparissi F, Jaffe A, Milla PJ, et al. Lymphocytic leiomyositis and myenteric ganglionitis are intrinsic features of cystic fibrosis: studies in distal intestinal obstruction syndrome and meconium ileus. J Pediatr Gastroenterol Nutr. 2009;49:42–51. doi: 10.1097/MPG.0b013e318186d35a.CrossRefPubMedGoogle Scholar
  41. 41.
    De Lisle RC. Decreased expression of enterocyte nutrient assimilation genes and proteins in the small intestine of cystic fibrosis mouse. J Pediatr Gastroenterol Nutr. 2016;62:627–34. doi: 10.1097/MPG.0000000000001030.CrossRefPubMedGoogle Scholar
  42. 42.
    • Nielsen S, Needham B, Leach ST, Day AS, Jaffe A, Thomas T, et al. Disrupted progression of the intestinal microbiota with age in children with cystic fibrosis. Sci Rep. 2016;6:24857. doi: 10.1038/srep24857. Establishes patterns in the intestinal microenvironment from birth till 17 years of age.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lynch SV, Goldfarb KC, Wild YK, Kong W, De Lisle RC, Brodie EL. Cystic fibrosis transmembrane conductance regulator knockout mice exhibit aberrant gastrointestinal microbiota. Gut Microbes. 2013;4:41–7. doi: 10.4161/gmic.22430.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P. Dysbiosis of bifidobacteria and Clostridium cluster XIVa in the cystic fibrosis fecal microbiota. J Cyst Fibros. 2013;12:206–15. doi: 10.1016/j.jcf.2012.10.003.CrossRefPubMedGoogle Scholar
  45. 45.
    Debyser G, Mesuere B, Clement L, Van de Weygaert J, Van Hecke P, Duytschaever G, et al. Faecal proteomics: a tool to investigate dysbiosis and inflammation in patients with cystic fibrosis. J Cyst Fibros. 2016;15:242–50. doi: 10.1016/j.jcf.2015.08.003.CrossRefPubMedGoogle Scholar
  46. 46.
    Norkina O, Burnett TG, De Lisle RC. Bacterial overgrowth in the cystic fibrosis transmembrane conductance regulator null mouse small intestine. Infect Immun. 2004;72:6040–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Freedberg DE, Toussaint NC, Chen SP, Ratner AJ, Whittier S, Wang TC, et al. Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial. Gastroenterology. 2015;149:883–5. doi: 10.1053/j.gastro.2015.06.043. e9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Li L, Somerset S. The clinical significance of the gut microbiota in cystic fibrosis and the potential for dietary therapies. Clin Nutr. 2014;33:571–80. doi: 10.1016/j.clnu.2014.04.004.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565. doi: 10.1126/science.aad3369.CrossRefPubMedGoogle Scholar
  50. 50.
    Ooi CY, Pang T, Leach ST, Katz T, Day AS, Jaffe A. Faecal human beta-defensin 2 levels in children with cystic fibrosis. Dig Dis Sci. 2015;60:2946–52. doi: 10.1007/s10620-015-3842-2.CrossRefPubMedGoogle Scholar
  51. 51.
    Madan JC, Koestler DC, Stanton BA, Davidson L, Moulton LA, Housman ML, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio. 2012;3:e00251–12. doi: 10.1128/mBio.00251-12.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hoffman LR, Pope CE, Hayden HS, Heltshe S, Levy R, McNamara S, et al. Escherichia coli dysbiosis correlates with gastrointestinal dysfunction in children with cystic fibrosis. Clin Infect Dis. 2014;58:396–9. doi: 10.1093/cid/cit715.CrossRefPubMedGoogle Scholar
  53. 53.
    Fallahi G, Motamed F, Yousefi A, Shafieyoun A, Najafi M, Khodadad A, et al. The effect of probiotics on fecal calprotectin in patients with cystic fibrosis. Turk J Pediatr. 2013;55:475–8.PubMedGoogle Scholar
  54. 54.
    del Campo R, Garriga M, Pérez-Aragón A, Guallarte P, Lamas A, Máiz L, et al. Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros. 2014;13:716–22. doi: 10.1016/j.jcf.2014.02.007.CrossRefPubMedGoogle Scholar
  55. 55.
    Debyser G, Mesuere B, Clement L, Duytschaever G, Van Hecke P, Dawyndt P, et al. 123 A shotgun metaproteomics approach to study the faecal microbiome of patients with cystic fibrosis reveals a reduction of butyrate-producing bacteria. J Cyst Fibros. 2013;12:S80. doi: 10.1016/S1569-1993(13)60265-9.CrossRefGoogle Scholar
  56. 56.
    Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;217:133–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Cystic Fibrosis Foundation. Cystic Fibrosis Foundation Patient Registry. 2014 Annual Data Report. 2015. https://www.cff.org/2014_CFF_Annual_Data_Report_to_the_Center_Directors.pdf/. Accessed 20 Sep 2016.
  58. 58.
    Billings JL, Dunitz JM, McAllister S, Herzog T, Bobr A, Khoruts A. Early colon screening of adult patients with cystic fibrosis reveals high incidence of adenomatous colon polyps. J Clin Gastroenterol. 2014;48:e85–8. doi: 10.1097/MCG.0000000000000034.CrossRefPubMedGoogle Scholar
  59. 59.
    Niccum DE, Billings JL, Dunitz JM, Khoruts A. Colonoscopic screening shows increased early incidence and progression of adenomas in cystic fibrosis. J Cyst Fibros. 2016;15:548–53. doi: 10.1016/j.jcf.2016.01.00.CrossRefPubMedGoogle Scholar
  60. 60.
    Nyström M, Mutanen M. Diet and epigenetics in colon cancer. World J Gastroenterol. 2009;15:257–63.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T-J, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–3. doi: 10.1126/science.1224820.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mattar MC, Lough D, Pishvaian MJ, Charabaty A. Current management of inflammatory bowel disease and colorectal cancer. Gastrointest Cancer Res. 2011;4:53–61.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Munkholm P. Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18 Suppl 2:1–5.CrossRefPubMedGoogle Scholar
  64. 64.
    Chapkin RS, Seo J, McMurray DN, Lupton JR. Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. Chem Phys Lipids. 2008;153:14–23. doi: 10.1016/j.chemphyslip.2008.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Narayanan BA, Narayanan NK, Reddy BS. Docosahexaenoic acid regulated genes and transcription factors inducing apoptosis in human colon cancer cells. Int J Oncol. 2001;19:1255–62.PubMedGoogle Scholar
  66. 66.
    Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, et al. A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci U S A. 2001;98:502–6.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Gallagher AM, Gottlieb RA. Proliferation, not apoptosis, alters epithelial cell migration in small intestine of CFTR null mice. Am J Physiol Gastrointest Liver Physiol. 2001;281:G681–7.PubMedGoogle Scholar
  68. 68.
    Martinez-Medina M, Garcia-Gil LJ. Escherichia coli in chronic inflammatory bowel diseases: an update on adherent invasive Escherichia coli pathogenicity. World J Gastrointest Pathophysiol. 2014;5:213–27. doi: 10.4291/wjgp.v5.i3.213.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014;20:859–67. doi: 10.1158/1078-0432.CCR-13-1343.CrossRefPubMedGoogle Scholar
  70. 70.
    Martin HM, Campbell BJ, Hart CA, Mpofu C, Nayar M, Singh R, et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology. 2004;127:80–93.CrossRefPubMedGoogle Scholar
  71. 71.
    Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. Isme J. 2012;6:320–9. doi: 10.1038/ismej.2011.109.CrossRefPubMedGoogle Scholar
  72. 72.
    Duytschaever G, Huys G, Bekaert M, Boulanger L, De Boeck K, Vandamme P. Cross-sectional and longitudinal comparisons of the predominant fecal microbiota compositions of a group of pediatric patients with cystic fibrosis and their healthy siblings. Appl Environ Microbiol. 2011;77:8015–24. doi: 10.1128/AEM.05933-11.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, et al. Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr. 2010;61:473–96. doi: 10.3109/09637480903455971.CrossRefPubMedGoogle Scholar
  74. 74.
    Wu N, Yang X, Zhang R, Li J, Xiao X, Hu Y, et al. Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol. 2013;66:462–70. doi: 10.1007/s00248-013-0245-9.CrossRefPubMedGoogle Scholar
  75. 75.
    Than BLN, Linnekamp JF, Starr TK, Largaespada DA, Rod A, Zhang Y, et al. CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene. 2016;35:4179–87. doi: 10.1038/onc.2015.483.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Gottlieb RA, Dosanjh A. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: possible relevance to cystic fibrosis. Proc Natl Acad Sci U S A. 1996;93:3587–91.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kerbiriou M, Teng L, Benz N, Trouvé P, Férec C. The calpain, caspase 12, caspase 3 cascade leading to apoptosis is altered in F508del-CFTR expressing cells. PLoS One. 2009;4:e8436. doi: 10.1371/journal.pone.0008436.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Mehta A. Cystic fibrosis as a bowel cancer syndrome and the potential role of CK2. Mol Cell Biochem. 2008;316:169–75. doi: 10.1007/s11010-008-9815-4.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Williams SJ, McGuckin MA, Gotley DC, Eyre HJ, Sutherland GR, Antalis TM. Two novel mucin genes down-regulated in colorectal cancer identified by differential display. Cancer Res. 1999;59:4083–9.PubMedGoogle Scholar
  80. 80.
    Plant BJ, Goss CH, Plant WD, Bell SC. Management of comorbidities in older patients with cystic fibrosis. Lancet Respir Med. 2013;1:164–74. doi: 10.1016/S2213-2600(13)70025-0.CrossRefPubMedGoogle Scholar
  81. 81.
    Johannesson M, Askling J, Montgomery SM, Ekbom A, Bahmanyar S. Cancer risk among patients with cystic fibrosis and their first-degree relatives. Int J Cancer. 2009;125:2953–6. doi: 10.1002/ijc.24679.CrossRefPubMedGoogle Scholar
  82. 82.
    Na R, Grulich AE, Meagher NS, McCaughan GW, Keogh AM, Vajdic CM. Comparison of de novo cancer incidence in Australian liver, heart and lung transplant recipients. Am J Transplant. 2013;13:174–83. doi: 10.1111/j.1600-6143.2012.04302.x.CrossRefPubMedGoogle Scholar
  83. 83.
    Boyle MP, Bell SC, Konstan MW, McColley SA, Rowe SM, Rietschel E, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med.2:527-38. doi:10.1016/S2213-2600(14)70132-8.Google Scholar
  84. 84.
    Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Dřevínek P, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Eng J Med. 2011;365:1663–72. doi: 10.1056/NEJMoa1105185.CrossRefGoogle Scholar
  85. 85.
    Deeks ED. Ivacaftor: a review of its use in patients with cystic fibrosis. Drugs. 2013;73:1595–604. doi: 10.1007/s40265-013-0115-2.CrossRefPubMedGoogle Scholar
  86. 86.
    Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Cao D, Neuberger T, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A. 2009;106:18825–30. doi: 10.1073/pnas.0904709106.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Deane J, Ronan NJ, O’Callaghan GP, Fouhy F, Rea MC, O’Sullivan O, et al. Clinical outcomes of real-world Kalydeco (CORK) study-investigating the impact of CFTR potentiation on the intestinal microbiota, exocrine pancreatic function and intestinal inflammation prospectively over 12 months. J Cyst Fibros. 2015;14:S29. doi: 10.1016/S1569-1993(15)30090-4.CrossRefGoogle Scholar
  88. 88.
    Ooi CY, Garg M, Needham B, Leach S, Jaffe A, Avolio J, et al. Improvement in intestinal inflammation on ivacaftor. Pediatr Pulmonol. 2016;51:272. doi: 10.1002/ppul.23576.CrossRefGoogle Scholar
  89. 89.
    Safe M, Gifford AJ, Jaffe A, Ooi CY. Resolution of intestinal histopathology changes in cystic fibrosis after treatment with ivacaftor. Ann Am Thorac Soc. 2016;13:297–8. doi: 10.1513/AnnalsATS.201510-669LE.CrossRefPubMedGoogle Scholar
  90. 90.
    Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 2014;190:175–84. doi: 10.1164/rccm.201404-0703OC.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Van Goor F, Hadida S, Grootenhuis PDJ, Burton B, Stack JH, Straley KS, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A. 2011;108:18843–8. doi: 10.1073/pnas.1105787108.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Women’s and Children’s Health, MedicineUniversity of New South WalesRandwickAustralia
  2. 2.Department of Paediatric GastroenterologySydney Children’s HospitalRandwickAustralia

Personalised recommendations