Barrett’s Esophagus in 2012: Updates in Pathogenesis, Treatment, and Surveillance

  • Subhash Chandra
  • Emmanuel C. Gorospe
  • Cadman L. Leggett
  • Kenneth K. Wang
Part of the following topical collections:
  1. Topical Collection on GI Oncology


Barrett’s esophagus (BE) is the only established precursor lesion in the development of esophageal adenocarcinoma (EAC) and it increases the risk of cancer by 11-fold. It is regarded as a complication of gastroesophageal reflux disease. There is an ever-increasing body of knowledge on the pathogenesis, diagnosis, treatment, and surveillance of BE and its associated dysplasia. In this review, we summarize the latest advances in BE research and clinical practice in the past 2 years. It is critical to understand the molecular underpinnings of this disorder to comprehend the clinical outcomes of the disease. For clinical gastroenterologists, there is also continuous growth of endoscopic approaches which is daunting, and further improvements in the detection and treatment of BE and early EAC are anticipated. In the future, we may see the increased role of biomarkers, both molecular and imaging, in both diagnostic and therapeutic strategies for BE.


Barrett’s esophagus Esophageal adenocarcinoma Biomarkers Acid reflux Obesity Endoscopic mucosal resection Radiofrequency ablation Photodynamic therapy Cryotherapy Narrow band imaging Confocal laser endomicroscopy Optical coherence tomography 



Support from NCI and NIH U54 CA163004, U54 CA163059, P30 CA015083, and UL1 TR000135.

Conflict of Interest

No potential conflicts of interest relevant to this article were reported.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wang KK. Endoscopic vs surgical resection for Barrett’s intramucosal adenocarcinoma: beyond a therapeutic equipoise. Gastroenterology. 2012;143(1):257–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Peters FP, Curvers WL, Rosmolen WD, et al. Surveillance history of endoscopically treated patients with early Barrett’s neoplasia: nonadherence to the Seattle biopsy protocol leads to sampling error. Dis Esophagus. 2008;21(6):475–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Prasad GA, Wang KK, Halling KC, et al. Correlation of histology with biomarker status after photodynamic therapy in Barrett esophagus. Cancer. 2008;113(3):470–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Sarosi G, Brown G, Jaiswal K, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus. 2008;21(1):43–50.PubMedGoogle Scholar
  5. 5.
    Hutchinson L, Stenstrom B, Chen D, et al. Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev. 2011;20(1):11–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Bianchi NO. Y chromosome structural and functional changes in human malignant diseases. Mutat Res. 2009;682(1):21–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Orlando RC. Pathophysiology of gastroesophageal reflux disease. J Clin Gastroenterol. 2008;42(5):584–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Souza RF, Huo X, Mittal V, et al. Gastroesophageal reflux might cause esophagitis through a cytokine-mediated mechanism rather than caustic acid injury. Gastroenterology. 2009;137(5):1776–84.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshida N, Imamoto E, Uchiyama K, et al. Molecular mechanisms involved in interleukin-8 production by normal human oesophageal epithelial cells. Aliment Pharmacol Ther Symp Ser. 2006;2(1):219–26.CrossRefGoogle Scholar
  10. 10.
    Fitzgerald RC, Onwuegbusi BA, Bajaj-Elliott M, Saeed IT, Burnham WR, Farthing MJ. Diversity in the oesophageal phenotypic response to gastro-oesophageal reflux: immunological determinants. Gut. 2002;50(4):451–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American Gastroenterological Association medical position statement on the management of Barrett’s esophagus. Gastroenterology. 2011;140(3):1084–91.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubenstein JH, Saini SD, Kuhn L, et al. Influence of malpractice history on the practice of screening and surveillance for Barrett’s esophagus. Am J Gastroenterol. 2008;103(4):842–9.PubMedCrossRefGoogle Scholar
  13. 13.
    •• Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365(15):1375–83. This is a landmark population based study of the incidence rate of esophageal cancer in the Danish population. The study establishes that the incidence is less than a third of previously established rate. PubMedCrossRefGoogle Scholar
  14. 14.
    Burnat G, Majka J, Konturek PC. Bile acids are multifunctional modulators of the Barrett’s carcinogenesis. J Physiol Pharmacol Off J Polish Physiol Soc. 2010;61(2):185–92.Google Scholar
  15. 15.
    Huo X, Juergens S, Zhang X, et al. Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-kappaB activation in benign Barrett’s epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2011;301(2):G278–86.PubMedCrossRefGoogle Scholar
  16. 16.
    McQuaid KR, Laine L, Fennerty MB, Souza R, Spechler SJ. Systematic review: the role of bile acids in the pathogenesis of gastro-oesophageal reflux disease and related neoplasia. Aliment Pharmacol Ther. 2011;34(2):146–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Schiffman SC, Li Y, Xiao D, Li X, Aiyer HS, Martin RC. The resistance of esophageal adenocarcinoma to bile salt insult is associated with manganese superoxide dismutase expression. J Surg Res. 2011;171(2):623–30.PubMedCrossRefGoogle Scholar
  18. 18.
    Iijima K, Henry E, Moriya A, Wirz A, Kelman AW, McColl KE. Dietary nitrate generates potentially mutagenic concentrations of nitric oxide at the gastroesophageal junction. Gastroenterology. 2002;122(5):1248–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Kusaka G, Uno K, Iijima K, et al. The role of nitric oxide in the induction of caudal-type homeobox 2 through epidermal growth factor receptor in the development of Barrett’s esophagus. Scand J Gastroenterol 2012.Google Scholar
  20. 20.
    Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33(4):547–94.PubMedCrossRefGoogle Scholar
  21. 21.
    Paz-Filho G, Lim EL, Wong ML, Licinio J. Associations between adipokines and obesity-related cancer. Front Biosci J Virtual Libr. 2011;16:1634–50.CrossRefGoogle Scholar
  22. 22.
    Howard JM, Beddy P, Ennis D, Keogan M, Pidgeon GP, Reynolds JV. Associations between leptin and adiponectin receptor upregulation, visceral obesity and tumour stage in oesophageal and junctional adenocarcinoma. Br J Surg. 2010;97(7):1020–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Leggett C, Calvin AD, Gorospe EC, et al. Obstructive sleep apnea is a risk factor for Barrett’s esophagus. Gastroenterology. 2012;142(5):S751–2.Google Scholar
  24. 24.
    Cook MB, Shaheen NJ, Anderson LA, et al. Cigarette smoking increases risk of Barrett’s esophagus: an analysis of the Barrett’s and esophageal adenocarcinoma consortium. Gastroenterology. 2012;142(4):744–53.PubMedCrossRefGoogle Scholar
  25. 25.
    Jacobson BC, Giovannucci EL, Fuchs CS. Smoking and Barrett’s esophagus in women who undergo upper endoscopy. Dig Dis Sci. 2011;56(6):1707–17.PubMedCrossRefGoogle Scholar
  26. 26.
    Coleman HG, Bhat S, Johnston BT, McManus D, Gavin AT, Murray LJ. Tobacco smoking increases the risk of high-grade dysplasia and cancer among patients with Barrett’s esophagus. Gastroenterology. 2012;142(2):233–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Shariff MK, Bird-Lieberman EL, O’Donovan M, et al. Randomized crossover study comparing efficacy of transnasal endoscopy with that of standard endoscopy to detect Barrett’s esophagus. Gastrointest Endosc. 2012;75(5):954–61.PubMedCrossRefGoogle Scholar
  28. 28.
    Peery AF, Hoppo T, Garman KS, et al. Feasibility, safety, acceptability, and yield of office-based, screening transnasal esophagoscopy (with video). Gastrointest Endosc. 2012;75(5):945–53. e942.PubMedCrossRefGoogle Scholar
  29. 29.
    Kadri SR, Lao-Sirieix P, O’Donovan M, et al. Acceptability and accuracy of a non-endoscopic screening test for Barrett’s oesophagus in primary care: cohort study. BMJ. 2010;341:c4372.PubMedCrossRefGoogle Scholar
  30. 30.
    • Benaglia T, Sharples LD, Fitzgerald RC, Lyratzopoulos G. Health Benefits and Cost Effectiveness of Endoscopic and Nonendoscopic Cytosponge Screening for Barrett’s Esophagus. Gastroenterology. 2012. Screening for Barrett's esophagus is not cost effective if done with endoscopy. This cost-effectiveness study demonstrates that a non-physician based technique like the cytosponge, screening may be worthwhile.Google Scholar
  31. 31.
    Mino-Kenudson M, Hull MJ, Brown I, et al. EMR for Barrett’s esophagus-related superficial neoplasms offers better diagnostic reproducibility than mucosal biopsy. Gastrointest Endosc. 2007;66(4):660–6. quiz 767, 769.PubMedCrossRefGoogle Scholar
  32. 32.
    Pech O, Bollschweiler E, Manner H, Leers J, Ell C, Holscher AH. Comparison between endoscopic and surgical resection of mucosal esophageal adenocarcinoma in Barrett’s esophagus at two high-volume centers. Ann Surg. 2011;254(1):67–72.PubMedCrossRefGoogle Scholar
  33. 33.
    van Vilsteren FG, Pouw RE, Herrero LA, et al. Learning to perform endoscopic resection of esophageal neoplasia is associated with significant complications even within a structured training program. Endoscopy. 2012;44(1):4–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Alvarez Herrero L, Pouw RE, van Vilsteren FG, et al. Safety and efficacy of multiband mucosectomy in 1060 resections in Barrett’s esophagus. Endoscopy. 2011;43(3):177–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Shaheen NJ, Sharma P, Overholt BF, et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N Engl J Med. 2009;360(22):2277–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Yoon SS, Rivera R, Antignano L, Kaul V. A case of mediastinitis after radiofrequency ablation for Barrett’s esophagus. Gastrointest Endosc. 2011;74(6):1407–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Shaheen NJ, Overholt BF, Sampliner RE, et al. Durability of radiofrequency ablation in Barrett’s esophagus with dysplasia. Gastroenterology. 2011;141(2):460–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Okoro NI, Tomizawa Y, Dunagan KT, Lutzke LS, Wang KK, Prasad GA. Safety of prior endoscopic mucosal resection in patients receiving radiofrequency ablation of Barrett’s esophagus. Clin Gastroenterol Hepatol. 2012;10(2):150–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Fleischer DE, Overholt BF, Sharma VK, et al. Endoscopic radiofrequency ablation for Barrett’s esophagus: 5-year outcomes from a prospective multicenter trial. Endoscopy. 2010;42(10):781–9.PubMedCrossRefGoogle Scholar
  40. 40.
    • Gupta M, Lutzke LS, Prasad GA, et al. Recurrence of intestinal metaplasia after eradication of Barrett’s esophagus with radio frequency ablation - results from a BETRNet consortium. Gastroenterology. 2012;142(5):S73. This large multicenter study of patients undergoing radiofrequency ablation found a substantial recurrence rate of intestinal metaplasia after ablation highlighting the need for surveillance after complete ablation. Google Scholar
  41. 41.
    Shaheen NJ, Greenwald BD, Peery AF, et al. Safety and efficacy of endoscopic spray cryotherapy for Barrett’s esophagus with high-grade dysplasia. Gastrointest Endosc. 2010;71(4):680–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Greenwald BD, Dumot JA, Horwhat JD, Lightdale CJ, Abrams JA. Safety, tolerability, and efficacy of endoscopic low-pressure liquid nitrogen spray cryotherapy in the esophagus. Dis Esophagus. 2010;23(1):13–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Canto MI, Gorospe EC, Shin EJ, Dunbar KB, Montgomery EA, Okolo P. Carbon Dioxide (CO2) cryotherapy is a safe and effective treatment of Barrett’s Esophagus (BE) with HGD/Intramucosal Carcinoma. Gastrointest Endosc. 2009;69(5):AB341.CrossRefGoogle Scholar
  44. 44.
    Gross S, Zfass A, Habr F, et al. Salvage cryotherapy for Barrett’s esophagus with high grade dysplasia after RFA failure. Am J Gastroenterol. 2010;105:S23–4.Google Scholar
  45. 45.
    Flores AG, Reicher S, Chung DS, Pham BV, Eysselein VE. Barrett’s esophagus eradication by radiofrequency and cryoablation. Gastrointest Endosc. 2009;69(5):AB256.CrossRefGoogle Scholar
  46. 46.
    Gorospe EC, Timmer MR, Lutzke L, Wang KK. Cryotherapy for persistent Barrett’s dysplasia after radiofrequency ablation. The American Journal of Gastroenterology. 2012, 107(S1).Google Scholar
  47. 47.
    Hirst NG, Gordon LG, Whiteman DC, Watson DI, Barendregt JJ. Is endoscopic surveillance for non-dysplastic Barrett’s esophagus cost-effective? Review of economic evaluations. J Gastroenterol Hepatol. 2011;26(2):247–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Gorospe EC, Wang KK. Endoscopy: NBI in Barrett esophagus–look more and sample less. Nat Rev Gastroenterol Hepatol. 2012;9(5):250–1.PubMedCrossRefGoogle Scholar
  49. 49.
    Curvers WL, Herrero LA, Wallace MB, et al. Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett’s esophagus. Gastroenterology. 2010;139(4):1106–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Sharma P, Meining AR, Coron E, et al. Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc. 2011;74(3):465–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Reid BJ, Prevo LJ, Galipeau PC, et al. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am J Gastroenterol. 2001;96(10):2839–48.PubMedCrossRefGoogle Scholar
  52. 52.
    Jin Z, Cheng Y, Gu W, et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 2009;69(10):4112–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Bird-Lieberman EL, Dunn JM, Coleman HG, et al. Population-Based Study Reveals New Risk-Stratification Biomarker Panel for Barrett’s Esophagus. Gastroenterology 2012.Google Scholar
  54. 54.
    Lee S, Han MJ, Lee KS, et al. Frequent occurrence of mitochondrial DNA mutations in Barrett’s metaplasia without the presence of dysplasia. PLoS One. 2012;7(5):e37571.PubMedCrossRefGoogle Scholar
  55. 55.
    Tan BH, Skipworth RJ, Stephens NA, et al. Frequency of the mitochondrial DNA 4977 bp deletion in oesophageal mucosa during the progression of Barrett’s oesophagus. Eur J Cancer. 2009;45(5):736–40.PubMedCrossRefGoogle Scholar
  56. 56.
    Takata Y, Kristal AR, Santella RM, et al. Selenium, selenoenzymes, oxidative stress and risk of neoplastic progression from Barrett’s esophagus: results from biomarkers and genetic variants. PLoS One. 2012;7(6):e38612.PubMedCrossRefGoogle Scholar
  57. 57.
    Gorospe EC TJ, Lutzke L, Brankley S, Halling K, Wang KK. Physician Satisfaction with Current Barrett’s Esophagus Surveillance and Acceptability of FISH-based Testing: A Survey of Gastroenterologists across the United States. In: DDW 2012, vol. 142. San Diego, CA; 2012: S-73.Google Scholar
  58. 58.
    Quante M, Bhagat G, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell. 2012;21(1):36–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Subhash Chandra
    • 1
  • Emmanuel C. Gorospe
    • 1
  • Cadman L. Leggett
    • 1
  • Kenneth K. Wang
    • 1
  1. 1.Barrett’s Esophagus Unit, Division of Gastroenterology and HepatologyMayo ClinicRochesterUSA

Personalised recommendations