Intestinal Microbiota and its Role in Irritable Bowel Syndrome (IBS)

  • Lena Öhman
  • Magnus SimrénEmail author
Neuromuscular Disorders of the Gastrointestinal Tract (S Rao, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuromuscular Disorders of the Gastrointestinal Tract


Gut microbiota alterations are increasingly being recognized as an important factor in the pathogenesis and pathophysiology of Irritable bowel syndrome (IBS). The onset of IBS symptoms after a bout of gastroenteritis comprises one of the strongest indications for the importance of gut microbiota for IBS. Moreover, recent studies have identified several susceptibility genes for IBS involved in the innate immunity and recognition of bacteria but also maintaining the integrity of the intestinal barrier. During recent years, it has also been demonstrated that IBS patients, or subgroups thereof, may have an altered microbiota composition relative to healthy individuals, mainly based on the analysis of fecal microbiota. Moreover, a positive effect of treatment with non-absorbable antibiotics and probiotics in IBS provides further indirect support for the relevance of gut microbiota alterations in IBS.


Irritable bowel syndrome IBS Post-infectious IBS Microbiota Inflammation Antibiotics Probiotics SIBO 


Conflict of Interest

Dr. L. Öhman has been a consultant for Abbvie, and has received grant support from The Health & Medical Care Committee of the Regional Executive Board, Region Västra Götaland, Swedish Medical Research Council , Swedish Society of Medicine, VINNOVA.

Dr. M Simrén has been a consultant for Danone Research, Shire-Movetis, and Almirall; grant support from Danone Research, and payment for development of educational presentations from MSD, Abbott, Almirall, Shire-Movetis, Tillotts, and Vifor Pharma.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Longstreth GF, Thompson WG, Chey WD, et al. Functional bowel disorders. Gastroenterology. 2006;130:1480–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Lovell RM, Ford AC. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin Gastroenterol Hepatol. 2012;10:712–21 e4.PubMedCrossRefGoogle Scholar
  3. 3.
    Simrén M, Svedlund J, Posserud I, et al. Health-related quality of life in patients attending a gastroenterology outpatient clinic: functional disorders versus organic diseases. Clin Gastroenterol Hepatol. 2006;4:187–95.PubMedCrossRefGoogle Scholar
  4. 4.
    Drossman DA, Chang L, Bellamy N, et al. Severity in irritable bowel syndrome: a Rome Foundation Working Team report. Am J Gastroenterol. 2011;106:1749–59. Study demonstrating how to assess severity in IBS.PubMedCrossRefGoogle Scholar
  5. 5.
    Thompson WG, Longstreth GF, Drossman DA, et al. Functional bowel disorders and functional abdominal pain. Gut. 1999;45 Suppl 2:II43–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Öhman L, Simrén M. Pathogenesis of IBS: role of inflammation, immunity and neuroimmune interactions. Nat Rev Gastroenterol Hepatol. 2010;7:163–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Halvorson HA, Schlett CD, Riddle MS. Postinfectious irritable bowel syndrome--a meta-analysis. Am J Gastroenterol. 2006;101:1894–9. quiz 1942.PubMedCrossRefGoogle Scholar
  8. 8.
    •• Thabane M, Kottachchi DT, Marshall JK. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26:535–44. Meta-analysis of incidence and prognosis of post-infectious IBS.PubMedCrossRefGoogle Scholar
  9. 9.
    Öhman L, Simrén M. New insights into the pathogenesis and pathophysiology of irritable bowel syndrome. Dig Liver Dis. 2007;39:201–15.PubMedCrossRefGoogle Scholar
  10. 10.
    Spiller R, Garsed K. Postinfectious irritable bowel syndrome. Gastroenterology. 2009;136:1979–88.PubMedCrossRefGoogle Scholar
  11. 11.
    Simrén M, Axelsson J, Gillberg R, et al. Quality of life in inflammatory bowel disease in remission: the impact of IBS-like symptoms and associated psychological factors. Am J Gastroenterol. 2002;97:389–96.PubMedGoogle Scholar
  12. 12.
    Lepage P, Hasler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology. 2011;141:227–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Aerssens J, Camilleri M, Talloen W, et al. Alterations in mucosal immunity identified in the colon of patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2008;6:194–205.PubMedCrossRefGoogle Scholar
  14. 14.
    Villani AC, Lemire M, Thabane M, et al. Genetic risk factors for post-infectious irritable bowel syndrome following a waterborne outbreak of gastroenteritis. Gastroenterology. 2010;138:1502–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Swan C, Duroudier NP, Campbell E, et al. Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): association with TNFSF15 and TNFalpha. Gut. 2012, June 8.Google Scholar
  16. 16.
    • Zucchelli M, Camilleri M, Andreasson AN, et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut. 2011;60:1671–7. Study identifying genetic alterations associated with IBS.PubMedCrossRefGoogle Scholar
  17. 17.
    Belmonte L, Beutheu Youmba S, Bertiaux-Vandaele N, et al. Role of toll like receptors in irritable bowel syndrome: differential mucosal immune activation according to the disease subtype. PLoS One. 2012;7:e42777.PubMedCrossRefGoogle Scholar
  18. 18.
    Brint EK, Macsharry J, Fanning A, et al. Differential expression of toll-like receptors in patients with irritable bowel syndrome. Am J Gastroenterol. 2011;106:329–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Öhman L, Lindmark AC, Isaksson S, et al. Increased TLR2 expression on blood monocytes in irritable bowel syndrome patients. Eur J Gastroenterol Hepatol. 2012;24:398–405.PubMedGoogle Scholar
  20. 20.
    McKernan DP, Gaszner G, Quigley EM, et al. Altered peripheral toll-like receptor responses in the irritable bowel syndrome. Aliment Pharmacol Ther. 2011;33:1045–52.Google Scholar
  21. 21.
    Schoepfer AM, Schaffer T, Seibold-Schmid B, et al. Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients. Neurogastroenterol Motil. 2008;20:1110–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Maxwell PR, Rink E, Kumar D, et al. Antibiotics increase functional abdominal symptoms. Am J Gastroenterol. 2002;97:104–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Mendall MA, Kumar D. Antibiotic use, childhood affluence and irritable bowel syndrome (IBS). Eur J Gastroenterol Hepatol. 1998;10:59–62.PubMedCrossRefGoogle Scholar
  24. 24.
    • Pimentel M, Lembo A, Chey WD, et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N Engl J Med. 2011;364:22–32. Study demonstrating improved IBS symptoms after treatment with a non-absorbable antibiotic.PubMedCrossRefGoogle Scholar
  25. 25.
    Sharara AI, Aoun E, Abdul-Baki H, et al. A randomized double-blind placebo-controlled trial of rifaximin in patients with abdominal bloating and flatulence. Am J Gastroenterol. 2006;101:326–33.PubMedCrossRefGoogle Scholar
  26. 26.
    • Moayyedi P, Ford AC, Talley NJ, et al. The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut. 2010;59:325–32. Meta-analysis of the efficacy of probiotics in the treatment of IBS.PubMedCrossRefGoogle Scholar
  27. 27.
    Kajander K, Myllyluoma E, Rajilic-Stojanovic M, et al. Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther. 2008;27:48–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Lyra A, Krogius-Kurikka L, Nikkila J, et al. Effect of a multispecies probiotic supplement on quantity of irritable bowel syndrome-related intestinal microbial phylotypes. BMC Gastroenterol. 2010;10:110.PubMedCrossRefGoogle Scholar
  29. 29.
    Preidis GA, Versalovic J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology. 2009;136:2015–31.PubMedCrossRefGoogle Scholar
  30. 30.
    Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008;57:1605–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Carroll IM, Ringel-Kulka T, Keku TO, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2011;301:G799–807.PubMedCrossRefGoogle Scholar
  32. 32.
    • Rajilic-Stojanovic M, Biagi E, Heilig HG, et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology. 2011;141:1792–801. Study demonstrating fecal microbiota composition of IBS patients.PubMedCrossRefGoogle Scholar
  33. 33.
    Noor SO, Ridgway K, Scovell L, et al. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol. 2010;10:134.PubMedCrossRefGoogle Scholar
  34. 34.
    Kassinen A, Krogius-Kurikka L, Makivuokko H, et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology. 2007;133:24–33.PubMedCrossRefGoogle Scholar
  35. 35.
    • Jeffery IB, O'Toole PW, Öhman L, et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut. 2012;61:997–1006. Study demonstrating fecal microbiota composition of IBS patients.PubMedCrossRefGoogle Scholar
  36. 36.
    Krogius-Kurikka L, Lyra A, Malinen E, et al. Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol. 2009;9:95.PubMedCrossRefGoogle Scholar
  37. 37.
    • Saulnier DM, Riehle K, Mistretta TA, et al. Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology. 2011;141:1782–91. Study demonstrating fecal microbiota composition of pediatric IBS patients.PubMedCrossRefGoogle Scholar
  38. 38.
    Rigsbee L, Agans R, Shankar V, et al. Quantitative profiling of gut microbiota of children with diarrhea-predominant irritable bowel syndrome. Am J Gastroenterol. 2012;107:1740–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Parkes GC, Rayment NB, Hudspith BN, et al. Distinct microbial populations exist in the mucosa-associated microbiota of sub-groups of irritable bowel syndrome. Neurogastroenterol Motil. 2012;24:31–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Carroll IM, Chang YH, Park J, et al. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2010;2:19.PubMedCrossRefGoogle Scholar
  41. 41.
    Kerckhoffs AP, Ben-Amor K, Samsom M, et al. Molecular analysis of faecal and duodenal samples reveals significantly higher prevalence and numbers of Pseudomonas aeruginosa in irritable bowel syndrome. J Med Microbiol. 2011;60:236–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Kerckhoffs AP, Samsom M, van der Rest ME, et al. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol. 2009;15:2887–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Barbara G, Stanghellini V, Brandi G, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol. 2005;100:2560–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Abrams GD, Bishop JE. Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med. 1967;126:301–4.PubMedGoogle Scholar
  45. 45.
    Husebye E, Hellstrom PM, Sundler F, et al. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Gastrointest Liver Physiol. 2001;280:G368–80.PubMedGoogle Scholar
  46. 46.
    Jeffery IB, Quigley EM, Öhman L, et al. The microbiota link to Irritable Bowel Syndrome: an emerging story. Gut Microbes. 2012;3:572–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Malinen E, Krogius-Kurikka L, Lyra A, et al. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol. 2010;16:4532–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Jalanka-Tuovinen J, Salonen A, Nikkila J, et al. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One. 2011;6:e23035.PubMedCrossRefGoogle Scholar
  49. 49.
    Kamath PS, Phillips SF, Zinsmeister AR. Short-chain fatty acids stimulate ileal motility in humans. Gastroenterology. 1988;95:1496–502.PubMedGoogle Scholar
  50. 50.
    Tazoe H, Otomo Y, Kaji I, et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol. 2008;59 Suppl 2:251–62.PubMedGoogle Scholar
  51. 51.
    Verdu EF, Bercik P, Bergonzelli GE, et al. Lactobacillus paracasei normalizes muscle hypercontractility in a murine model of postinfective gut dysfunction. Gastroenterology. 2004;127:826–37.PubMedCrossRefGoogle Scholar
  52. 52.
    Bar F, Von Koschitzky H, Roblick U, et al. Cell-free supernatants of Escherichia coli Nissle 1917 modulate human colonic motility: evidence from an in vitro organ bath study. Neurogastroenterol Motil. 2009;21(559–66):e16–7.Google Scholar
  53. 53.
    Eutamene H, Lamine F, Chabo C, et al. Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J Nutr. 2007;137:1901–7.PubMedGoogle Scholar
  54. 54.
    Rousseaux C, Thuru X, Gelot A, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13:35–7.PubMedCrossRefGoogle Scholar
  55. 55.
    Chassard C, Dapoigny M, Scott KP, et al. Functional dysbiosis within the gut microbiota of patients with constipated-irritable bowel syndrome. Aliment Pharmacol Ther. 2012;35:828–38.PubMedCrossRefGoogle Scholar
  56. 56.
    Treem WR, Ahsan N, Kastoff G, et al. Fecal short-chain fatty acids in patients with diarrhea-predominant irritable bowel syndrome: in vitro studies of carbohydrate fermentation. J Pediatr Gastroenterol Nutr. 1996;23:280–6.PubMedCrossRefGoogle Scholar
  57. 57.
    •• Simrén M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut. 2013;62:159–76. Exhaustive review of the importance of gut microbiota for functional bowel disorders.PubMedCrossRefGoogle Scholar
  58. 58.
    Simrén M, Stotzer PO. Use and abuse of hydrogen breath tests. Gut. 2006;55:297–303.PubMedCrossRefGoogle Scholar
  59. 59.
    Vanner S. The small intestinal bacterial overgrowth. Irritable bowel syndrome hypothesis: implications for treatment. Gut. 2008;57:1315–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Pimentel M, Chow EJ, Lin HC. Eradication of small intestinal bacterial overgrowth reduces symptoms of irritable bowel syndrome. Am J Gastroenterol. 2000;95:3503–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Pimentel M, Chow EJ, Lin HC. Normalization of lactulose breath testing correlates with symptom improvement in irritable bowel syndrome. a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2003;98:412–9.PubMedGoogle Scholar
  62. 62.
    Posserud I, Stotzer PO, Björnsson ES, et al. Small intestinal bacterial overgrowth in patients with irritable bowel syndrome. Gut. 2007;56:802–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Walters B, Vanner SJ. Detection of bacterial overgrowth in IBS using the lactulose H2 breath test: comparison with 14C-D-xylose and healthy controls. Am J Gastroenterol. 2005;100:1566–70.PubMedCrossRefGoogle Scholar
  64. 64.
    Yu D, Cheeseman F, Vanner S. Combined oro-caecal scintigraphy and lactulose hydrogen breath testing demonstrate that breath testing detects oro-caecal transit, not small intestinal bacterial overgrowth in patients with IBS. Gut. 2011;60:334–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Spiegel BM, Chey WD, Chang L. Bacterial overgrowth and irritable bowel syndrome: unifying hypothesis or a spurious consequence of proton pump inhibitors? Am J Gastroenterol. 2008;103:2972–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Verdu E, Viani F, Armstrong D, et al. Effect of omeprazole on intragastric bacterial counts, nitrates, nitrites, and N-nitroso compounds. Gut. 1994;35:455–60.PubMedCrossRefGoogle Scholar
  67. 67.
    De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Ottman N, Smidt H, de Vos WM, et al. The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol. 2012;2:104.PubMedCrossRefGoogle Scholar
  70. 70.
    Dear KL, Elia M, Hunter JO. Do interventions which reduce colonic bacterial fermentation improve symptoms of irritable bowel syndrome? Dig Dis Sci. 2005;50:758–66.PubMedCrossRefGoogle Scholar
  71. 71.
    Shepherd SJ, Gibson PR. Fructose malabsorption and symptoms of irritable bowel syndrome: guidelines for effective dietary management. J Am Diet Assoc. 2006;106:1631–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Costabile A, Klinder A, Fava F, et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99:110–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Duncan SH, Belenguer A, Holtrop G, et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol. 2007;73:1073–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Bouhnik Y, Attar A, Joly FA, et al. Lactulose ingestion increases faecal bifidobacterial counts: a randomised double-blind study in healthy humans. Eur J Clin Nutr. 2004;58:462–6.PubMedCrossRefGoogle Scholar
  75. 75.
    Bouhnik Y, Neut C, Raskine L, et al. Prospective, randomized, parallel-group trial to evaluate the effects of lactulose and polyethylene glycol-4000 on colonic flora in chronic idiopathic constipation. Aliment Pharmacol Ther. 2004;19:889–99.PubMedCrossRefGoogle Scholar
  76. 76.
    Staudacher HM, Lomer MC, Anderson JL, et al. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J Nutr. 2012;142:1510–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Carroll IM, Ringel-Kulka T, Siddle JP, et al. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One. 2012;7:e46953.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Internal Medicine and Clinical Nutrition, Institute of MedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
  2. 2.Department of Microbiology and Immunology, Institute of BiomedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden

Personalised recommendations