Current Diabetes Reports

, 19:144 | Cite as

Crosstalk Between Lipids and Mitochondria in Diabetic Kidney Disease

  • G. Michelle Ducasa
  • Alla Mitrofanova
  • Alessia FornoniEmail author
Microvascular Complications—Nephropathy (M Afkarian and B Roshanravan, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Nephropathy


Purpose of Review

The goal of this review is to review the role that renal parenchymal lipid accumulation plays in contributing to diabetic kidney disease (DKD), specifically contributing to the mitochondrial dysfunction observed in glomerular renal cells in the context of DKD development and progression.

Recent Findings

Mitochondrial dysfunction has been observed in experimental and clinical DKD. Recently, Ayanga et al. demonstrate that podocyte-specific deletion of a protein involved in mitochondrial dynamics protects from DKD progression. Furthermore, our group has recently shown that ATP-binding cassette A1 (a protein involved in cholesterol and phospholipid efflux) is significantly reduced in clinical and experimental DKD and that genetic or pharmacological induction of ABCA1 is sufficient to protect from DKD. ABCA1 deficiency in podocytes leads to mitochondrial dysfunction observed with alterations of mitochondrial lipids, in particular, cardiolipin (a mitochondrial-specific phospholipid). However, through pharmacological reduction of cardiolipin peroxidation DKD progression is reverted.


Lipid metabolism is significantly altered in the diabetic kidney and renders cellular components, such as the podocyte, susceptible to injury leading to worsened DKD progression. Dysfunction of the lipid metabolism pathway can also lead to mitochondrial dysfunction and mitochondrial lipid alteration. Future research aimed at targeting mitochondrial lipids content and function could prove to be beneficial for the treatment of DKD.


Diabetic kidney disease Podocyte Mitochondria Cardiolipin ABCA1 Lipid metabolism 


Authors’ Contributions

GMD and AM prepared a draft of the manuscript. AM focused primarily on the “Lipids in DKD” section and GMD focused primarily on the “Mitochondrial Defects and Dysfunction in DKD” section. AF reviewed and improved the entire manuscript.

Funding Information

Research in Dr. Alessia Fornoni’s laboratory is supported by the NIH grants R01DK117599, R01DK104753, R01CA227493, U54DK083912, UM1DK100846, U01DK116101, and UL1TR000460 (Miami Clinical Translational Science Institute).

Compliance with Ethical Standards

Conflict of Interest

Alessia Fornoni is an investor on pending or issued patents (US 10,183,038 and US 10,052,345) aimed at diagnosing or treating proteinuric kidney diseases. She stands to gain royalties from the future commercialization of these patents. She is Chief Scientific Officer of L&F Health LLC and is a consultant for Variant Pharmaceuticals. Variant Pharmaceuticals has licensed worldwide rights from L&F Research to develop and commercialize hydroxypropyl-beta-cyclodextrin for the treatment of kidney disease. She is the founder of LipoNexT LLC. She is also supported by Roche and Boehringer Ingelheim.

Michelle Ducasa and Alla Mitrofanova declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Collins AJ, Foley R, Herzog C, Chavers B, Gilbertson D, Ishani A, et al. Excerpts from the United States Renal Data System 2007 annual data report. Am J Kidney Dis. 2008;51(1 Suppl 1):S1–320.PubMedGoogle Scholar
  2. 2.
    Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia. 1999;42(11):1341–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 1997;99(2):342–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Toyoda M, Najafian B, Kim Y, Caramori ML, Mauer M. Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes. 2007;56(8):2155–60.PubMedCrossRefGoogle Scholar
  5. 5.
    White KE, Bilous RW, Marshall SM, El Nahas M, Remuzzi G, Piras G, et al. Podocyte number in normotensive type 1 diabetic patients with albuminuria. Diabetes. 2002;51(10):3083–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res. 2014;55(3):561–72.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jiang T, Wang Z, Proctor G, Moskowitz S, Liebman SE, Rogers T, et al. Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway. J Biol Chem. 2005;280(37):32317–25.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Merscher-Gomez S, Guzman J, Pedigo CE, Lehto M, Aguillon-Prada R, Mendez A, et al. Cyclodextrin protects podocytes in diabetic kidney disease. Diabetes. 2013;62(11):3817–27.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wang Z, Jiang T, Li J, Proctor G, McManaman JL, Lucia S, et al. Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes. 2005;54(8):2328–35.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M. Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes. 2006;55(9):2502–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Wang XX, Jiang T, Shen Y, Adorini L, Pruzanski M, Gonzalez FJ, et al. The farnesoid X receptor modulates renal lipid metabolism and diet-induced renal inflammation, fibrosis, and proteinuria. Am J Physiol Renal Physiol. 2009;297(6):F1587–96.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kampe K, Sieber J, Orellana JM, Mundel P, Jehle AW. Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2. Am J Physiol Renal Physiol. 2014;306(4):F401–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sieber J, Weins A, Kampe K, Gruber S, Lindenmeyer MT, Cohen CD, et al. Susceptibility of podocytes to palmitic acid is regulated by Stearoyl-CoA desaturases 1 and 2. Am J Pathol. 2013;183(3):735–44.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Qi H, Casalena G, Shi S, Yu L, Ebefors K, Sun Y, et al. Glomerular endothelial mitochondrial dysfunction is essential and characteristic of diabetic kidney disease susceptibility. Diabetes. 2017;66(3):763–78.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther. 2016;7(2):203–19.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lara-Castro C, Garvey WT. Intracellular lipid accumulation in liver and muscle and the insulin resistance syndrome. Endocrinol Metab Clin N Am. 2008;37(4):841–56.CrossRefGoogle Scholar
  20. 20.
    Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature. 2014;510(7503):84–91.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    •• Ducasa GM, Mitrofanova A, Mallela SK, Liu X, Molina J, Sloan A, et al. ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes. J Clin Invest. 2019;129(8):3387–400. Findings from this study suggest that decreased expression of ABCA1 plays a pivotal role in alteration in the OXPHOS complexes and is associated with cardiolipin accumulation. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Zhou C, Pridgen B, King N, Xu J, Breslow JL. Hyperglycemic Ins2AkitaLdlr/ mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease. J Lipid Res. 2011;52(8):1483–93.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jun JY, Ma Z, Segar L. Spontaneously diabetic Ins2(+/Akita):apoE-deficient mice exhibit exaggerated hypercholesterolemia and atherosclerosis. Am J Physiol Endocrinol Metab. 2011;301(1):E145–54.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Van Krieken R, Marway M, Parthasarathy P, Mehta N, Ingram AJ, Gao B, et al. Inhibition of SREBP with Fatostatin does not attenuate early diabetic nephropathy in male mice. Endocrinology. 2018;159(3):1479–95.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Mitrofanova A, Molina J, Varona Santos J, Guzman J, Morales XA, Ducasa GM, et al. Hydroxypropyl-beta-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 2018;94(6):1151–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Masereeuw R, Russel FG. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules. AAPS J. 2012;14(4):883–94.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73(2):220–5.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Huls M, van den Heuvel JJ, Dijkman HB, Russel FG, Masereeuw R. ABC transporter expression profiling after ischemic reperfusion injury in mouse kidney. Kidney Int. 2006;69(12):2186–93.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mahringer A, Bernd A, Miller DS, Fricker G. Aryl hydrocarbon receptor ligands increase ABC transporter activity and protein expression in killifish (Fundulus heteroclitus) renal proximal tubules. Biol Chem. 2019;400(10):1335–45.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Choi HJ, Cho HY, Ro H, Lee SH, Han KH, Lee H, et al. Polymorphisms of the MDR1 and MIF genes in children with nephrotic syndrome. Pediatr Nephrol. 2011;26(11):1981–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Ganda A, Yvan-Charvet L, Zhang Y, Lai EJ, Regunathan-Shenk R, Hussain FN, et al. Plasma metabolite profiles, cellular cholesterol efflux, and non-traditional cardiovascular risk in patients with CKD. J Mol Cell Cardiol. 2017;112:114–22.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ibold B, Faust I, Tiemann J, Gorgels T, Bergen AAB, Knabbe C, et al. Abcc6 deficiency in mice leads to altered ABC transporter gene expression in metabolic active tissues. Lipids Health Dis. 2019;18(1):2.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Tang C, Kanter JE, Bornfeldt KE, Leboeuf RC, Oram JF. Diabetes reduces the cholesterol exporter ABCA1 in mouse macrophages and kidneys. J Lipid Res. 2010;51(7):1719–28.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pedigo CE, Ducasa GM, Leclercq F, Sloan A, Mitrofanova A, Hashmi T, et al. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury. J Clin Invest. 2016;126(9):3336–50.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ferrans VJ, Fredrickson DS. The pathology of Tangier disease. A light and electron microscopic study. Am J Pathol. 1975;78(1):101–58.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 2014;55(3):561–72.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Russo GT, De Cosmo S, Viazzi F, Pacilli A, Ceriello A, Genovese S, et al. Plasma triglycerides and HDL-C levels predict the development of diabetic kidney disease in subjects with type 2 diabetes: the AMD Annals Initiative. Diabetes Care. 2016;39(12):2278–87.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med. 1998;158(9):998–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cusick M, Chew EY, Hoogwerf B, Agron E, Wu L, Lindley A, et al. Risk factors for renal replacement therapy in the early treatment diabetic retinopathy study (ETDRS), early treatment diabetic retinopathy study report no. 26. Kidney Int. 2004;66(3):1173–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Wei P, Grimm PR, Settles DC, Balwanz CR, Padanilam BJ, Sansom SC. Simvastatin reverses podocyte injury but not mesangial expansion in early stage type 2 diabetes mellitus. Ren Fail. 2009;31(6):503–13.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lu L, Peng WH, Wang W, Wang LJ, Chen QJ, Shen WF. Effects of atorvastatin on progression of diabetic nephropathy and local RAGE and soluble RAGE expressions in rats. J Zhejiang Univ Sci B. 2011;12(8):652–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sun H, Yuan Y, Sun ZL. Cholesterol contributes to diabetic nephropathy through SCAP-SREBP-2 pathway. Int J Endocrinol. 2013;2013:592576.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang L, Yao X, Li Q, Sun S. Effect of simvastatin on lipid accumulation and the expression of CXCL16 and nephrin in podocyte induced by oxidized LDL. J Invest Surg. 2018;31(2):69–74.PubMedCrossRefGoogle Scholar
  44. 44.
    Su W, Cao R, He YC, Guan YF, Ruan XZ. Crosstalk of hyperglycemia and dyslipidemia in diabetic kidney disease. Kidney Dis (Basel). 2017;3(4):171–80.CrossRefGoogle Scholar
  45. 45.
    Ruan XZ, Varghese Z, Moorhead JF. An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol. 2009;5(12):713–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang XX, Jiang T, Shen Y, Caldas Y, Miyazaki-Anzai S, Santamaria H, et al. Diabetic nephropathy is accelerated by farnesoid X receptor deficiency and inhibited by farnesoid X receptor activation in a type 1 diabetes model. Diabetes. 2010;59(11):2916–27.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Ma KL, Liu J, Wu Y, Hu ZB, Liu L, et al. Inflammatory stress exacerbates lipid accumulation and podocyte injuries in diabetic nephropathy. Acta Diabetol. 2015;52(6):1045–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Zhang Y, Ma KL. Dysregulation of low-density lipoprotein receptor contributes to podocyte injuries in diabetic nephropathy. Am J Physiol Endocrinol Metab. 2015;308(12):E1140–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang Y, Yang Q, Yang J, Ma Y, Ding G. Angiotensin II induces cholesterol accumulation and injury in podocytes. Sci Rep. 2017;7(1):10672.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hu J, Yang Q, Chen Z, Liang W, Feng J, Ding G. Small GTPase Arf6 regulates diabetes-induced cholesterol accumulation in podocytes. J Cell Physiol. 2019;234(12):23559–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Simon N, Hertig A. Alteration of fatty acid oxidation in tubular epithelial cells: from acute kidney injury to renal fibrogenesis. Front Med (Lausanne). 2015;2:52.Google Scholar
  52. 52.
    Sieber J, Jehle AW. Free fatty acids and their metabolism affect function and survival of podocytes. Front Endocrinol. 2014;5:186.CrossRefGoogle Scholar
  53. 53.
    Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001;108(6):785–91.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Han J, Hajjar DP, Febbraio M, Nicholson AC. Native and modified low density lipoproteins increase the functional expression of the macrophage class B scavenger receptor, CD36. J Biol Chem. 1997;272(34):21654–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282(27):19493–501.PubMedCrossRefGoogle Scholar
  56. 56.
    Hua W, Huang HZ, Tan LT, Wan JM, Gui HB, Zhao L, et al. CD36 mediated fatty acid-induced Podocyte apoptosis via oxidative stress. PLoS One. 2015;10(5):e0127507.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hou Y, Wu M, Wei J, Ren Y, Du C, Wu H, et al. CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Biochem Biophys Res Commun. 2015;468(1–2):281–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhao J, Rui HL, Yang M, Sun LJ, Dong HR, Cheng H. CD36-mediated lipid accumulation and activation of NLRP3 inflammasome lead to podocyte injury in obesity-related glomerulopathy. Mediat Inflamm. 2019;2019:3172647.Google Scholar
  59. 59.
    Feng L, Gu C, Li Y, Huang J. High glucose promotes CD36 expression by upregulating peroxisome proliferator-activated receptor gamma levels to exacerbate lipid deposition in renal tubular cells. Biomed Res Int. 2017;2017:1414070.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Ding W, Yousefi K, Goncalves S, Goldstein BJ, Sabater AL, Kloosterboer A, et al. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight. 2018;3(6).Google Scholar
  61. 61.
    Yang X, Wu Y, Li Q, Zhang G, Wang M, Yang H, et al. CD36 promotes Podocyte apoptosis by activating the Pyrin domain-containing-3 (NLRP3) inflammasome in primary nephrotic syndrome. Med Sci Monit. 2018;24:6832–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.PubMedCrossRefGoogle Scholar
  63. 63.
    Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature. 2010;465(7301):1084–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Merscher S, Fornoni A. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol. 2014;5:127.Google Scholar
  65. 65.
    Di Pardo A, Basit A, Armirotti A, Amico E, Castaldo S, Pepe G, et al. De novo synthesis of sphingolipids is defective in experimental models of Huntington's disease. Front Neurosci. 2017;11:698.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Motyl J, Przykaza L, Boguszewski PM, Kosson P, Strosznajder JB. Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology. 2018;135:139–50.PubMedCrossRefGoogle Scholar
  67. 67.
    Joly S, Dalkara D, Pernet V. Sphingosine 1-phosphate receptor 1 modulates CNTF-induced axonal growth and neuroprotection in the mouse visual system. Neural Plast. 2017;2017:6818970.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Choi HS, Kim KH. Decreased expression of Sphingosine-1-Phosphate Receptor 1 in the blood leukocyte of rheumatoid arthritis patients. Immune Netw. 2018;18(5):e39.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bhat VK, Bernhart E, Plastira I, Fan K, Tabrizi-Wizsy NG, Wadsack C, et al. Pharmacological inhibition of serine palmitoyl transferase and sphingosine kinase-1/-2 inhibits Merkel cell carcinoma cell proliferation. J Invest Dermatol 2019;139(4):807–17.PubMedCrossRefGoogle Scholar
  70. 70.
    Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, et al. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy. Pharmacol Ther 2019;195:85–99.CrossRefGoogle Scholar
  71. 71.
    Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T. The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci. 2018;109(12):3671–8.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    El Buri A, Adams DR, Smith D, Tate RJ, Mullin M, Pyne S, et al. The sphingosine 1-phosphate receptor 2 is shed in exosomes from breast cancer cells and is N-terminally processed to a short constitutively active form that promotes extracellular signal regulated kinase activation and DNA synthesis in fibroblasts. Oncotarget. 2018;9(50):29453–67.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ahmad A, Mitrofanova A, Bielawski J, Yang Y, Marples B, Fornoni A, et al. Sphingomyelinase-like phosphodiesterase 3b mediates radiation-induced damage of renal podocytes. FASEB J. 2017;31(2):771–80.PubMedCrossRefGoogle Scholar
  74. 74.
    Bajwa A, Huang L, Kurmaeva E, Ye H, Dondeti KR, Chroscicki P, et al. Sphingosine kinase 2 deficiency attenuates kidney fibrosis via IFN-gamma. Journal of the American Society of Nephrology : JASN. 2017;28(4):1145–61.PubMedCrossRefGoogle Scholar
  75. 75.
    Perry HM, Huang L, Ye H, Liu C, Sung SJ, Lynch KR, et al. Endothelial sphingosine 1-phosphate receptor-1 mediates protection and recovery from acute kidney injury. J Am Soc Nephrol. 2016;27(11):3383–93.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Prasad R, Hadjidemetriou I, Maharaj A, Meimaridou E, Buonocore F, Saleem M, et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J Clin Invest. 2017;127(3):942–53.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes. 2006;55(9):2579–87.PubMedCrossRefGoogle Scholar
  78. 78.
    Kowalski GM, Carey AL, Selathurai A, Kingwell BA, Bruce CR. Plasma sphingosine-1-phosphate is elevated in obesity. PLoS One. 2013;8(9):e72449.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fox TE, Bewley MC, Unrath KA, Pedersen MM, Anderson RE, Jung DY, et al. Circulating sphingolipid biomarkers in models of type 1 diabetes. J Lipid Res. 2011;52(3):509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Rapizzi E, Taddei ML, Fiaschi T, Donati C, Bruni P, Chiarugi P. Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor. Cell Mol Life Sci. 2009;66(19):3207–18.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Jun DJ, Lee JH, Choi BH, Koh TK, Ha DC, Jeong MW, et al. Sphingosine-1-phosphate modulates both lipolysis and leptin production in differentiated rat white adipocytes. Endocrinology. 2006;147(12):5835–44.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Bruce CR, Risis S, Babb JR, Yang C, Kowalski GM, Selathurai A, et al. Overexpression of sphingosine kinase 1 prevents ceramide accumulation and ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes. 2012;61(12):3148–55.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bruce CR, Risis S, Babb JR, Yang C, Lee-Young RS, Henstridge DC, et al. The sphingosine-1-phosphate analog FTY720 reduces muscle ceramide content and improves glucose tolerance in high fat-fed male mice. Endocrinology. 2013;154(1):65–76.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA. Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem. 2005;280(30):27879–87.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Liu Y, Saiyan S, Men TY, Gao HY, Wen C, Liu Y, et al. Hepatopoietin Cn reduces ethanol-induced hepatoxicity via sphingosine kinase 1 and sphingosine 1-phosphate receptors. J Pathol. 2013;230(4):365–76.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Lee SY, Hong IK, Kim BR, Shim SM, Sung Lee J, Lee HY, et al. Activation of sphingosine kinase 2 by endoplasmic reticulum stress ameliorates hepatic steatosis and insulin resistance in mice. Hepatology. 2015;62(1):135–46.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Nojiri T, Kurano M, Tokuhara Y, Ohkubo S, Hara M, Ikeda H, et al. Modulation of sphingosine-1-phosphate and apolipoprotein M levels in the plasma, liver and kidneys in streptozotocin-induced diabetic mice. J Diabetes Investig. 2014;5(6):639–48.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lovric S, Goncalves S, Gee HY, Oskouian B, Srinivas H, Choi WI, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127(3):912–28.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Linhares ND, Arantes RR, Araujo SA, Pena SDJ. Nephrotic syndrome and adrenal insufficiency caused by a variant in SGPL1. Clin Kidney J. 2018;11(4):462–7.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Awad AS, Rouse MD, Khutsishvili K, Huang L, Bolton WK, Lynch KR, et al. Chronic sphingosine 1-phosphate 1 receptor activation attenuates early-stage diabetic nephropathy independent of lymphocytes. Kidney Int. 2011;79(10):1090–8.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Chalfant CE, Spiegel S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci. 2005;118(Pt 20):4605–12.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Gómez-Muñoz A, Gangoiti P, Granado MH, Arana L, Ouro A. Ceramide 1-phosphate in cell survival and inflammatory signaling. In: Chalfant CE, Poeta M, editors. Shingolipids as signaling and regulatory molecules. Austin: Landes Bioscience. 2000-2013. p.Google Scholar
  93. 93.
    Gomez-Munoz A. Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim Biophys Acta. 2006;1758(12):2049–56.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Hait NC, Maiti A. The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediators Inflamm. 2017;2017:4806541. Scholar
  95. 95.
    Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A, et al. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia. 2012;26(1):106–16.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Pastukhov O, Schwalm S, Romer I, Zangemeister-Wittke U, Pfeilschifter J, Huwiler A. Ceramide kinase contributes to proliferation but not to prostaglandin E2 formation in renal mesangial cells and fibroblasts. Cell Physiol Biochem. 2014;34(1):119–33.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Raichur S, Wang ST, Chan PW, Li Y, Ching J, Chaurasia B, et al. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 2014;20(4):687–95.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Fornoni A, Sageshima J, Wei C, Merscher-Gomez S, Aguillon-Prada R, Jauregui AN, et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci Transl Med. 2011;3(85):85ra46.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Heinz LX, Baumann CL, Koberlin MS, Snijder B, Gawish R, Shui G, et al. The lipid-modifying enzyme SMPDL3B negatively regulates innate immunity. Cell Rep. 2015;11(12):1919–28.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yoo TH, Pedigo CE, Guzman J, Correa-Medina M, Wei C, Villarreal R, et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J Am Soc Nephrol. 2015;26(1):133–47.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    • Mitrofanova A, Mallela SK, Ducasa GM, Yoo TH, Rosenfeld-Gur E, Zelnik ID, et al. SMPDL3b modulates insulin receptor signaling in diabetic kidney disease. Nat Commun. 2019;10(1):2692. Findings from this study suggest that sphingolipid SMPDL3b is a modulator of insulin signaling in podocytes. Excess of SMPDL3b in human podocytes results in decreased C1P content contributing to DKD progression. PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57(6):1446–54.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–33.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Du XL, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97(22):12222–6.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Small DM, Bennett NC, Roy S, Gabrielli BG, Johnson DW, Gobe GC. Oxidative stress and cell senescence combine to cause maximal renal tubular epithelial cell dysfunction and loss in an in vitro model of kidney disease. Nephron Exp Nephrol. 2012;122(3–4):123–30.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 2006;103(8):2653–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872–84.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013;5(6).Google Scholar
  111. 111.
    Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR. Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes. 2008;57(3):714–23.PubMedCrossRefGoogle Scholar
  112. 112.
    Ayanga BA, Badal SS, Wang Y, Galvan DL, Chang BH, Schumacker PT, et al. Dynamin-related protein 1 deficiency improves mitochondrial fitness and protects against progression of diabetic nephropathy. J Am Soc Nephrol. 2016;27(9):2733–47.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Qin X, Zhao Y, Gong J, Huang W, Su H, Yuan F, et al. Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics. 2019;9(6):1698–713.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW. Mitochondrial fission increases apoptosis and decreases autophagy in renal proximal tubular epithelial cells treated with high glucose. DNA Cell Biol. 2016;35(11):657–65.PubMedCrossRefGoogle Scholar
  115. 115.
    Bischof J, Salzmann M, Streubel MK, Hasek J, Geltinger F, Duschl J, et al. Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets. Cell Death Discov. 2017;3:17016.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Dudkina NV, Kouril R, Peters K, Braun HP, Boekema EJ. Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta. 2010;1797(6–7):664–70.PubMedCrossRefGoogle Scholar
  117. 117.
    Gredilla R, Phaneuf S, Selman C, Kendaiah S, Leeuwenburgh C, Barja G. Short-term caloric restriction and sites of oxygen radical generation in kidney and skeletal muscle mitochondria. Ann N Y Acad Sci. 2004;1019:333–42.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Han D, Williams E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J. 2001;353(Pt 2):411–6.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem. 2002;277(47):44784–90.PubMedCrossRefGoogle Scholar
  120. 120.
    Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, et al. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Am J Physiol Renal Physiol. 2005;289(2):F420–30.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res. 2013;52(4):590–614.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Hasan SS, Yamashita E, Ryan CM, Whitelegge JP, Cramer WA. Conservation of lipid functions in cytochrome bc complexes. J Mol Biol. 2011;414(1):145–62.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Bottinger L, Horvath SE, Kleinschroth T, Hunte C, Daum G, Pfanner N, et al. Phosphatidylethanolamine and cardiolipin differentially affect the stability of mitochondrial respiratory chain supercomplexes. J Mol Biol. 2012;423(5):677–86.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G. Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta. 2014;1837(4):408–17.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Kutik S, Rissler M, Guan XL, Guiard B, Shui G, Gebert N, et al. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. J Cell Biol. 2008;183(7):1213–21.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zhang M, Mileykovskaya E, Dowhan W. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem. 2005;280(33):29403–8.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Mileykovskaya E, Penczek PA, Fang J, Mallampalli VK, Sparagna GC, Dowhan W. Arrangement of the respiratory chain complexes in Saccharomyces cerevisiae supercomplex III2IV2 revealed by single particle cryo-electron microscopy. J Biol Chem. 2012;287(27):23095–103.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Fobker M, Voss R, Reinecke H, Crone C, Assmann G, Walter M. Accumulation of cardiolipin and lysocardiolipin in fibroblasts from Tangier disease subjects. FEBS Lett. 2001;500(3):157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22(4):336–45.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22(4):347–51.PubMedCrossRefGoogle Scholar
  132. 132.
    Joshi AS, Zhou J, Gohil VM, Chen S, Greenberg ML. Cellular functions of cardiolipin in yeast. Biochim Biophys Acta. 2009;1793(1):212–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Claypool SM, Koehler CM. The complexity of cardiolipin in health and disease. Trends Biochem Sci. 2012;37(1):32–41.PubMedCrossRefGoogle Scholar
  134. 134.
    Osman C, Voelker DR, Langer T. Making heads or tails of phospholipids in mitochondria. J Cell Biol. 2011;192(1):7–16.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ, et al. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol. 2008;183(4):681–96.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY, et al. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta. 2006;1757(5–6):648–59.PubMedCrossRefGoogle Scholar
  137. 137.
    Schug ZT, Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta. 2009;1788(10):2022–31.PubMedCrossRefGoogle Scholar
  138. 138.
    Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol. 2000;2(10):754–61.PubMedCrossRefGoogle Scholar
  139. 139.
    Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol. 2005;6(8):657–63.PubMedCrossRefGoogle Scholar
  140. 140.
    de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B. Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta. 1997;1325(1):108–16.PubMedCrossRefGoogle Scholar
  141. 141.
    Zinser E, Daum G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast. 1995;11(6):493–536.PubMedCrossRefGoogle Scholar
  142. 142.
    Ribas V, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med. 2016;5(1):22.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Unsay JD, Cosentino K, Subburaj Y, Garcia-Saez AJ. Cardiolipin effects on membrane structure and dynamics. Langmuir. 2013;29(51):15878–87.PubMedCrossRefGoogle Scholar
  144. 144.
    Arnarez C, Marrink SJ, Periole X. Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci Rep. 2013;3:1263.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Arnarez C, Mazat JP, Elezgaray J, Marrink SJ, Periole X. Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc1. J Am Chem Soc. 2013;135(8):3112–20.PubMedCrossRefGoogle Scholar
  146. 146.
    McKenzie M, Lazarou M, Thorburn DR, Ryan MT. Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol. 2006;361(3):462–9.PubMedCrossRefGoogle Scholar
  147. 147.
    Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014;171(8):2029–50.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Birk AV, Chao WM, Bracken C, Warren JD, Szeto HH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br J Pharmacol. 2014;171(8):2017–28.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Szeto HH, Liu S, Soong Y, Alam N, Prusky GT, Seshan SV. Protection of mitochondria prevents high-fat diet-induced glomerulopathy and proximal tubular injury. Kidney Int. 2016;90(5):997–1011.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. Michelle Ducasa
    • 1
    • 2
  • Alla Mitrofanova
    • 1
    • 2
    • 3
  • Alessia Fornoni
    • 1
    • 2
    Email author
  1. 1.Katz Family Division of Nephrology and Hypertension, Department of MedicineUniversity of Miami, Miller School of MedicineMiamiUSA
  2. 2.Peggy and Harold Katz Family Drug Discovery CenterUniversity of Miami, Miller School of MedicineMiamiUSA
  3. 3.Department of SurgeryUniversity of Miami, Miller School of MedicineMiamiUSA

Personalised recommendations