Current Gastroenterology Reports

, Volume 12, Issue 3, pp 175–180

Beyond Acid Suppression: New Pharmacologic Approaches for Treatment of GERD



Proton pump inhibitors are highly successful in treating gastroesophageal reflux disease, but a significant proportion of patients have persistent symptoms from weakly or nonacidic reflux. Transient lower esophageal sphincter relaxation (TLESR) represents the dominant mechanism of gastroesophageal reflux and has therefore become the most intensely investigated therapeutic target. The triggering of TLESR involve the vagal pathways and the γ-aminobutyric type B (GABA(B)) and metabotropic glutamate type 5 (mGluR5) receptors. Baclofen is a GABA(B) receptor agonist that is effective in inhibiting TLESR and reducing the number of reflux episodes, but is associated with significant central nervous system (CNS) side effects. The newer GABA(B) agonists, such as AZD9343 and AZD3355, and mGluR5 antagonists, such as 2-methyl-6-(phenylethynyl)-pyridine (MPEP), have been shown in small, randomized, controlled trials to have comparable efficacy to baclofen, but possibly a more favorable CNS side effect profile. Cannibinoid agonists, such as Δ9–THC, have also been demonstrated to reduce TLESRs and reflux events respectively. Macrolide antibiotics (eg, erythromycin) show early promise in a select group of patients with possible reflux associated post-lung transplant problems.


Reflux TLESR GABA(B) mGluR5 Cannabinoid Macrolide 


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Chiba N, De Gara CJ, Wilkinson JM, Hunt RH: Speed of healing and symptom relief in grade II to IV gastroesophageal reflux disease: a meta-analysis. Gastroenterology 1997, 112:1798–1810.CrossRefPubMedGoogle Scholar
  2. 2.
    Klinkenberg-Knol EC, Nelis F, Dent J, et al.: Long-term omeprazole treatment in resistant gastroesophageal reflux disease: efficacy, safety, and influence on gastric mucosa. Gastroenterology 2000, 118:661–669.CrossRefPubMedGoogle Scholar
  3. 3.
    Holloway RH, Dent J: Medical treatment of gastroesophageal reflux disease—beyond the proton pump inhibitors. Dig Dis 2000, 18:7–13.CrossRefPubMedGoogle Scholar
  4. 4.
    Dent J: Gastro-oesophageal reflux disease. Digestion 1998, 59:433–445.Google Scholar
  5. 5.
    van Herwaarden MA, Samsom M, Smout AJ: Excess gastroesophageal reflux in patients with hiatus hernia is caused by mechanisms other than transient LES relaxations. Gastroenterology 2000, 119:1439–1446.CrossRefPubMedGoogle Scholar
  6. 6.
    Mittal RK, Holloway RH, Penagini R, et al.: Transient lower esophageal sphincter relaxation. Gastroenterology 1995, 109:601–610.CrossRefPubMedGoogle Scholar
  7. 7.
    • Babaei A, Bhargava V, Korsapati H, et al.: A unique longitudinal muscle contraction pattern associated with transient lower esophageal sphincter relaxation. Gastroenterology 2008, 134:1322–1331. This study adds a new dimension to the underlying physiologic mechanism in gastroesophageal reflux. CrossRefPubMedGoogle Scholar
  8. 8.
    Vela MF, Tutuian R, Katz PO, Castell DO: Baclofen decreases acid and non-acid post-prandial gastro-oesophageal reflux measured by combined multichannel intraluminal impedance and pH. Aliment Pharmacol Ther 2003, 17:243–251.CrossRefPubMedGoogle Scholar
  9. 9.
    Boeckxstaens GE, Hirsch DP, Fakhry N, et al.: Involvement of cholecystokinin A receptors in transient lower esophageal sphincter relaxations triggered by gastric distension. Am J Gastroenterol 1998, 93:1823–1828.CrossRefPubMedGoogle Scholar
  10. 10.
    Boulant J, Mathieu S, D'Amato M, et al.: Cholecystokinin in transient lower oesophageal sphincter relaxation due to gastric distension in humans. Gut 1997, 40:575–581.PubMedGoogle Scholar
  11. 11.
    Mittal RK, Chiareli C, Liu J, et al.: Atropine inhibits gastric distension and pharyngeal receptor mediated lower oesophageal sphincter relaxation. Gut 1997, 41:285–290.PubMedGoogle Scholar
  12. 12.
    Lidums I, Checklin H, Mittal RK, Holloway RH Effect of atropine on gastro-oesophageal reflux and transient lower oesophageal sphincter relaxations in patients with gastro-oesophageal reflux disease. Gut 1998, 43:12–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Hirsch DP, Tiel-Van Buul MM, Tytgat GN, Boeckxstaens GE: Effect of L-NMMA on postprandial transient lower esophageal sphincter relaxations in healthy volunteers. Dig Dis Sci 2000, 45:2069–2075.CrossRefPubMedGoogle Scholar
  14. 14.
    Role of 5-HT3 receptors in the control by cholecystokinin of transient relaxations of the inferior esophageal sphincter in dogs [in French]. Gastroenterol Clin Biol 1996, 20:575–580.PubMedGoogle Scholar
  15. 15.
    Penagini R, Bianchi PA: Effect of morphine on gastroesophageal reflux and transient lower esophageal sphincter relaxation. Gastroenterology 1997, 113:409–414.CrossRefPubMedGoogle Scholar
  16. 16.
    Straathof JW: Somatostatin prevents meal-induced alterations in lower esophageal sphincter function [abstract]. Gut 1996, 445.Google Scholar
  17. 17.
    Lehmann A: Effects of an N-methyl-D-aspartate (NMDA) receptor antagonist on transient lower esophageal sphincter relaxations (TLESRs) in the dog [abstract]. Gastroenterology 1998.Google Scholar
  18. 18.
    • Beaumont H, Jensen J, Carlsson A, et al.: Effect of delta9-tetrahydrocannabinol, a cannabinoid receptor agonist, on the triggering of transient lower oesophageal sphincter relaxations in dogs and humans. Br J Pharmacol 2009, 156:153–162. This is the first study evaluating and establishing the efficacy of cannabinoid receptor agonism on TLESRs in humans. CrossRefPubMedGoogle Scholar
  19. 19.
    Lehmann A, Blackshaw LA, Branden L, et al.: Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology 2002, 123:1129–1134.CrossRefPubMedGoogle Scholar
  20. 20.
    Beaumont H, Smout A, Aanen M, et al.: The GABA(B) receptor agonist AZD9343 inhibits transient lower oesophageal sphincter relaxations and acid reflux in healthy volunteers: a phase I study. Aliment Pharmacol Ther 2009, 30:937–946.CrossRefPubMedGoogle Scholar
  21. 21.
    Lehmann A, Antonsson M, Holmberg AA, et al.: (R)-(3-amino-2-fluoropropyl) phosphinic acid (AZD3355), a novel GABAB receptor agonist, inhibits transient lower esophageal sphincter relaxation through a peripheral mode of action. J Pharmacol Exp Ther 2009, 331:504–512.CrossRefPubMedGoogle Scholar
  22. 22.
    Frisby CL, Mattsson JP, Jensen JM, et al.: Inhibition of transient lower esophageal sphincter relaxation and gastroesophageal reflux by metabotropic glutamate receptor ligands. Gastroenterology 2005, 129:995–1004.CrossRefPubMedGoogle Scholar
  23. 23.
    Young RL, Page AJ, O'Donnell TA, et al.: Peripheral versus central modulation of gastric vagal pathways by metabotropic glutamate receptor 5. Am J Physiol Gastrointest Liver Physiol 2007, 292:G501–G511.CrossRefPubMedGoogle Scholar
  24. 24.
    Lehmann A, Antonsson M, Bremner-Danielsen M, et al.: Activation of the GABA(B) receptor inhibits transient lower esophageal sphincter relaxations in dogs. Gastroenterology 1999, 117:1147–1154.CrossRefPubMedGoogle Scholar
  25. 25.
    Lidums I, Lehmann A, Checklin H, et al.: Control of transient lower esophageal sphincter relaxations and reflux by the GABA(B) agonist baclofen in normal subjects. Gastroenterology 2000, 118:7–13.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang Q, Lehmann A, Rigda R, et al.: Control of transient lower oesophageal sphincter relaxations and reflux by the GABA(B) agonist baclofen in patients with gastro-oesophageal reflux disease. Gut 2002, 50:19–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Ciccaglione AF, Marzio L: Effect of acute and chronic administration of the GABA B agonist baclofen on 24 hour pH metry and symptoms in control subjects and in patients with gastro-oesophageal reflux disease. Gut 2003, 52:464–470.CrossRefPubMedGoogle Scholar
  28. 28.
    Grossi L, Spezzaferro M, Sacco LF, Marzio L: Effect of baclofen on oesophageal motility and transient lower oesophageal sphincter relaxations in GORD patients: a 48-h manometric study. Neurogastroenterol Motil 2008, 20:760–766.CrossRefPubMedGoogle Scholar
  29. 29.
    Koek GH, Sifrim D, Lerut T, et al.: Effect of the GABA(B) agonist baclofen in patients with symptoms and duodeno-gastro-oesophageal reflux refractory to proton pump inhibitors. Gut 2003, 52:1397–1402.CrossRefPubMedGoogle Scholar
  30. 30.
    Lal R, Sukbuntherng J, Tai EH, et al.: Arbaclofen placarbil, a novel R-baclofen prodrug: improved absorption, distribution, metabolism, and elimination properties compared with R-baclofen. J Pharmacol Exp Ther 2009, 330:911–921.CrossRefPubMedGoogle Scholar
  31. 31.
    Nimish B, Vakil F, Huff J, et al.: Arbaclofen placarbil monotherapy decreases gerd symptoms in subjects with previous PPI therapy. Gastroenterology 2009, A-490.Google Scholar
  32. 32.
    Mittal RK, Balaban DH: The esophagogastric junction. N Engl J Med 1997, 336:924–932.CrossRefPubMedGoogle Scholar
  33. 33.
    Kahrilas PJ: The role of hiatus hernia in GERD. Yale J Biol Med 1999, 72:101–111.PubMedGoogle Scholar
  34. 34.
    Kahrilas PJ, Lin S, Chen J, Manka M: The effect of hiatus hernia on gastro-oesophageal junction pressure. Gut 1999, 44:476–482.CrossRefPubMedGoogle Scholar
  35. 35.
    van Herwaarden MA, Samsom M, Rydholm H, Smout AJ: The effect of baclofen on gastro-oesophageal reflux, lower oesophageal sphincter function and reflux symptoms in patients with reflux disease. Aliment Pharmacol Ther 2002, 16:1655–1662.CrossRefPubMedGoogle Scholar
  36. 36.
    •• Beaumont H, Boeckxstaens GE: Does the presence of a hiatal hernia affect the efficacy of the reflux inhibitor baclofen during add-on therapy? Am J Gastroenterol 2009, 104:1764–71. This is an important study that establishes the efficacy of a reflux inhibitor in patients with hiatus hernia. CrossRefPubMedGoogle Scholar
  37. 37.
    Page AJ, Young RL, Martin CM, et al.: Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 2005, 128:402–410.CrossRefPubMedGoogle Scholar
  38. 38.
    Young RL, Cooper NJ, Blackshaw LA: Anatomy and function of group III metabotropic glutamate receptors in gastric vagal pathways. Neuropharmacology 2008, 54:965–975.CrossRefPubMedGoogle Scholar
  39. 39.
    Jensen J, Lehmann A, Uvebrant A, et al.: Transient lower esophageal sphincter relaxations in dogs are inhibited by a metabotropic glutamate receptor 5 antagonist. Eur J Pharmacol 2005, 519:154–157.CrossRefPubMedGoogle Scholar
  40. 40.
    • Lindstrom E, Brusberg M, Hughes PA, et al.: Involvement of metabotropic glutamate 5 receptor in visceral pain. Pain 2008, 137:295–305. This study established the involvement of mGluR5 receptors in visceral nociception, representing an additional mechanism through which mGluR5 receptor antagonists reduce reflux symptoms. CrossRefPubMedGoogle Scholar
  41. 41.
    Hirsch DP, Tytgat GN, Boeckxstaens GE: Is glutamate involved in transient lower esophageal sphincter relaxations? Dig Dis Sci 2002, 47:661–666.CrossRefPubMedGoogle Scholar
  42. 42.
    Keywood C, Wakefield M, Tack J: A proof-of-concept study evaluating the effect of ADX10059, a metabotropic glutamate receptor-5 negative allosteric modulator, on acid exposure and symptoms in gastro-oesophageal reflux disease. Gut 2009, 58:1192–1199.CrossRefPubMedGoogle Scholar
  43. 43.
    Partosoedarso ER, Abrahams TP, Scullion RT, et al.: Cannabinoid1 receptor in the dorsal vagal complex modulates lower oesophageal sphincter relaxation in ferrets. J Physiol 2003, 550:149–158.CrossRefPubMedGoogle Scholar
  44. 44.
    Chen CL, Orr WC, Verlinden MH, et al.: Efficacy of a motilin receptor agonist (ABT-229) for the treatment of gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2002, 16:749–757.CrossRefPubMedGoogle Scholar
  45. 45.
    Chrysos E, Tzovaras G, Epanomeritakis E, et al.: Erythromycin enhances oesophageal motility in patients with gastro-oesophageal reflux. ANZ J Surg 2001, 71:98–102.CrossRefPubMedGoogle Scholar
  46. 46.
    Netzer P, Schmitt B, Inauen W: Effects of ABT-229, a motilin agonist, on acid reflux, oesophageal motility and gastric emptying in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2002, 16:1481–1490.CrossRefPubMedGoogle Scholar
  47. 47.
    Gerhardt SG, McDyer JF, Girgis RE, et al.: Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 2003, 168:121–125.CrossRefPubMedGoogle Scholar
  48. 48.
    Verleden GM, Dupont LJ: Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2004, 77:1465–1467.CrossRefPubMedGoogle Scholar
  49. 49.
    Yates B, Murphy DM, Forrest IA, et al.: Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2005, 172:772–5.CrossRefPubMedGoogle Scholar
  50. 50.
    • Mertens V, Blondeau K, Pauwels A, et al.: Azithromycin reduces gastroesophageal reflux and aspiration in lung transplant recipients. Dig Dis Sci 2009, 54:972–979. This is the first study to demonstrate that at least part of the mechanism through which azithromycin improves lung function in post-lung transplant patients is related to a reduction in reflux episodes and subsequent aspiration. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Gastroenterology and HepatologyRoyal Adelaide HospitalAdelaideAustralia

Personalised recommendations