Current Diabetes Reports

, 19:137 | Cite as

Emerging Concepts in the Treatment of Diabetic Retinopathy

  • Michael Patrick Ellis
  • Daniella Lent-Schochet
  • Therlinder Lo
  • Glenn YiuEmail author
Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Retinopathy


Purpose of Review

Diabetic retinopathy (DR) is the leading cause of vision loss in working-age adults in the developed world. This review discusses the current approach to managing the disease, such as glycemic and blood pressure control, as well as laser photocoagulation, as well as emerging concepts and controversies on novel therapies.

Recent Findings

In recent years, the rise of intraocular anti-angiogenesis treatments is changing the paradigm of classic laser photocoagulation in the management of DR, but its long-term benefits remain an area of controversy. We also discuss new targets including anti-inflammation, neuroprotection, and novel laser technologies. Finally, we discuss new advances in retinal imaging that has vastly improved the diagnosis and management of DR.


Diagnosis and management of diabetic retinopathy is a rapidly progressing field. Emerging concepts in ophthalmic imaging, medical treatments, and surgical approaches provide insights into how DR management will evolve in the near future.


Diabetic retinopathy Blood pressure Glycemic control 


Funding Information

Glenn Yiu GY received research support from Alcon, Clearside Biomedical, Genentech, and Iridex, and is a consultant for Allergan, Alimera, Carl Zeiss Meditec, and Genentech.

Compliance with Ethical Standards

Conflict of Interest

Michael Patrick Ellis, Daniella Lent-Schochet, and Therlinder Lo declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–36.PubMedGoogle Scholar
  2. 2.
    Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.PubMedGoogle Scholar
  3. 3.
    Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.CrossRefGoogle Scholar
  4. 4.
    Lightman S, Towler HM. Diabetic retinopathy. Clin Cornerstone. 2003;5(2):12–21.PubMedGoogle Scholar
  5. 5.
    Wong TY, Sun J, Kawasaki R, Ruamviboonsuk P, Gupta N, Lansingh V, et al. Guidelines on diabetic eye care: The International Council of Ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology. 2018;125(10):1608–22.PubMedGoogle Scholar
  6. 6.
    Progression of retinopathy with intensive versus conventional treatment in the Diabetes Control and Complications Trial. Diabetes Control and Complications Trial Research Group. Ophthalmology. 1995;102(4):647–61.Google Scholar
  7. 7.
    Barr CC. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive insulin therapy, by The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N. Engl. J. Med 342:381-9, 2000. Surv Ophthalmol. 2001;45(5):459–60.PubMedGoogle Scholar
  8. 8.
    Diabetes C, Complications Trial Research G, Nathan DM, Genuth S, Lachin J, Cleary P, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329(14):977–986.Google Scholar
  9. 9.
    Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.Google Scholar
  10. 10.
    King P, Peacock I, Donnelly R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol. 1999;48(5):643–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Writing Team for the Diabetes C, Complications Trial/Epidemiology of Diabetes I, Complications Research G. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA. 2002;287(19):2563–9.Google Scholar
  12. 12.
    Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366(9500):1849–61.PubMedGoogle Scholar
  13. 13.
    Keech AC, Mitchell P, Summanen PA, O'Day J, Davis TM, Moffitt MS, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370(9600):1687–97.PubMedGoogle Scholar
  14. 14.
    Group AS, Group AES, Chew EY, Ambrosius WT, Davis MD, Danis RP, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.Google Scholar
  15. 15.
    Kriska AM, LaPorte RE, Patrick SL, Kuller LH, Orchard TJ. The association of physical activity and diabetic complications in individuals with insulin-dependent diabetes mellitus: the Epidemiology of Diabetes Complications Study--VII. J Clin Epidemiol. 1991;44(11):1207–14.PubMedGoogle Scholar
  16. 16.
    Klein BE, Klein R, Moss SE, Palta M. A cohort study of the relationship of diabetic retinopathy to blood pressure. Arch Ophthalmol. 1995;113(5):601–6.PubMedGoogle Scholar
  17. 17.
    Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317(7160):703–13.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Sjolie AK, Chaturvedi N. The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy. J Hum Hypertens. 2002;16(Suppl 3):S42–6.PubMedGoogle Scholar
  19. 19.
    Wang B, Wang F, Zhang Y, Zhao SH, Zhao WJ, Yan SL, et al. Effects of RAS inhibitors on diabetic retinopathy: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3(4):263–74.PubMedGoogle Scholar
  20. 20.
    Matthews DR, Stratton IM, Aldington SJ, Holman RR, Kohner EM, Group UKPDS. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Ophthalmol. 2004;122(11):1631–40.PubMedGoogle Scholar
  21. 21.
    Preliminary report on effects of photocoagulation therapy. The Diabetic Retinopathy Study Research Group. Am J Ophthalmol. 1976;81(4):383–96.Google Scholar
  22. 22.
    Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology. 1978;85(1):82–106.Google Scholar
  23. 23.
    Photocoagulation treatment of proliferative diabetic retinopathy. Clinical application of Diabetic Retinopathy Study (DRS) findings, DRS Report Number 8. The Diabetic Retinopathy Study Research Group. Ophthalmology. 1981;88(7):583–600.Google Scholar
  24. 24.
    Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991;98(5 Suppl):741–56.Google Scholar
  25. 25.
    Techniques for scatter and local photocoagulation treatment of diabetic retinopathy: Early Treatment Diabetic Retinopathy Study Report no. 3. The Early Treatment Diabetic Retinopathy Study Research Group. Int Ophthalmol Clin. 1987;27(4):254–64.Google Scholar
  26. 26.
    Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 2007;27(7):816–24.PubMedGoogle Scholar
  27. 27.
    G. T. Preferences and Trends (PAT ) Survey. American Society of Retinal Surgeons. 2016.Google Scholar
  28. 28.
    Brown DM, Nguyen QD, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology. 2013;120(10):2013–22.PubMedGoogle Scholar
  29. 29.
    Ip MS, Domalpally A, Sun JK, Ehrlich JS. Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. Ophthalmology. 2015;122(2):367–74.PubMedGoogle Scholar
  30. 30.
    Campochiaro PA, Wykoff CC, Shapiro H, Rubio RG, Ehrlich JS. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular edema. Ophthalmology. 2014;121(9):1783–9.PubMedGoogle Scholar
  31. 31.
    Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther. 2009;16(5):645–59.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2010;117(6):1064–77.e35.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Bressler SB, Qin H, Melia M, Bressler NM, Beck RW, Chan CK, et al. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013;131(8):1033–40.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, Antoszyk AN, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy. JAMA. 2015;314(20):2137.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Michaelides M, Kaines A, Hamilton RD, Fraser-Bell S, Rajendram R, Quhill F, et al. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT study) 12-month data: report 2. Ophthalmology. 2010;117(6):1078–86.e2.PubMedGoogle Scholar
  36. 36.
    Heier JS, Korobelnik JF, Brown DM, Schmidt-Erfurth U, Do DV, Midena E, et al. Intravitreal aflibercept for diabetic macular edema: 148-week results from the VISTA and VIVID studies. Ophthalmology. 2016;123(11):2376–85.PubMedGoogle Scholar
  37. 37.
    Sivaprasad S, Prevost AT, Vasconcelos JC, Riddell A, Murphy C, Kelly J, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, n. Lancet. 2017;389(10085):2193–203.PubMedGoogle Scholar
  38. 38.
    CC W. Intravitreal aflibercept for moderately severe to severe non-proliferative diabetic retinopathy (NPDR). The phase 3 PANORAMA study. Angiogenesis, exudation, and degeneration 2019; Feb. 9, 2019; Miami.Google Scholar
  39. 39.
    Banaee T, Ashraf M, Conti FF, Singh RP. Switching anti-VEGF drugs in the treatment of diabetic macular edema. Ophthalmic Surg Lasers Imaging Retina. 2017;48(9):748–54.PubMedGoogle Scholar
  40. 40.
    Babiuch AS, Conti TF, Conti FF, Silva FQ, Rachitskaya A, Yuan A, et al. Diabetic macular edema treated with intravitreal aflibercept injection after treatment with other anti-VEGF agents (SWAP-TWO study): 6-month interim analysis. Int J Retina Vitreous. 2019;5:17.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Elman MJ, Bressler NM, Qin H, Beck RW, Ferris FL 3rd, Friedman SM, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2011;118(4):609–14.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372(13):1193–203.PubMedGoogle Scholar
  43. 43.
    Wells JA, Glassman AR, Ayala AR, Jampol LM, Bressler NM, Bressler SB, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology. 2016;123(6):1351–9.PubMedPubMedCentralGoogle Scholar
  44. 44.
    •• Bressler SB, Liu D, Glassman AR, Blodi BA, Castellarin AA, Jampol LM, et al. Change in diabetic retinopathy through 2 years. JAMA Ophthalmology. 2017;135(6):558. Findings from this study suggest anti-VEGF treatment with ranibizumab, bevacizumab or aflibercept of DME also shows improvement for DR to 2 years. A greater effect in patients with PDR was seen with aflibercept.PubMedPubMedCentralGoogle Scholar
  45. 45. Anti-VEGF treatment for prevention of PDR/DME [cited 2019. Available from:
  46. 46.
    Writing Committee for the Diabetic Retinopathy Clinical Research N, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA. 2015;314(20):2137–46.Google Scholar
  47. 47.
    Bressler SB, Liu D, Glassman AR, Blodi BA, Castellarin AA, Jampol LM, et al. Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol. 2017;135(6):558–68.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Baker CW, Glassman AR, Beaulieu WT, Antoszyk AN, Browning DJ, Chalam KV, et al. Effect of initial management with aflibercept vs laser photocoagulation vs observation on vision loss among patients with diabetic macular edema involving the center of the macula and good visual acuity: a randomized clinical trial. Jama. 2019;321(19):1880–94.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Wu L, Martinez-Castellanos MA, Quiroz-Mercado H, Arevalo JF, Berrocal MH, Farah ME, et al. Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefes Arch Clin Exp Ophthalmol. 2008;246(1):81–7.PubMedGoogle Scholar
  50. 50.
    Powers M, Greven M, Kleinman R, Nguyen QD, Do D. Recent advances in the management and understanding of diabetic retinopathy. F1000Res. 2017;6:2063.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Shah AR, Yonekawa Y, Todorich B, Van Laere L, Hussain R, Woodward MA, et al. Prediction of anti-VEGF response in diabetic macular edema after 1 injection. J Vitreoretin Dis. 2017;1(3):169–74.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Moon BG, Um T, Lee J, Yoon YH. Correlation between deep capillary plexus perfusion and long-term photoreceptor recovery after diabetic macular edema treatment. Ophthalmol Retina. 2018;2(3):235–43.PubMedGoogle Scholar
  53. 53.
    Todorich B, Yiu G, Hahn P. Current and investigational pharmacotherapeutic approaches for modulating retinal angiogenesis. Expert Rev Clin Pharmacol. 2014;7(3):375–91.PubMedGoogle Scholar
  54. 54.
    Obeid A, Su D, Patel SN, Uhr JH, Borkar D, Gao X, et al. Outcomes of eyes lost to follow-up with proliferative diabetic retinopathy that received panretinal photocoagulation versus intravitreal anti-vascular endothelial growth factor. Ophthalmology. 2019;126(3):407–13.PubMedGoogle Scholar
  55. 55.
    Yiu G, Manjunath V, Chiu SJ, Farsiu S, Mahmoud TH. Effect of anti-vascular endothelial growth factor therapy on choroidal thickness in diabetic macular edema. Am J Ophthalmol. 2014;158(4):745–51.e2.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Herrero-Vanrell R, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev. 2001;52(1):5–16.PubMedGoogle Scholar
  57. 57.
    Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol. 2002;86(4):363–5.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Noda K, Nakao S, Ishida S, Ishibashi T. Leukocyte adhesion molecules in diabetic retinopathy. J Ophthalmol. 2012;2012:279037.PubMedGoogle Scholar
  60. 60.
    Boyer DS, Yoon YH, Belfort R Jr, Bandello F, Maturi RK, Augustin AJ, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–14.PubMedGoogle Scholar
  61. 61.
    Danis RP, Sadda S, Li XY, Cui H, Hashad Y, Whitcup SM. Anatomical effects of dexamethasone intravitreal implant in diabetic macular oedema: a pooled analysis of 3-year phase III trials. Br J Ophthalmol. 2016;100(6):796–801.PubMedGoogle Scholar
  62. 62.
    Campochiaro PA, Brown DM, Pearson A, Chen S, Boyer D, Ruiz-Moreno J, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012;119(10):2125–32.PubMedGoogle Scholar
  63. 63.
    Emami-Naeini P, Yiu G. Medical and surgical applications for the suprachoroidal space. Int Ophthalmol Clin. 2019;59(1):195–207.PubMedGoogle Scholar
  64. 64.
    Wykoff CC, Khurana RN, Lampen SIR, Noronha G, Brown DM, Ou WC, et al. Suprachoroidal triamcinolone acetonide for diabetic macular edema: the HULK trial. Ophthalmol Retina. 2018;2(8):874–7.PubMedGoogle Scholar
  65. 65.
    Moisseiev E, Loewenstein A, Yiu G. The suprachoroidal space: from potential space to a space with potential. Clin Ophthalmol. 2016;10:173–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Yiu G, Pecen P, Sarin N, Chiu SJ, Farsiu S, Mruthyunjaya P, et al. Characterization of the choroid-scleral junction and suprachoroidal layer in healthy individuals on enhanced-depth imaging optical coherence tomography. JAMA Ophthalmol. 2014;132(2):174–81.PubMedGoogle Scholar
  67. 67.
    Willoughby AS, Vuong VS, Cunefare D, Farsiu S, Noronha G, Danis RP, et al. Choroidal changes after suprachoroidal injection of triamcinolone acetonide in eyes with macular edema secondary to retinal vein occlusion. Am J Ophthalmol. 2018;186:144–51.PubMedGoogle Scholar
  68. 68.
    Hernandez C, Bogdanov P, Corraliza L, Garcia-Ramirez M, Sola-Adell C, Arranz JA, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65(1):172–87.PubMedGoogle Scholar
  69. 69.
    Hernandez C, Bogdanov P, Sola-Adell C, Sampedro J, Valeri M, Genis X, et al. Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. Diabetologia. 2017;60(11):2285–98.PubMedGoogle Scholar
  70. 70.
    • Simo R, Hernandez C, Porta M, Bandello F, Grauslund J, Harding SP, et al. Effects of topically administered neuroprotective Drugs in early stages of diabetic retinopathy: results of the EUROCONDOR Clinical Trial. Diabetes. 2019;68(2):457–63. Findings from this paper indicate that the neuroprotective agents brimonidine and somatostatin can slow worsening of neurodegeneration, but only in a subset of patients with pre-existing neuro-dysfunction.PubMedGoogle Scholar
  71. 71.
    Grauslund J, Frydkjaer-Olsen U, Peto T, Fernandez-Carneado J, Ponsati B, Hernandez C, et al. Topical treatment with brimonidine and somatostatin causes retinal vascular dilation in patients with early diabetic retinopathy from the EUROCONDOR. Invest Ophthalmol Vis Sci. 2019;60(6):2257–62.PubMedGoogle Scholar
  72. 72.
    Mauer M, Zinman B, Gardiner R, Suissa S, Sinaiko A, Strand T, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009;361(1):40–51.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sjolie AK, Klein R, Porta M, Orchard T, Fuller J, Parving HH, et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-Protect 2): a randomised placebo-controlled trial. Lancet. 2008;372(9647):1385–93.PubMedGoogle Scholar
  74. 74.
    Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–52.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Domercq M, Matute C. Neuroprotection by tetracyclines. Trends Pharmacol Sci. 2004;25(12):609–12.PubMedGoogle Scholar
  76. 76.
    Scott IU, Jackson GR, Quillen DA, Larsen M, Klein R, Liao J, et al. Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in patients with severe nonproliferative or non-high-risk proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2014;132(5):535–43.PubMedGoogle Scholar
  77. 77.
    Fleming I. New Lipid Mediators in Retinal Angiogenesis and Retinopathy. Front Pharmacol. 2019;10:739.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Tang J, Du Y, Lee CA, Talahalli R, Eells JT, Kern TS. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro. Invest Ophthalmol Vis Sci. 2013;54(5):3681–90.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Cheng Y, Du Y, Liu H, Tang J, Veenstra A, Kern TS. Photobiomodulation inhibits long-term structural and functional lesions of diabetic retinopathy. Diabetes. 2018;67(2):291–8.PubMedGoogle Scholar
  80. 80.
    Kernt M, Ulbig M, Kampik A, Neubauer AS. Navigated laser therapy for diabetic macular oedema. Eur Endocrinol. 2014;10(1):66–9.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Liesfeld B, Amthor K-U, Dowell D, Weber U, Teiwes W. Navigating comfortably across the retina. Berlin: Springer; 2009.Google Scholar
  82. 82.
    Chhablani J, Mathai A, Rani P, Gupta V, Arevalo JF, Kozak I. Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci. 2014;55(6):3432–8.PubMedGoogle Scholar
  83. 83.
    Chhablani J, Sambhana S, Mathai A, Gupta V, Arevalo JF, Kozak I. Clinical efficacy of navigated panretinal photocoagulation in proliferative diabetic retinopathy. Am J Ophthalmol. 2015;159(5):884–9.PubMedGoogle Scholar
  84. 84.
    Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials. Retina. 2016;36(11):2059–65.PubMedGoogle Scholar
  85. 85.
    Moisseiev E, Abbassi S, Thinda S, Yoon J, Yiu G, Morse LS. Subthreshold micropulse laser reduces anti-VEGF injection burden in patients with diabetic macular edema. Eur J Ophthalmol. 2018;28(1):68–73.PubMedGoogle Scholar
  86. 86.
    Silva PS, Walia S, Cavallerano JD, Sun JK, Dunn C, Bursell S-E, et al. Comparison of low-light nonmydriatic digital imaging with 35-mm ETDRS seven-standard field stereo color fundus photographs and clinical examination. Telemed E Health. 2012;18(7):492–9.Google Scholar
  87. 87.
    Silva PS, Cavallerano JD, Sun JK, Soliman AZ, Aiello LM, Aiello LP. Peripheral lesions identified by mydriatic ultrawide field imaging: distribution and potential impact on diabetic retinopathy severity. Ophthalmology. 2013;120(12):2587–95.PubMedGoogle Scholar
  88. 88.
    Silva PS, Cavallerano JD, Haddad NMN, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015;122(5):949–56.PubMedGoogle Scholar
  89. 89.
    Price LD, Au S, Chong NV. Optomap ultrawide field imaging identifies additional retinal abnormalities in patients with diabetic retinopathy. Clin Ophthalmol. 2015;9:527–31.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Talks SJ, Manjunath V, Steel DHW, Peto T, Taylor R. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. Br J Ophthalmol. 2015;99(12):1606–9.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Fan W, Wang K, Ghasemi Falavarjani K, Sagong M, Uji A, Ip M, et al. Distribution of nonperfusion area on ultra-widefield fluorescein angiography in eyes with diabetic macular edema: DAVE study. Am J Ophthalmol. 2017;180:110–6.PubMedGoogle Scholar
  92. 92.
    Wessel MM, Aaker GD, Parlitsis G, Cho M, D'Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina. 2012;32(4):785–91.PubMedGoogle Scholar
  93. 93.
    An L, Wang RK. Volumetric imaging of microcirculations in human retina and choroids in vivo by optical micro-angiography: SPIE; 2008.Google Scholar
  94. 94.
    Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160(1):35–44.e1.PubMedGoogle Scholar
  95. 95.
    Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50.Google Scholar
  96. 96.
    Kim AY, Chu Z, Shahidzadeh A, Wang RK, Puliafito CA, Kashani AH. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):Oct362–70.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA, Kashani AH. Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina. 2015;46(8):796–805.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michael Patrick Ellis
    • 1
  • Daniella Lent-Schochet
    • 1
    • 2
  • Therlinder Lo
    • 1
    • 3
  • Glenn Yiu
    • 1
    Email author
  1. 1.Department of Ophthalmology and Vision ScienceUniversity of California DavisSacramentoUSA
  2. 2.California Northstate University College of MedicineElk GroveUSA
  3. 3.University of Nevada, Reno School of MedicineRenoUSA

Personalised recommendations