Current Gastroenterology Reports

, Volume 10, Issue 6, pp 568–575

Recent advances in IBD pathogenesis: Genetics and immunobiology

  • David Q. Shih
  • Stephan R. Targan
  • Dermot McGovern
Article

Abstract

The inflammatory bowel diseases (IBDs), Crohn’s disease and ulcerative colitis, are chronic inflammatory disorders caused by dysregulated immune responses in genetically predisposed individuals. Although the precise etiology of IBD remains unclear, accumulating data, including genome-wide association studies, have advanced our understanding of its immunopathogenesis. This review highlights the role in gut homeostasis and IBD pathogenesis of autophagy, the interleukin (IL)-23/IL-17 axis, and a novel member of the tumor necrosis factor family, TL1A. It focuses on advances in our understanding of IBD from the past year, including advances in genetics and immunobiology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Shih DQ, Targan SR: Immunopathogenesis of inflammatory bowel disease. World J Gastroenterol 2008, 14:390–400.PubMedCrossRefGoogle Scholar
  2. 2.
    Libioulle C, Louis E, Hansoul S, et al.: Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet 2007, 3:e58.PubMedCrossRefGoogle Scholar
  3. 3.
    Yamazaki K, McGovern D, Ragoussis J, et al.: Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet 2005, 14:3499–3506.PubMedCrossRefGoogle Scholar
  4. 4.
    Duerr RH, Taylor KD, Brant SR, et al.: A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006, 314:1461–1463.PubMedCrossRefGoogle Scholar
  5. 5.
    Hampe J, Franke A, Rosenstiel P, et al.: A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 2007, 39:207–211.PubMedCrossRefGoogle Scholar
  6. 6.
    Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.CrossRefGoogle Scholar
  7. 7.
    Franke A, Balschun T, Karlsen TH, et al.: Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 2008, 40:713–715.PubMedCrossRefGoogle Scholar
  8. 8.
    Raelson JV, Little RD, Ruether A, et al.: Genome-wide association study for Crohn’s disease in the Quebec Founder Population identifies multiple validated disease loci. Proc Natl Acad Sci U S A 2007, 104:14747–14752.PubMedCrossRefGoogle Scholar
  9. 9.
    Fisher SA, Tremelling M, Anderson CA, et al.: Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn’s disease. Nat Genet 2008, 40:710–712.PubMedCrossRefGoogle Scholar
  10. 10.
    Barrett JC, Hansoul S, Nicolae DL, et al.: Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 2008, 40:955–962.PubMedCrossRefGoogle Scholar
  11. 11.
    Xu Y, Jagannath C, Liu XD, et al.: Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 2007, 27:135–144.PubMedCrossRefGoogle Scholar
  12. 12.
    Rioux JD, Xavier RJ, Taylor KD, et al.: Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 2007, 39:596–604.PubMedCrossRefGoogle Scholar
  13. 13.
    Parkes M, Barrett JC, Prescott NJ, et al.: Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 2007, 39:830–832.PubMedCrossRefGoogle Scholar
  14. 14.
    Prescott NJ, Fisher SA, Franke A, et al.: A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn’s disease and is independent of CARD15 and IBD5. Gastroenterology 2007, 132:1665–1671.PubMedCrossRefGoogle Scholar
  15. 15.
    Xavier RJ, Huett A, Rioux JD: Autophagy as an important process in gut homeostasis and Crohn’s disease pathogenesis. Gut 2008, 57:717–720.PubMedCrossRefGoogle Scholar
  16. 16.
    Singh SB, Davis AS, Taylor GA, et al.: Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006, 313:1438–1441.PubMedCrossRefGoogle Scholar
  17. 17.
    Cooney RM, Baker JS, Simmons A, et al.: NOD2 activation by muramyl dipeptide induces autophagy in dendritic cells in an ATG16L1 dependent pathway [abstract]. Gastroenterology 2008, 134:A514.CrossRefGoogle Scholar
  18. 18.
    Kastelein RA, Hunter CA, Cua DJ: Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007, 25:221–242.PubMedCrossRefGoogle Scholar
  19. 19.
    Kim HR, Cho ML, Kim KW, et al.: Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by IL-17 through PI3-kinase-, NF-kappaB-and p38 MAPKdependent signalling pathways. Rheumatology (Oxford) 2007, 46:57–64.CrossRefGoogle Scholar
  20. 20.
    Vaknin-Dembinsky A, Balashov K, Weiner HL: IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. J Immunol 2006, 176:7768–7774.PubMedGoogle Scholar
  21. 21.
    McGovern D, Powrie F: The IL23 axis plays a key role in the pathogenesis of IBD. Gut 2007, 56:1333–1336.PubMedCrossRefGoogle Scholar
  22. 22.
    Taylor KD, Targan SR, Mei L, et al.: IL23R haplotypes provide a large population attributable risk for Crohn’s disease. Inflamm Bowel Dis 2008, 14:1185–1191.PubMedCrossRefGoogle Scholar
  23. 23.
    Elson CO, Cong Y, Weaver CT, et al.: Monoclonal antiinterleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 2007, 132:2359–2370.PubMedCrossRefGoogle Scholar
  24. 24.
    Zhou L, Ivanov, II, Spolski R, et al.: IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007, 8:967–974.PubMedCrossRefGoogle Scholar
  25. 25.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al.: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007, 204:1757–1764.PubMedCrossRefGoogle Scholar
  26. 26.
    Izcue A, Hue S, Buonocore S, et al.: Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 2008, 28:559–570.PubMedCrossRefGoogle Scholar
  27. 27.
    Bettelli E, Korn T, Oukka M, et al.: Induction and effector functions of T(H)17 cells. Nature 2008, 453:1051–1057.PubMedCrossRefGoogle Scholar
  28. 28.
    Ivanov II, McKenzie BS, Zhou L, et al.: The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006, 126:1121–1133.PubMedCrossRefGoogle Scholar
  29. 29.
    Weaver CT, Harrington LE, Mangan PR, et al.: Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006, 24:677–688.PubMedCrossRefGoogle Scholar
  30. 30.
    Mucida D, Park Y, Kim G, et al.: Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007, 317:256–260.PubMedCrossRefGoogle Scholar
  31. 31.
    Veldhoen M, Hocking RJ, Atkins CJ, et al.: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006, 24:179–189.PubMedCrossRefGoogle Scholar
  32. 32.
    Pappu BP, Borodovsky A, Zheng TS, et al.: TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med 2008, 205:1049–1062.PubMedCrossRefGoogle Scholar
  33. 33.
    Takedatsu H, Michelsen KS, Wei B, et al.: TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology 2008, 135:552–567.PubMedCrossRefGoogle Scholar
  34. 34.
    Korn T, Bettelli E, Gao W, et al.: IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007, 448:484–487.PubMedCrossRefGoogle Scholar
  35. 35.
    Nurieva R, Yang XO, Martinez G, et al.: Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007, 448:480–483.PubMedCrossRefGoogle Scholar
  36. 36.
    Fina D, Sarra M, Fantini MC, et al.: Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008, 134:1038–1048.PubMedCrossRefGoogle Scholar
  37. 37.
    Mangan PR, Harrington LE, O’Quinn DB, et al.: Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 2006, 441:231–234.PubMedCrossRefGoogle Scholar
  38. 38.
    Yen D, Cheung J, Scheerens H, et al.: IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006, 116:1310–1316.PubMedCrossRefGoogle Scholar
  39. 39.
    Migone TS, Zhang J, Luo X, et al.: TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 2002, 16:479–492.PubMedCrossRefGoogle Scholar
  40. 40.
    Papadakis KA, Prehn JL, Landers C, et al.: TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol 2004, 172:7002–7007.PubMedGoogle Scholar
  41. 41.
    Prehn JL, Mehdizadeh S, Landers CJ, et al.: Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clin Immunol 2004, 112:66–77.PubMedCrossRefGoogle Scholar
  42. 42.
    Bamias G, Martin C 3rd, Marini M, et al.: Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol 2003, 171:4868–4874.PubMedGoogle Scholar
  43. 43.
    Tremelling M, Berzuini C, Massey D, et al.: Contribution of TNFSF15 gene variants to Crohn’s disease susceptibility confirmed in UK population. Inflamm Bowel Dis 2008, 14:733–737.PubMedCrossRefGoogle Scholar
  44. 44.
    Picornell Y, Mei L, Taylor K, et al.: TNFSF15 is an ethnicspecific IBD gene. Inflamm Bowel Dis 2007, 13:1333–1338.PubMedCrossRefGoogle Scholar
  45. 45.
    Michelsen KS, Thomas LS, Taylor KD, et al.: TL1A haplotypes associated with severe Crohn’s Disease (CD) determine increased protein expression [abstract]. Gastroenterology 2008, 134:P–31.CrossRefGoogle Scholar
  46. 46.
    Prehn JL, Thomas LS, Landers CJ, et al.: The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol 2007, 178:4033–4038.PubMedGoogle Scholar
  47. 47.
    Shih DQ, Kwan LY, Chang EY, et al.: Mechanism of induction of inflammatory bowel disease associated gene TL1A by microbes in antigen presentation cells [abstract]. Gastroenterology 2008, 134:P–42.CrossRefGoogle Scholar
  48. 48.
    Saruta M, Michelsen KS, Yu Q, et al.: TLR8 signaling inhibits the expression of the IBD-associated cytokine TL1A in human monocytes [abstract]. Gastroenterology 2008, 134:A–506.CrossRefGoogle Scholar
  49. 49.
    Papadakis KA, Zhu D, Prehn JL, et al.: Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol 2005, 174:4985–4990.PubMedGoogle Scholar
  50. 50.
    Fang L, Adkins B, Deyev V, et al.: Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med 2008, 205:1037–1048.PubMedCrossRefGoogle Scholar
  51. 51.
    Meylan F, Davidson TS, Kahle E, et al.: The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity 2008, 29:79–89.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David Q. Shih
    • 1
  • Stephan R. Targan
  • Dermot McGovern
  1. 1.Cedars-Sinai Inflammatory Bowel Disease CenterLos AngelesUSA

Personalised recommendations