Advertisement

Current Diabetes Reports

, 19:156 | Cite as

Bariatric Surgery in the Treatment of Type 2 Diabetes

  • Alison H. Affinati
  • Nazanene H. Esfandiari
  • Elif A. Oral
  • Andrew T. KraftsonEmail author
Therapies and New Technologies in the Treatment of Diabetes (M Pietropaolo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Therapies and New Technologies in the Treatment of Diabetes

Abstract

Purpose of Review

We seek to characterize the impact of bariatric surgery on diabetes mellitus by recalling its history, examining the clinical data, exploring the putative mechanisms of action, and anticipating its future.

Recent Findings

Results of clinical trials reveal that bariatric surgery induces remission of diabetes in 33–90% of individuals at 1-year post-treatment versus 0–39% of medically managed. Remission rates decrease over time but remain higher in surgically treated individuals. Investigations have revealed numerous actions of surgery including effects on intestinal physiology, neuronal signaling, incretin hormone secretion, bile acid metabolism, and microbiome changes.

Summary

Bariatric surgery improves control of diabetes through both weight-dependent and weight-independent actions. These various mechanisms help explain the difference between individuals treated surgically vs. medically. They also explain differing effects of various bariatric surgery procedure types. Understanding how surgery affects diabetes will help optimize utilization of the therapy for both disease prevention and treatment.

Keywords

Bariatric surgery Metabolic surgery Diabetes mellitus Diabetes remission Obesity 

Notes

Funding Information

Alison H. Affinati reports a grant from NIDDK (F32 DK122660).

Compliance with Ethical Standards

Conflict of Interest

Alison H. Affinati, Nazanene H. Esfandiari, and Andrew T. Kraftson declare that they have no conflict of interest.

Elif A. Oral reports grants from Gi Dynamics; grants, personal fees, and non-financial support from Aegerion Pharmaceuticals; grants and personal fees from Akcea Therapeutics; grants from Ionis Pharmaceuticals; grants and personal fees from Regeneron Pharmaceuticals; and grants from Gemphire Therapeutics. In addition, Dr. Oral has a patent issue on an Intragastric device.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (include name of committee + reference number) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Sims EA, Danforth E, Horton ES, Bray GA, Glennon JA, Salans LB. Endocrine and metabolic effects of experimental obesity in man. Recent Prog Horm Res. 1973;29:457–96.PubMedGoogle Scholar
  2. 2.
    Pappachan JM, Viswanath AK. Medical management of diabesity: do we have realistic targets? Curr Diab Rep. 2017;17(1):4.PubMedCrossRefGoogle Scholar
  3. 3.
    Zimmet PZ. Diabetes and its drivers: the largest epidemic in human history? Clin Diabetes Endocrinol. 2017;3(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Diabetes [Internet]. [cited 2019 Jun 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
  5. 5.
    Obesity and overweight [Internet]. [cited 2019 Jun 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  6. 6.
    Foster D, Sanchez-Collins S, Cheskin LJ. Erratum: multidisciplinary team-based obesity treatment in patients with diabetes: current practices and the state of the science. Diabetes Spectrum 2017;30:244–249 (DOI:  https://doi.org/10.2337/ds17-0045). Diabetes Spectr. 2018;31(1):119.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998 Sep 12;352(9131):854–65.Google Scholar
  8. 8.
    Wing RR, Reboussin D, Lewis CE, Look AHEAD Research group. Intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013;369(24):2358–9.PubMedGoogle Scholar
  9. 9.
    Rothberg AE, McEwen LN, Fraser T, Burant CF, Herman WH. The impact of a managed care obesity intervention on clinical outcomes and costs: a prospective observational study. Obesity (Silver Spring). 2013;21(11):2157–62.CrossRefGoogle Scholar
  10. 10.
    Yang W, Dall TM, Tan E, Byrne E, Iacobucci W, Chakrabarti R, et al. Diabetes diagnosis and management among insured adults across metropolitan areas in the U.S. Prev Med Rep. 2018;10:227–33.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Miller WC, Koceja DM, Hamilton EJ. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention. Int J Obes Relat Metab Disord. 1997;21(10):941–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Ayyad C, Andersen T. Long-term efficacy of dietary treatment of obesity: a systematic review of studies published between 1931 and 1999. Obes Rev. 2000;1(2):113–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Wing RR, Marcus MD, Epstein LH, Salata R. Type II diabetic subjects lose less weight than their overweight nondiabetic spouses. Diabetes Care. 1987;10(5):563–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Guare JC, Wing RR, Grant A. Comparison of obese NIDDM and nondiabetic women: short- and long-term weight loss. Obes Res. 1995;3(4):329–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Celio AC, Pories WJ. A history of bariatric surgery: the maturation of a medical discipline. Surg Clin North Am. 2016;96(4):655–67.PubMedCrossRefGoogle Scholar
  16. 16.
    Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122(7):481–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17(9):961–9.PubMedCrossRefGoogle Scholar
  18. 18.
    GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323.PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444(7121):840–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 2017;13(11):633–43.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Almind K, Doria A, Kahn CR. Putting the genes for type II diabetes on the map. Nat Med. 2001;7(3):277–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    American Diabetes Association. 5. Lifestyle management: Standards of Medical Care in Diabetes—2019. Dia Care. 2019 Jan;42(Supplement 1):S46–60.Google Scholar
  23. 23.
    UK Prospective Diabetes Study 7: response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients, UKPDS Group. Metab Clin Exp. 1990 Sep;39(9):905–12.Google Scholar
  24. 24.
    Pi-Sunyer FX. Weight loss in type 2 diabetic patients. Diabetes Care. 2005;28(6):1526–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Joy SV, Rodgers PT, Scates AC. Incretin mimetics as emerging treatments for type 2 diabetes. Ann Pharmacother. 2005;39(1):110–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rose F, Bloom S, Tan T. Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years. Expert Opin Drug Discovery. 2019;29:1–9.Google Scholar
  27. 27.
    Cai X, Yang W, Gao X, Chen Y, Zhou L, Zhang S, et al. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a meta-analysis: SGLT2 inhibitor dosage and weight reduction. Obesity. 2018;26(1):70–80.PubMedCrossRefGoogle Scholar
  28. 28.
    Story of Obesity Surgery [Internet]. American Society for Metabolic and Bariatric Surgery. 2004 [cited 2019 Jun 19]. Available from: https://asmbs.org/resources/story-of-obesity-surgery
  29. 29.
    Faria GR. A brief history of bariatric surgery: porto biomedical. Journal. 2017;2(3):90–2.Google Scholar
  30. 30.
    Gumbs AA, Gagner M, Dakin G, Pomp A. Sleeve gastrectomy for morbid obesity. Obes Surg. 2007;17(7):962–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Buchwald H. The evolution of metabolic/bariatric surgery. Obes Surg. 2014;24(8):1126–35.PubMedCrossRefGoogle Scholar
  32. 32.
    Peck BCE, Seeley RJ. How does “metabolic surgery” work its magic? New evidence for gut microbiota. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):81–6.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Herbst CA, Hughes TA, Gwynne JT, Buckwalter JA. Gastric bariatric operation in insulin-treated adults. Surgery. 1984;95(2):209–14.PubMedGoogle Scholar
  34. 34.
    Pories WJ, Caro JF, Flickinger EG, Meelheim HD, Swanson MS. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville gastric bypass. Ann Surg. 1987;206(3):316–23.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sjöström L, Lindroos A-K, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.PubMedCrossRefGoogle Scholar
  36. 36.
    Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84 discussion 84-85.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Pournaras DJ, Osborne A, Hawkins SC, Vincent RP, Mahon D, Ewings P, et al. Remission of type 2 diabetes after gastric bypass and banding: mechanisms and 2 year outcomes. Ann Surg. 2010;252(6):966–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, et al. How do we define cure of diabetes? Diabetes Care. 2009;32(11):2133–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obes Surg. 2013;23(1):93–102.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149(7):707–15.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    • Salminen P, Helmiö M, Ovaska J, Juuti A, Leivonen M, Peromaa-Haavisto P, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y Gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA. 2018;319(3):241. This RCT compares LSG to RYGB with follow-up for up to 5 years.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    • Jakobsen GS, Småstuen MC, Sandbu R, Nordstrand N, Hofsø D, Lindberg M, et al. Association of bariatric surgery vs medical obesity treatment with long-term medical complications and obesity-related comorbidities. JAMA. 2018;319(3):291. This large study evaluates resolution of complications in patients undergoing bariatric surgery.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    • Madsen LR, Baggesen LM, Richelsen B, Thomsen RW. Effect of Roux-en-Y gastric bypass surgery on diabetes remission and complications in individuals with type 2 diabetes: a Danish population-based matched cohort study. Diabetologia. 2019;62(4):611–20. One of the largest studies to date evaluating diabetes outcomes following bariatric surgery.PubMedCrossRefGoogle Scholar
  45. 45.
    Courcoulas AP, Belle SH, Neiberg RH, Pierson SK, Eagleton JK, Kalarchian MA, et al. Three-year outcomes of bariatric surgery vs lifestyle Intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015;150(10):931–40.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ding S-A, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–53.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    • Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Engl J Med. 2017;376(7):641–51. RCT with rigorous lifestyle intervention control group focused on diabetes outcomes following bariatric surgery.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Courcoulas AP, King WC, Belle SH, Berk P, Flum DR, Garcia L, et al. Seven-year weight trajectories and health outcomes in the longitudinal assessment of bariatric surgery (LABS) study. JAMA Surg. 2018;153(5):427.PubMedCrossRefGoogle Scholar
  51. 51.
    • Ikramuddin S, Korner J, Lee W-J, Thomas AJ, Connett JE, Bantle JP, et al. Lifestyle Intervention and Medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A 1c , LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA. 2018;319(3):266. Five-year follow-up of RCT comparing medical management with RYGB.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    • Lager CJ, Esfandiari NH, Luo Y, Subauste AR, Kraftson AT, Brown MB, et al. Metabolic Parameters, Weight Loss, and Comorbidities 4 years after Roux-en-Y gastric bypass and sleeve gastrectomy. Obes Surg. 2018;28(11):3415–23. Retrospective analysis comparing metabolic outcomes in RYGB versus LSG.PubMedCrossRefGoogle Scholar
  53. 53.
    • Simonson DC, Halperin F, Foster K, Vernon A, Goldfine AB. Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en-Y gastric bypass surgery versus intensive lifestyle management: the SLIMM-T2D study. Diabetes Care. 2018;41(4):670–9. RCT evaluating RYGB versus lifestyle management in patients with type 2 diabetes.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Isaman DJM, Rothberg AE, Herman WH. Reconciliation of type 2 diabetes remission rates in studies of Roux-en-Y gastric bypass. Diabetes Care. 2016;39(12):2247–53.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Halperin F, Ding S-A, Simonson DC, Panosian J, Goebel-Fabbri A, Wewalka M, et al. Roux-en-Y gastric bypass surgery or lifestyle with intensive medical management in patients with type 2 diabetes: feasibility and 1-year results of a randomized clinical trial. JAMA Surg. 2014;149(7):716–26.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33(7):1438–42.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013 Jul;101(1):50–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Jackness C, Karmally W, Febres G, Conwell IM, Ahmed L, Bessler M, et al. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell function in type 2 diabetic patients. Diabetes. 2013;62(9):3027–32.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sjöström L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden Å, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297–304.PubMedCrossRefGoogle Scholar
  61. 61.
    Bradley D, Conte C, Mittendorfer B, Eagon JC, Varela JE, Fabbrini E, et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function. J Clin Invest. 2012;122(12):4667–74.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Peterli R, Wölnerhanssen BK, Peters T, Vetter D, Kröll D, Borbély Y, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss in patients with morbid obesity: the SM-BOSS randomized clinical trial. JAMA. 2018;319(3):255.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A. 2009;106(7):2365–70.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Furet J-P, Kong L-C, Tap J, Poitou C, Basdevant A, Bouillot J-L, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Kong L-C, Tap J, Aron-Wisnewsky J, Pelloux V, Basdevant A, Bouillot J-L, et al. Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. Am J Clin Nutr. 2013;98(1):16–24.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Palleja A, Kashani A, Allin KH, Nielsen T, Zhang C, Li Y, et al. Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota. Genome Med. 2016;8(1):67.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Liou AP, Paziuk M, Luevano J-M, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Arora T, Seyfried F, Docherty NG, Tremaroli V, le Roux CW, Perkins R, et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME J. 2017;11(9):2035–46.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Jørgensen NB, Dirksen C, Bojsen-Møller KN, Jacobsen SH, Worm D, Hansen DL, et al. Exaggerated glucagon-like peptide 1 response is important for improved β-cell function and glucose tolerance after Roux-en-Y gastric bypass in patients with type 2 diabetes. Diabetes. 2013;62(9):3044–52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Falkén Y, Hellström PM, Holst JJ, Näslund E. Changes in glucose homeostasis after Roux-en-Y gastric bypass surgery for obesity at day three, two months, and one year after surgery: role of gut peptides. J Clin Endocrinol Metab. 2011;96(7):2227–35.PubMedCrossRefGoogle Scholar
  71. 71.
    Bose M, Teixeira J, Olivan B, Bawa B, Arias S, Machineni S, et al. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J Diabetes. 2010;2(1):47–55.PubMedCrossRefGoogle Scholar
  72. 72.
    Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30(7):1709–16.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ye J, Hao Z, Mumphrey MB, Townsend RL, Patterson LM, Stylopoulos N, et al. GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Phys Regul Integr Comp Phys. 2014;306(5):R352–62.Google Scholar
  74. 74.
    Wilson-Pérez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D, et al. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon-like peptide 1 receptor deficiency. Diabetes. 2013;62(7):2380–5.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mokadem M, Zechner JF, Margolskee RF, Drucker DJ, Aguirre V. Effects of Roux-en-Y gastric bypass on energy and glucose homeostasis are preserved in two mouse models of functional glucagon-like peptide-1 deficiency. Mol Metab. 2014;3(2):191–201.PubMedCrossRefGoogle Scholar
  76. 76.
    Jiménez A, Mari A, Casamitjana R, Lacy A, Ferrannini E, Vidal J. GLP-1 and glucose tolerance after sleeve gastrectomy in morbidly obese subjects with type 2 diabetes. Diabetes. 2014;63(10):3372–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Behary P, Tharakan G, Alexiadou K, Johnson N, Wewer Albrechtsen NJ, Kenkre J, et al. Combined GLP-1, oxyntomodulin, and peptide YY improves body weight and glycemia in obesity and Prediabetes/type 2 diabetes: a randomized single-blinded placebo controlled study. Diabetes Care. 2019;8.Google Scholar
  78. 78.
    • Hayoz C, Hermann T, Raptis DA, Brönnimann A, Peterli R, Zuber M. Comparison of metabolic outcomes in patients undergoing laparoscopic roux-en-Y gastric bypass versus sleeve gastrectomy - a systematic review and meta-analysis of randomised controlled trials. Swiss Med Wkly. 2018;148:w14633. Meta-analysis of RCTs comparing RYGB and LSG. Google Scholar
  79. 79.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes--3-year outcomes. N Engl J Med. 2014;370(21):2002–13.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Thaler JP, Cummings DE. Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology. 2009;150(6):2518–25.PubMedCrossRefGoogle Scholar
  81. 81.
    Arble DM, Sandoval DA, Seeley RJ. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia. 2015;58(2):211–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Patel RT, Shukla AP, Ahn SM, Moreira M, Rubino F. Surgical control of obesity and diabetes: the role of intestinal vs. gastric mechanisms in the regulation of body weight and glucose homeostasis: surgical control of obesity and diabetes. Obesity. 2014;22(1):159–69.PubMedCrossRefGoogle Scholar
  83. 83.
    Rajagopalan H, Cherrington AD, Thompson CC, Kaplan LM, Rubino F, Mingrone G, et al. Endoscopic duodenal mucosal resurfacing for the treatment of type 2 diabetes: 6-month interim analysis from the first-in-human proof-of-concept study. Diabetes Care. 2016;39(12):2254–61.PubMedCrossRefGoogle Scholar
  84. 84.
    Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metab Clin Exp. 2009;58(10):1400–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Patti M-E, Houten SM, Bianco AC, Bernier R, Larsen PR, Holst JJ, et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring). 2009;17(9):1671–7.CrossRefGoogle Scholar
  87. 87.
    Kohli R, Bradley D, Setchell KD, Eagon JC, Abumrad N, Klein S. Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. J Clin Endocrinol Metab. 2013;98(4):E708–12.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut. 2017;66(2):226–34.PubMedCrossRefGoogle Scholar
  89. 89.
    Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. 2014;509(7499):183–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Dixon JB, Chuang L-M, Chong K, Chen S-C, Lambert GW, Straznicky NE, et al. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care. 2013;36(1):20–6.PubMedCrossRefGoogle Scholar
  91. 91.
    Chikunguwo SM, Wolfe LG, Dodson P, Meador JG, Baugh N, Clore JN, et al. Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2010;6(3):254–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Coleman KJ, Haneuse S, Johnson E, Bogart A, Fisher D, O’Connor PJ, et al. Long-term microvascular disease outcomes in patients with type 2 diabetes after bariatric surgery: evidence for the legacy effect of surgery. Diabetes Care. 2016;39(8):1400–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Panunzi S, Carlsson L, De Gaetano A, Peltonen M, Rice T, Sjöström L, et al. Determinants of diabetes remission and glycemic control after bariatric surgery. Diabetes Care. 2016;39(1):166–74.PubMedCrossRefGoogle Scholar
  94. 94.
    Arterburn DE, Olsen MK, Smith VA, Livingston EH, Van Scoyoc L, Yancy WS, et al. Association between bariatric surgery and long-term survival. JAMA. 2015;313(1):62–70.PubMedCrossRefGoogle Scholar
  95. 95.
    Adams TD, Gress RE, Smith SC, Halverson RC, Simper SC, Rosamond WD, et al. Long-term mortality after gastric bypass surgery. N Engl J Med. 2007;357(8):753–61.PubMedCrossRefGoogle Scholar
  96. 96.
    Busetto L. Timing of bariatric surgery in people with obesity and diabetes. Ann Transl Med. 2015;3(7):94.PubMedPubMedCentralGoogle Scholar
  97. 97.
    le Roux CW, Schauer PR. Prevention is better than cure: the next frontier for bariatric surgery? Ann Intern Med. 2018;169(5):343.PubMedCrossRefGoogle Scholar
  98. 98.
    Cummings DE, Cohen RV. Beyond BMI: the need for new guidelines governing the use of bariatric and metabolic surgery. The Lancet Diabetes & Endocrinology. 2014;2(2):175–81.CrossRefGoogle Scholar
  99. 99.
    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGMM, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alison H. Affinati
    • 1
  • Nazanene H. Esfandiari
    • 1
  • Elif A. Oral
    • 1
  • Andrew T. Kraftson
    • 1
    Email author
  1. 1.Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine, Michigan MedicineUniversity of MichiganAnn ArborUSA

Personalised recommendations