Current Gastroenterology Reports

, Volume 10, Issue 5, pp 443–449 | Cite as

The measurement and clinical significance of intestinal permeability

  • Christopher W. Teshima
  • Jon B. MeddingsEmail author


This article discusses the concept of intestinal permeability and the barrier function of the gut, elaborates on tight junction structure and the dynamic nature of its composition, outlines the methods for evaluating intestinal permeability, and explores abnormal intestinal permeability in clinical disease, emphasizing its possible role in the pathogenesis of autoimmune conditions. Evidence is provided from several representative diseases for a proposed model of abnormal intestinal permeability in autoimmune disease, including a description of a molecular pathway involving a signaling protein called zonulin, which appears to regulate intestinal permeability. Finally, we speculate on mechanisms that may be responsible for increasing intestinal permeability and consider clinical implications.


Tight Junction Celiac Disease Dextran Sulfate Sodium Lactulose Intestinal Permeability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Recommended Reading

  1. 1.
    Claude P, Goodenough DA: Fracture faces of zonulae occludentes from tight and leaky epithelia. J Cell Biol 1973, 58:390–400.PubMedCrossRefGoogle Scholar
  2. 2.
    Cereijido M, Contreras RG, Flores-Benitez D, et al.: New diseases derived or associated with the tight junction. Arch Med Res 2007, 38:465–478.PubMedCrossRefGoogle Scholar
  3. 3.
    Koval M: Claudins—key pieces in the tight junction puzzle. Cell Commun Adhes 2006, 13: 127–138.PubMedCrossRefGoogle Scholar
  4. 4.
    Itoh M, Furuse M, Morita K, et al.: Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999, 147:1351–1363.PubMedCrossRefGoogle Scholar
  5. 5.
    Saitou M, Furuse M, Sasaki H, et al.: Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000, 11:4131–4142.PubMedGoogle Scholar
  6. 6.
    Arrieta MC, Bistritz L, Meddings JB: Alterations in intestinal permeability. Gut 2006, 55:1512–1520.PubMedCrossRefGoogle Scholar
  7. 7.
    Shen L, Turner JR: Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol 2006, 290:G577–G582.PubMedCrossRefGoogle Scholar
  8. 8.
    Fujita K, Katahira J, Horiguchi Y, et al.: Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 2000, 476:258–261.PubMedCrossRefGoogle Scholar
  9. 9.
    Wang W, Uzzau S, Goldblum SE, et al.: Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci 2000, 113:4435–4440.PubMedGoogle Scholar
  10. 10.
    Bjarnason I, Macpherson A, Hollander D: Intestinal permeability: an overview. Gastroenterology 1995, 108:1566–1581.PubMedCrossRefGoogle Scholar
  11. 11.
    Meddings JB, Sutherland LR, Byles NI, et al.: Sucrose: a novel permeability marker for gastroduodenal disease. Gastroenterology 1993, 104:1619–1626.PubMedGoogle Scholar
  12. 12.
    Meddings JB, Gibbons I: Discrimination of site-specific alterations in gastrointestinal permeability in the rat. Gastroenterology 1998, 114:83–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Fihn BM, Sjoqvist A, Jodal M: Permeability of the rat small intestinal epithelium along the villus-crypt axis: effects of glucose transport. Gastroenterology 2000, 119:1029–1036.PubMedCrossRefGoogle Scholar
  14. 14.
    Scott FW: Food-induced type 1 diabetes in the BB rat. Diabetes Metab Rev 1996, 12:341–359.PubMedCrossRefGoogle Scholar
  15. 15.
    Meddings JB, Jarand J, Urbanski SJ, et al.: Increased gastrointestinal permeability as an early lesion in the spontaneously diabetic BB rat. Am J Physiol 1999, 276:G951–G957.PubMedGoogle Scholar
  16. 16.
    Watts T, Berti I, Sapone A, et al.: Role of the intestinal tight junction modulator zonulin in the pathogenesis of type 1 diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A 2005, 102:2916–2921.PubMedCrossRefGoogle Scholar
  17. 17.
    Clemente MG, De Virgilis S, Kang JS, et al.: Early effects of gliadin on enterocyte intracellular signaling involved in intestinal barrier function. Gut 2003, 52:218–223.PubMedCrossRefGoogle Scholar
  18. 18.
    Barbeau WE, Bassaganya-Riera J, Hontecillas R: Putting the pieces of the puzzle together—a series of hypotheses on the etiology and pathogenesis of type 1 diabetes. Med Hypotheses 2007, 68:607–619.PubMedCrossRefGoogle Scholar
  19. 19.
    Secondulfo M, Iafusco D, Carratu R, et al.: Ultrastructural mucosal alterations and increased permeability in non-celiac, type 1 diabetic patients. Dig Liver Dis 2004, 36:35–45.PubMedCrossRefGoogle Scholar
  20. 20.
    Sapone A, De Magistris L, Pietzak M, et al.: Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes 2006, 55:1443–1449.PubMedCrossRefGoogle Scholar
  21. 21.
    Bosi E, Molteni L, Radaelli MG, et al.: Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006, 49:2824–2827.PubMedCrossRefGoogle Scholar
  22. 22.
    Wyatt J, Oberhuber G, Pongratz S, et al.: Increased gastric and intestinal permeability in patients with Crohn’s disease. Am J Gastroenterology 1997, 92:1891–1896.Google Scholar
  23. 23.
    Sanderson IR, Boulton P, Menzies I, et al.: Improvement of abnormal lactulose/rhamnose permeability in active Crohn’s disease of the small bowel by an elemental diet. Gut 1987, 28:1073–1076.PubMedCrossRefGoogle Scholar
  24. 24.
    Wyatt J, Vogelsang H, Hubl W, et al.: Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet 1993, 341:1437–1439.PubMedCrossRefGoogle Scholar
  25. 25.
    Miele E, Pascarella F, Quaglietta L, et al.: Altered intestinal permeability is predictive of early relapse in children with steroid-responsive ulcerative colitis. Aliment Pharmacol Ther 2007, 25:933–939.PubMedCrossRefGoogle Scholar
  26. 26.
    Hollander D, Vadheim CM, Brettholz E, et al.: Increased intestinal permeability in patients with Crohn’s disease and their relatives. A possible etiologic factor. Ann Intern Med 1986, 105:883–885.PubMedGoogle Scholar
  27. 27.
    May GR, Sutherland LR, Meddings JB: Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 1993, 104:1627–1632.PubMedGoogle Scholar
  28. 28.
    D’Inca R, Annese V, di Leo V, et al.: Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn’s disease. Aliment Pharmacol Ther 2006, 23:1455–1461.PubMedCrossRefGoogle Scholar
  29. 29.
    Buhner S, Buning C, Genschel J, et al.: Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut 2006, 55:342–347.PubMedCrossRefGoogle Scholar
  30. 30.
    Heller F, Florian P, Bojarski C, et al.: Interleukin-13 is the key effector th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005, 129:550–564.PubMedGoogle Scholar
  31. 31.
    Amasheh S, Meiri N, Gitter AH, et al.: Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 2002, 115:4969–4976.PubMedCrossRefGoogle Scholar
  32. 32.
    Poritz LS, Garver KI, Green C, et al.: Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res 2007, 140:12–19.PubMedCrossRefGoogle Scholar
  33. 33.
    Zeissig S, Burgel N, Gunzel D, et al.: Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 2007, 56:61–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Van Heel DA, Hunt K, Greco L, et al.: Genetics in celiac disease. Best Pract Res Clin Gastroenterol 2005, 19:323–329.PubMedCrossRefGoogle Scholar
  35. 35.
    Matysiak-Budnik T, Candalh C, Dugave C, et al.: Alterations of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterology 2003, 125:696–707.PubMedCrossRefGoogle Scholar
  36. 36.
    Fasano A, Not T, Wang W, et al.: Zonulin, a newly discovered modulator of intestinal permeability, and its expression in celiac disease. Lancet 2000, 355:1518–1519.PubMedCrossRefGoogle Scholar
  37. 37.
    Duerksen DR, Wilhelm-Boyles C, Parry DM: Intestinal permeability in long-term follow-up of patients with celiac disease on a gluten-free diet. Dig Dis Sci 2005, 50:785–790.PubMedCrossRefGoogle Scholar
  38. 38.
    Vilela EG, de Abreu Ferrari ML, de Gama Torres HO, et al.: Intestinal permeability and antigliadin antibody test for monitoring adult patients with celiac disease. Dig Dis Sci 2007, 52:1304–1309.PubMedCrossRefGoogle Scholar
  39. 39.
    Hall EJ, Batt RM: Abnormal permeability precedes the development of a gluten sensitive enteropathy in Irish setter dogs. Gut 1991, 32:749–753.PubMedCrossRefGoogle Scholar
  40. 40.
    Smecuol E, Sugai E, Niveloni S, et al.: Permeability, zonulin production, and enteropathy in dermatitis herpetiformis. Clin Gastroenterol Hepatol 2005, 3:335–341.PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas KE, Sapone A, Fasano A, et al.: Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in celiac disease. J Immunol 2006, 176:2512–2521.PubMedGoogle Scholar
  42. 42.
    Drago S, El Asmar R, Di Pierro M, et al.: Gliadin, zonulin and gut permeability: effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol 2006, 41:408–419.PubMedCrossRefGoogle Scholar
  43. 43.
    Kiesslich R, Goetz M, Angus EA, et al.: Identification of epithelial gaps in human small and large intestine by confocal endomicroscopy. Gastroenterology 2007, 133:1769–1778.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Medicine2F1.30 Walter C Mackenzie Health Sciences CentreEdmontonCanada

Personalised recommendations