Current Gastroenterology Reports

, Volume 8, Issue 3, pp 215–223 | Cite as

Liver transplantation for non-hepatotoxic inborn errors of metabolism

  • William R. Treem


Hepatic-based inborn errors of metabolism are targets for treatment with liver transplantation in children, in whom the metabolic defect causes irreversible damage to the liver. However, certain metabolic defects originate with enzyme deficiencies localized in the liver but then give rise to toxic intermediates that damage extrahepatic organs without any significant compromise of general liver function. Here, the rationale of using liver transplantation to replace an organ that is functioning normally except for a specific metabolic pathway raises difficult questions about indications for transplantation, timing, amount of replacement tissue needed to correct the defect, and whether heterozygote parents are suitable living donors for liver transplantation in their affected children. This review explores these questions and others, including the role of hepatocyte transplantation, in this select group of disorders. Until the promise of specific gene or enzyme replacement therapy is realized, liver and hepatocyte transplantation offers the best chance of achieving metabolic control in these challenging patients.


Liver Transplantation Glycogen Storage Disease Glycogen Storage Disease Type Primary Hyperoxaluria Urea Cycle Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and recommended reading

  1. 1.
    McDiarmid SV, Millis MJ, Olthoff KM, So SK: Indications for pediatric liver transplantation. Pediatr Transplantation 1998, 2:106–116.Google Scholar
  2. 2.
    Burdelski M: Liver transplantation in metabolic diseases: current status. Pediatr Transplant 2002, 6:361–365.PubMedCrossRefGoogle Scholar
  3. 3.
    Kayler LK, Merion RM, Lee S, et al.: Long-term survival after liver transplantation in children with metabolic disorders. Pediatr Transplant, 2002, 6:295–300.PubMedCrossRefGoogle Scholar
  4. 4.
    Meyburg J, Hoffmann GF: Liver transplantation for inborn errors of metabolism. Transplantation 2005, 80:S135-S137. This paper examines some of the important issues and questions unique to consideration of liver transplantation in this group of rare inborn errors of metabolism.PubMedCrossRefGoogle Scholar
  5. 5.
    McBride K, Miller G, Carter S et al.: Developmental outcomes with early orthotopic liver transplantation for infants with neonatal-onset urea cycle defects and a female patient with late-onset ornithine transcarbamylase deficiency. Pediatrics 2004, 114:523–526.CrossRefGoogle Scholar
  6. 6.
    Bachmann C: Long-term outcome of patients with urea cycle disorders and the question of neonatal screening. Eur J Pediatr 2003, 162:S29-S34.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee B, Goss J: Long-term correction of urea cycle disorders. J Pediatr, 2001, 138:S62-S71.PubMedCrossRefGoogle Scholar
  8. 8.
    Whitington PF, Alonso EM, Boyle JT, et al.: Liver transplantation for the treatment of urea cycle disorders. J Inherit Metab Dis 1998, 21:112–118.PubMedCrossRefGoogle Scholar
  9. 9.
    Leonard J, McKiernan P: The role of liver transplantation in urea cycle disorders. Mole Genet Metab 2004: 81:S74-S78. Good review of the experience to date with liver transplantation in urea cycle defects summarizing some of the pitfalls and complications in this challenging group of patients.CrossRefGoogle Scholar
  10. 10.
    Dhawan A, Mitry R, Hughes R. Hepatocyte transplantation for metabolic disorders, experience at Kings College hospital and review of the literature. Acta Gastroenterol Belg 2005, 68:457–460. This paper is a good review of the authors’ experience at a premier institution for pediatric hepatology and a review of the literature concerning the use of hepatocyte transplantation in the clinical setting.PubMedGoogle Scholar
  11. 11.
    Horslen S, McCowan T, Goertzen T, et al.: Isolated hepatocyte transplantation in an infant with a severe urea cycle disorder. Pediatrics 2003, 111:1262–1267.PubMedCrossRefGoogle Scholar
  12. 12.
    Stephenne X, Najimi S, Smets F, et al.: Cryopreserved liver cell transplantation controls ornithine transcarbamylase deficient patient while awaiting liver transplantation. Am J Transplant 2005, 5:2058–2061.PubMedCrossRefGoogle Scholar
  13. 13.
    Smets F: Results of liver cell transplantation in urea cycle disorders. Acta Gastroenterol Belg, 2005, 48:479–480.Google Scholar
  14. 14.
    Nagasaka H, Yorifuji T, Egawa H et al.: Successful livingdonor liver transplantation from asymptomatic carrier mother in ornithine transcarbamylase deficiency. J Pediatr 2001, 138:432–434.PubMedCrossRefGoogle Scholar
  15. 15.
    Morioka D, Takada Y, Kasahara M, et al.: Living donor liver transplantation for noncirrhotic inheritable metabolic liver diseases: Impact of the use of heterozygous donors. Transplantation 2005, 80:623–628. An excellent synopsis of a large experience of the use of obligate heterozygote parents as donors for living related liver transplantation in their children.PubMedCrossRefGoogle Scholar
  16. 16.
    Fletcher J, Couper R, Moore K, et al.: Liver transplantation for citrullinemia improves intellectual function. J Inherit Metab Dis 1999, 22:581–586.PubMedCrossRefGoogle Scholar
  17. 17.
    Ensenauer R, Tuchman M, El-Youssef M et al.: Management and outcome of neonatal-onset ornithine transcarbamylase deficiency following liver transplantation at 60 days of life. Mol Genet Metab 2005, 84:363–366.PubMedCrossRefGoogle Scholar
  18. 18.
    Noujaim H, Mayer D, Buckles S, et al.: Techniques for and outcome of liver transplantation in neonates and infants weighing up to 5 kg. J Pediatr Surg 2002, 37:159–164.PubMedCrossRefGoogle Scholar
  19. 19.
    Lehnert W, Sperl W, Suormala T, Baumgartner ER: Propionic academia: clinical, biochemical and therapeutic aspects: experience in 30 patients. Eur J Pediatr 1994, 153:S68-S71.PubMedCrossRefGoogle Scholar
  20. 20.
    Ogier De, Baulny H: Progress and pitfalls in organic aciduria. Acta Gastroenterol Belg 2005, 48:477–478.Google Scholar
  21. 21.
    Leonard JV, Walter J, McKiernan P: The management of organic acidemias: The role of transplantation. J Inherit Metab Dis 2001, 24:309–314.PubMedCrossRefGoogle Scholar
  22. 22.
    YorifujYi T, Muroi J, Uematsu A, Nakahata T, et al.: Living-related liver transplantation for neonatal-onset propionic acidemia. J Pediatr, 2000, 137:572–4.CrossRefGoogle Scholar
  23. 23.
    Chakrapani A, Sivakumar P, McKiernan PJ, Leonard JV: Metabolic stroke in methylmalonic acidemia five years after liver transplantation. J Pediatr, 2002, 140:261–263.PubMedCrossRefGoogle Scholar
  24. 24.
    Nyhan WL, Gargus J, Boyle K, et al.: Progressive neurologic disability inmethylmalonic acidemia despite transplantation of the liver. Eur J Pediatr 2002, 161:377–381.PubMedCrossRefGoogle Scholar
  25. 25.
    Matern D, Starzl TE, Arnaout W, et al.: Liver transplantation for glycogen storage disease types I, III, and IV. Eur J Pediatr, 1999, 158:S43-S48.PubMedCrossRefGoogle Scholar
  26. 26.
    Labrune P, Tioche P, Duvaltier I, et al.: Hepatocellular adenomas in glucogen storage disease type I and III. J Pediatr Gastroenterol Nutr 1997: 24:276–279.PubMedCrossRefGoogle Scholar
  27. 27.
    Bao Y, Kishnani P, Wu JY, Chen YT: Hepatic and neuromuscular forms of glycogen storage disease type IV caused by mutations in the same glycogen-branching enzyme gene. J Clin Invest 1996, 97:941–948.PubMedCrossRefGoogle Scholar
  28. 28.
    Muraca M, Burlina AB: Liver and liver cell transplantation for glycogen storage disease type Ia. Acta Gastroenterol Belg 2005, 48:469–472.Google Scholar
  29. 29.
    Faivre L, Houssin D, Valayer J, et al.: Long-term outcome of liver transplantation in patients with glycogen storage disease type Ia. J Inherit Metab Dis, 1999, 22:723–732.PubMedCrossRefGoogle Scholar
  30. 30.
    Leonard J, Ullrich K, Smit P: Guidelines for management of glycogen storage disease type I-European study on glycogen storage disease type I (ESGSD I). Eur J Pediatr 2002, 161:S112-S119.PubMedCrossRefGoogle Scholar
  31. 31.
    LaBrune P: Glycogen storage disease type I: indications for liver and/or kidney transplantation. Eur J Pediatr 2002:161:S53-S55.PubMedCrossRefGoogle Scholar
  32. 32.
    Martinez-Olmos MA, Lopez-Sanroman A, Martin-Vaquero P, et al.: Liver transplantation for type Ib glycogenosis with reversal of cyclic neutropenia. Clin Nutr, 2001, 20:375–377.PubMedCrossRefGoogle Scholar
  33. 33.
    Bhattacharya K, Heaton N, Rela M, et al.: The benefits of liver transplantation in glycogenosis type Ib. J Inherit Metab Dis 2004, 27:539–540.PubMedCrossRefGoogle Scholar
  34. 34.
    Muraca M, Gerunda G, Neri D, et al.: Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 2002, 359:317–318.PubMedCrossRefGoogle Scholar
  35. 35.
    van der Veere CN, Sinaasappel M, McDonagh AF, et al.: Current therapy for Crigler-Najjar syndrome type 1: report of a world registry. Hepatology 1996, 24:311–315.PubMedCrossRefGoogle Scholar
  36. 36.
    Whitington PF, Emond JC, Heffron T, Thistlethwaite JR: Orthotopic auxiliary liver transplantation for Crigler-Najjar syndrome type 1. Lancet, 1993, 342:779–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Sokal EM, Silva ES, Hermans D, et al.: Orthotopic liver transplantation for Crigler-Najjar type I disease in six children. Transplantation 1995, 60:1095–1098.PubMedCrossRefGoogle Scholar
  38. 38.
    Rela M, Muiesan P, Vilca-Melendez H, Dhawan A, et al.: Auxiliary partial orthotopic liver transplantation for Crigler-Najjar syndrome type I. Ann Surg, 1999, 229:565–569.PubMedCrossRefGoogle Scholar
  39. 39.
    Schauer R, Lang T, Zimmermann A, et al.: Successful liver transplantation of two brothers with crigler-najjar syndrome type 1 using a single cadaveric organ. Transplantation, 2002, 73:67–69.PubMedCrossRefGoogle Scholar
  40. 40.
    Beckman D, Broering L, Fischer C et al.: Sequelae of underlying disease and posttransplant complications in liver transplantation for metabolic disorders [abstract]. Acta Gastroenterol Belg 2005, 48:488.Google Scholar
  41. 41.
    Ng VL, Alonso M, Bezerra JA: Hepatocyte transplantation. Advancing biology and treating children. Clin Liver Dis 2000, 4:929–945.PubMedCrossRefGoogle Scholar
  42. 42.
    Fox IJ, Roy Chowdhury J, Kaufmann SS: Treatment of the Crigler-Najjar Syndrome type I with hepatocyte transplantation. N Engl J Med, 1998, 338:1422–1426.PubMedCrossRefGoogle Scholar
  43. 43.
    Ambrosino G, Varotto S, Strom SC, et al.: Isolated hepatocyte transplantation for Crigler-Najjar syndrome type I. Cell Transplant 2005, 14:151–157.PubMedGoogle Scholar
  44. 44.
    Danpure CJ: Advances in the enzymology and molecular genetics of primary hyperoxaluria type 1. Prospects for gene therapy. Nephrol Dial Transplant, 1995, 10(Suppl 8):24–29.PubMedGoogle Scholar
  45. 45.
    Gluck T, Kramer BK, Zulke C, et al.: Late onset primary oxalosis type I: an uncommon presentation of a rare disease. Eur J Gastroenterol Hepatol, 1998, 10:809–812.PubMedCrossRefGoogle Scholar
  46. 46.
    Broyer M, Brunner FP, Brynger H, et al.: Kidney transplantation in primary oxalosis: data from the EDTA Registry. Nephrol Dial Transplant 1990, 5:332–336.PubMedGoogle Scholar
  47. 47.
    Scheinman JI: Recent data on results of isolated kidney or combined kidney/liver transplantation in the U.S.A. for primary hyperoxaluria. J Nephrol 1998, 11:42–45.PubMedGoogle Scholar
  48. 48.
    Nolkemper D, Kemper MJ, Burdelski M, et al.: Long-term results of pre-emptive liver transplantation in primary hyperoxaluria type 1. Pediatr Transplant 2000, 4:177–181.PubMedCrossRefGoogle Scholar
  49. 49.
    Watts RW, Calne RY, William R, et al.: Primary hyperoxaluria type I: Attempted treatment by combined hepatic and renal transplantation. Q J Med 1985, 57:697–705.PubMedGoogle Scholar
  50. 50.
    Shapiro R, Weismann I, Mandel H, et al.: Primary hyperoxaluria type 1: improved outcome with timely liver transplantation: a single-center report of 36 children. Transplantation 2001, 72:428–432.PubMedCrossRefGoogle Scholar
  51. 51.
    Gagnadoux MF, Lacaille F, Niaudet P, et al.: Long term results of liver-kidney transplantation in children with primary hyperoxaluria. Pediatr Nephrol, 2001, 16:946–950.PubMedCrossRefGoogle Scholar
  52. 52.
    Millan MT, Berquist W, So SK et al.: One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: A single-center experience. Transplantation 2003, 76:1458–1463. Summary report of six patients managed with early combined liver/kidney transplantation and a review of the literature pointing out the advantages of early pre-emptive transplantation in primary hyperoxaluria.PubMedCrossRefGoogle Scholar
  53. 53.
    Jamieson NV, European PH1 Transplantation Study Group: A 20 year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984–2004. Am J Nephrol 2005, 25:282–289.PubMedCrossRefGoogle Scholar
  54. 54.
    Detry O, Honore P, DeRoover A, et al.: Reversal of oxalosis cardiomyopathy after combined liver and kidney transplantation. Transpl Int, 2002, 15:50–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Starzl TE, Bilheimer DW, Bahnson HT, et al.: Heart-liver transplantation in a patient with familial hypercholesterolemia. Lancet 1984, 1:1382–1383.PubMedCrossRefGoogle Scholar
  56. 56.
    Revell SP, Noble-Jamieson G, Johnston P et al.: Liver transplantation for homozygous familial hypercholesterolemia. Arch Dis Child 1995, 73:456–458.PubMedCrossRefGoogle Scholar
  57. 57.
    Lopez-Santamaria M, Migliazza L, Gamez M, et al.: Liver transplantation in patients with homozygotic familial hypercholesterolemia previously treated by end-to-side portocaval shunt and ileal bypass. J Pediatr Surg 2000, 35:630–633.PubMedCrossRefGoogle Scholar
  58. 58.
    Shrotri M, Fernando B, Sudhindran S et al.: Long-term outcome of liver transplantation for familial hypercholesterolemia. Transplant Proc 2003, 35:381–382.PubMedCrossRefGoogle Scholar
  59. 59.
    Shirahata Y, Ohkohchi N, Kawagishi N, et al.: Livingdonor liver transplantation for homozygous familial hypercholesterolemia from a donor with heterozygous hypercholesterolemia. Transpl Int 2003, 16:276–279.PubMedCrossRefGoogle Scholar
  60. 60.
    Marler RA, Montgomery R, Brockmans AW and the Working Party: Diagnosis and treatment of homozygous protein C deficiency. J Pediatr 1989, 114:528–534.CrossRefGoogle Scholar
  61. 61.
    Casella J, Bontempo F, Markel H, et al.: Successful treatment of homozygous protein C deficiency by hepatic transplantation. Lancet 1988, 1:435–438.PubMedCrossRefGoogle Scholar
  62. 62.
    Angelis M, Pegelow C, Khan F, et al.: En bloc heterotopic auxiliary liver and bilateral renal transplant in a patient with homozygous protein C deficiency. J Pediatr 2001, 138:120–122.PubMedCrossRefGoogle Scholar
  63. 63.
    Florman S, Fishbein T, Schiano T, et al.: Multivisceral transplantation for portal hypertension and diffuse mesenteric thrombosis caused by protein C deficiency. Transplantation 2002, 74:406–408.PubMedCrossRefGoogle Scholar
  64. 64.
    Dhawan A, Mitry R, Hughes RD, et al.: Hepatocyte transplantation for inherited factor VII deficiency. Transplant 2004, 78:1812–1814.CrossRefGoogle Scholar
  65. 65.
    Van Maldergem L, Moser AB, Vincent M, et al.: Orthotopic liver transplantation from a living-related donor in an infant with a peroxisome biogenesis defect of the infantile Refsum disease type. J Inherit Metab Dis 2005, 28:593–600.PubMedCrossRefGoogle Scholar
  66. 66.
    Grossman M, Rader D, Muller D et al.: A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolemia. Nat Med 1995, 1:1148–1154. This paper reports the beginning of the next frontier in gene replacement therapy of liver-based metabolic disorders. It describes a pilot study of ex vivo transfection of hepatocytes removed from patients affected by familial hypercholesterolemia with normal human genes for the LDL receptor, and then retransplantation of the modified autologous hepatocytes.PubMedCrossRefGoogle Scholar

Copyright information

© Current Science Inc 2006

Authors and Affiliations

  1. 1.Division of Pediatric Gastroenterology, Hepatology, and NutritionSUNY Downstate Medical CenterBrooklynUSA

Personalised recommendations