Advertisement

Current Diabetes Reports

, 19:112 | Cite as

Management of Diabetes in Patients Undergoing Bariatric Surgery

  • Christopher M. MullaEmail author
  • Harris M. Baloch
  • Samar Hafida
Obesity (KM Gadde, Section Editor)
  • 14 Downloads
Part of the following topical collections:
  1. Topical Collection on Obesity

Abstract

Purpose of Review

The number of bariatric surgeries for patients with type 1 or type 2 diabetes continues to grow. Clinicians are challenged to choose therapies that reach glycemic targets without inducing adverse effects in post-bariatric patients without published guidelines. This review evaluates data supporting the best strategies for diabetes management in patients undergoing bariatric surgery.

Recent Findings

Though few clinical trials have evaluated the safety and effectiveness of different glucose-lowering therapies following bariatric surgery, remission of diabetes or reduced medications is an established benefit of bariatric surgery. Adverse events including diabetic ketoacidosis in post-bariatric patients on sodium-glucose co-transporter 2 (SGLT2) inhibitors or inadequate insulin have been reported in patient's with both type 1 and type 2 diabetes. Metformin, glucagon-like peptide-1 (GLP-1) agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, SGLT2 inhibitors, insulin, and sulfonylureas have been used successfully in the perioperative period for other surgeries and guidelines recommend adjusting the doses of these medications especially in the perioperative period.

Summary

Clinicians should favor weight-neutral or weight-loss promoting therapies in post-bariatric surgery patients such as medical nutrition therapy, metformin, GLP-1 agonists, SGLT2 inhibitors, and DPP-4 inhibitors.

Keywords

Bariatric surgery Type 2 diabetes Type 1 diabetes Obesity Weight loss 

Notes

Acknowledgments

We would like to thank Dr. Bethany M. Mulla, MD, for proofreading the manuscript.

The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the U.S. Government.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGMM, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by international diabetes organizations. Diabetes Care. 2016;39(6):861–77.  https://doi.org/10.2337/dc16-0236.CrossRefPubMedGoogle Scholar
  2. 2.
    Sjöström L. Review of the key results from the Swedish Obese Subjects (SOS) trial - a prospective controlled intervention study of bariatric surgery. J Intern Med. 2013;273(3):219–34.  https://doi.org/10.1111/joim.12012.CrossRefPubMedGoogle Scholar
  3. 3.
    Kirwan JP, Aminian A, Kashyap SR, Burguera B, Brethauer SA, Schauer PR. Bariatric surgery in obese patients with type 1 diabetes. Diabetes Care. 2016;39(6):941–8.  https://doi.org/10.2337/dc15-2732.CrossRefPubMedGoogle Scholar
  4. 4.
    Ashrafian H, Harling L, Toma T, Athanasiou C, Nikiteas N, Efthimiou E, et al. Type 1 diabetes mellitus and bariatric surgery: a systematic review and meta-analysis. Obes Surg. 2015;26(8):1697–704.  https://doi.org/10.1007/s11695-015-1999-6.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Landau Z, Kowen-Sandbank G, Jakubowicz D, Raziel A, Sakran N, Zaslavsky-Paltiel I, et al. Bariatric surgery in patients with type 1 diabetes: special considerations are warranted. Ther Adv Endocrinol Metab. 2019;10:2042018818822207.  https://doi.org/10.1177/2042018818822207.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chow A, Switzer NJ, Dang J, Shi X, de Gara C, Birch DW, et al. A systematic review and meta-analysis of outcomes for type 1 diabetes after bariatric surgery. J Obes. 2016;2016:1–7.  https://doi.org/10.1155/2016/6170719.CrossRefGoogle Scholar
  7. 7.
    Mahawar KK, De Alwis N, Carr WRJ, Jennings N, Schroeder N, Small PK. Bariatric surgery in type 1 diabetes mellitus: a systematic review. Obes Surg. 2015;26(1):196–204.  https://doi.org/10.1007/s11695-015-1924-z.CrossRefGoogle Scholar
  8. 8.
    Hussain A. The effect of metabolic surgery on type 1 diabetes: meta-analysis. Arch Endocrinol Metab. 2018;62(2):172–8.  https://doi.org/10.20945/2359-3997000000021.CrossRefPubMedGoogle Scholar
  9. 9.
    Mulla CM, Middelbeek RJW, Patti M-E. Mechanisms of weight loss and improved metabolism following bariatric surgery. Ann N Y Acad Sci. 2018;1411(1):53–64.  https://doi.org/10.1111/nyas.13409.CrossRefPubMedGoogle Scholar
  10. 10.
    Arterburn DE, Olsen MK, Smith VA, Livingston EH, Van Scoyoc L, Yancy WS, et al. Association between bariatric surgery and long-term survival. Jama. 2015;313(1):62–70.  https://doi.org/10.1001/jama.2014.16968.CrossRefPubMedGoogle Scholar
  11. 11.
    Cardoso L, Rodrigues D, Gomes L, Carrilho F. Short- and long-term mortality after bariatric surgery: a systematic review and meta-analysis. Diabetes Obes Metab. 2017;19(9):1223–32.  https://doi.org/10.1111/dom.12922.CrossRefPubMedGoogle Scholar
  12. 12.
    Carlsson LMS, Peltonen M, Ahlin S, Anveden Å, Bouchard C, Carlsson B, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish Obese Subjects. N Engl J Med. 2012;367(8):695–704.  https://doi.org/10.1056/NEJMoa1112082.CrossRefPubMedGoogle Scholar
  13. 13.
    Fisher DP, Johnson E, Haneuse S, Arterburn D, Coleman KJ, O’Connor PJ, et al. Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. Jama. 2018;320(15):1570–82.  https://doi.org/10.1001/jama.2018.14619.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heneghan HM, Meron-Eldar S, Brethauer SA, Schauer PR, Young JB. Effect of bariatric surgery on cardiovascular risk profile. Drs. Heneghan and Meron-Eldar contributed equally to this article. Am J Cardiol. 2011;108(10):1499–507.  https://doi.org/10.1016/j.amjcard.2011.06.076.CrossRefPubMedGoogle Scholar
  15. 15.
    Schauer PR, Mingrone G, Ikramuddin S, Wolfe B. Clinical outcomes of metabolic surgery: efficacy of glycemic control, weight loss, and remission of diabetes. Diabetes Care. 2016;39(6):902–11.  https://doi.org/10.2337/dc16-0382.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K, Wedel H, et al. Bariatric surgery and long-term cardiovascular events. Jama. 2012;307(1):56–65.  https://doi.org/10.1001/jama.2011.1914.CrossRefPubMedGoogle Scholar
  17. 17.
    Adams TD, Arterburn DE, Nathan DM, Eckel RH. Clinical outcomes of metabolic surgery: microvascular and macrovascular complications. Diabetes Care. 2016;39(6):912–23.  https://doi.org/10.2337/dc16-0157.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    O'Brien R, Johnson E, Haneuse S, Coleman KJ, O'Connor PJ, Fisher DP, et al. Microvascular outcomes in patients with diabetes after bariatric surgery versus usual care. Ann Intern Med. 2018;169(5):300–10.  https://doi.org/10.7326/m17-2383.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Aminian A, Zajichek A, Arterburn DE, Wolski KE, Brethauer SA, Schauer PR, et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. Jama. 2019.  https://doi.org/10.1001/jama.2019.14231.CrossRefGoogle Scholar
  20. 20.
    Merino J, Leong A, Posner DC, Porneala B, Masana L, Dupuis J, et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care. 2017;40(5):687–93.  https://doi.org/10.2337/dc16-2625.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee PC, Tham KW, Ganguly S, Tan HC, Eng AKH, Dixon JB. Ethnicity does not influence glycemic outcomes or diabetes remission after sleeve gastrectomy or gastric bypass in a multiethnic Asian cohort. Obes Surg. 2017;28(6):1511–8.  https://doi.org/10.1007/s11695-017-3050-6.CrossRefGoogle Scholar
  22. 22.
    Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric–metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.  https://doi.org/10.1016/s0140-6736(15)00075-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, et al. Surgical vs medical treatments for type 2 diabetes mellitus. JAMA Surgery. 2014;149(7):707–15.  https://doi.org/10.1001/jamasurg.2014.467.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cummings DE, Arterburn DE, Westbrook EO, Kuzma JN, Stewart SD, Chan CP, et al. Gastric bypass surgery vs intensive lifestyle and medical intervention for type 2 diabetes: the CROSSROADS randomised controlled trial. Diabetologia. 2016;59(5):945–53.  https://doi.org/10.1007/s00125-016-3903-x.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ikramuddin S, Billington CJ, Lee W-J, Bantle JP, Thomas AJ, Connett JE, et al. Roux-en-Y gastric bypass for diabetes (the diabetes surgery study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 2015;3(6):413–22.  https://doi.org/10.1016/s2213-8587(15)00089-3.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101(1):50–6.  https://doi.org/10.1016/j.diabres.2013.04.005.CrossRefPubMedGoogle Scholar
  27. 27.
    Parikh M, Chung M, Sheth S, McMacken M, Zahra T, Saunders JK, et al. Randomized pilot trial of bariatric surgery versus intensive medical weight management on diabetes remission in type 2 diabetic patients who do NOT meet NIH criteria for surgery and the role of soluble RAGE as a novel biomarker of success. Ann Surg. 2014;260(4):617–24.  https://doi.org/10.1097/sla.0000000000000919.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes — 5-year outcomes. N Engl J Med. 2017;376(7):641–51.  https://doi.org/10.1056/NEJMoa1600869.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Simonson DC, Halperin F, Foster K, Vernon A, Goldfine AB. Clinical and patient-centered outcomes in obese patients with type 2 diabetes 3 years after randomization to Roux-en-Y gastric bypass surgery versus intensive lifestyle management: the SLIMM-T2D study. Diabetes Care. 2018;41(4):670–9.  https://doi.org/10.2337/dc17-0487.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ding S-A, Simonson DC, Wewalka M, Halperin F, Foster K, Goebel-Fabbri A, et al. Adjustable gastric band surgery or medical management in patients with type 2 diabetes: a randomized clinical trial. J Clin Endocrinol Metab. 2015;100(7):2546–56.  https://doi.org/10.1210/jc.2015-1443.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes. Jama. 2008;299(3).  https://doi.org/10.1001/jama.299.3.316.
  32. 32.
    Wentworth JM, Playfair J, Laurie C, Ritchie ME, Brown WA, Burton P, et al. Multidisciplinary diabetes care with and without bariatric surgery in overweight people: a randomised controlled trial. Lancet Diabetes Endocrinol. 2014;2(7):545–52.  https://doi.org/10.1016/s2213-8587(14)70066-x.CrossRefPubMedGoogle Scholar
  33. 33.
    Reaven PD, Emanuele NV, Wiitala WL, Bahn GD, Reda DJ, McCarren M, et al. Intensive glucose control in patients with type 2 diabetes — 15-year follow-up. N Engl J Med. 2019;380(23):2215–24.  https://doi.org/10.1056/NEJMoa1806802.CrossRefPubMedGoogle Scholar
  34. 34.
    Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.  https://doi.org/10.1056/NEJMoa0808431.CrossRefPubMedGoogle Scholar
  35. 35.
    Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.  https://doi.org/10.1056/NEJMoa0802987. CrossRefGoogle Scholar
  36. 36.
    Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.  https://doi.org/10.1056/NEJMoa0802743.CrossRefGoogle Scholar
  37. 37.
    Eliasson B, Liakopoulos V, Franzén S, Näslund I, Svensson A-M, Ottosson J, et al. Cardiovascular disease and mortality in patients with type 2 diabetes after bariatric surgery in Sweden: a nationwide, matched, observational cohort study. The Lancet Diabetes & Endocrinology. 2015;3(11):847–54.  https://doi.org/10.1016/s2213-8587(15)00334-4.CrossRefGoogle Scholar
  38. 38.
    Ortega CB, Lee H-J, Portenier D, Guerron AD, Tong J. Preoperative hemoglobin A1c predicts postoperative weight loss following bariatric surgery in patients with diabetes. 2018;67(Supplement 1):2045–P. https://doi.org/10.2337/db18-2045-P%JDiabetes.Google Scholar
  39. 39.
    Syed S, Finks J, Wood M, Carlin A, Wohaibi E, Kole K, et al. Effect of preoperative hemoglobin A1c on bariatric surgery outcomes. Surg Obes Relat Dis. 2015;11(6):S43–S4.  https://doi.org/10.1016/j.soard.2015.08.479.CrossRefGoogle Scholar
  40. 40.
    Carson JL, Scholz PM, Chen AY, Peterson ED, Gold J, Schneider SH. Diabetes mellitus increases short-term mortality and morbidity in patients undergoing coronary artery bypass graft surgery. J Am Coll Cardiol. 2002;40(3):418–23.  https://doi.org/10.1016/s0735-1097(02)01969-1.CrossRefPubMedGoogle Scholar
  41. 41.
    Underwood P, Askari R, Hurwitz S, Chamarthi B, Garg R. Response to comment on underwood et al. preoperative a1c and clinical outcomes in patients with diabetes undergoing major noncardiac surgical procedures. Diabetes Care. 2014;37:611–6. Diabetes Care. 2014;37(8):e191-e.  https://doi.org/10.2337/dc14-0738.CrossRefPubMedGoogle Scholar
  42. 42.
    •• Yong PH, Weinberg L, Torkamani N, Churilov L, Robbins RJ, Ma R, et al. The presence of diabetes and higher Hba1care independently associated with adverse outcomes after surgery. Diabetes Care. 2018;41(6):1172–9.  https://doi.org/10.2337/dc17-2304 This prospective observational study of over 7500 patients undergoing bariatric surgery found an increased risk of major complications, ICU admission, and longer length of hospital stay with each point rise in hemoglobin A1c. This suggests that pre-operative and post-operative glucose management may lead to less post-operative complications. CrossRefPubMedGoogle Scholar
  43. 43.
    van den Boom W, Schroeder RA, Manning MW, Setji TL, Fiestan G-O, Dunson DB. Effect of A1C and glucose on postoperative mortality in noncardiac and cardiac surgeries. Diabetes Care. 2018;41(4):782–8.  https://doi.org/10.2337/dc17-2232.CrossRefPubMedGoogle Scholar
  44. 44.
    Mechanick J, Youdim A, Jones D, Garvey W, Hurley D, McMahon M, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr Pract. 2013;19(2):337–72.  https://doi.org/10.4158/ep12437.Gl.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Laguna Sanz AJ, Mulla CM, Fowler KM, Cloutier E, Goldfine AB, Newswanger B, et al. Design and clinical evaluation of a novel low-glucose prediction algorithm with mini-dose stable glucagon delivery in post-bariatric hypoglycemia. Diabetes Technol Ther. 2018;20(2):127–39.  https://doi.org/10.1089/dia.2017.0298.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nielsen JB, Abild CB, Pedersen AM, Pedersen SB, Richelsen B. Continuous glucose monitoring after gastric bypass to evaluate the glucose variability after a low-carbohydrate diet and to determine hypoglycemia. Obes Surg. 2016;26(9):2111–8.  https://doi.org/10.1007/s11695-016-2058-7.CrossRefPubMedGoogle Scholar
  47. 47.
    Alvarez R, Bonham AJ, Buda CM, Carlin AM, Ghaferi AA, Varban OA. Factors associated with long wait times for bariatric surgery. Ann Surg. 2018:1.  https://doi.org/10.1097/sla.0000000000002826.
  48. 48.
    Hutcheon DA, Hale AL, Ewing JA, Miller M, Couto F, Bour ES, et al. Short-term preoperative weight loss and postoperative outcomes in bariatric surgery. J Am Coll Surg. 2018;226(4):514–24.  https://doi.org/10.1016/j.jamcollsurg.2017.12.032.CrossRefPubMedGoogle Scholar
  49. 49.
    Ross LJ, Wallin S, Osland EJ, Memon MA. Commercial very low energy meal replacements for preoperative weight loss in obese patients: a systematic review. Obes Surg. 2016;26(6):1343–51.  https://doi.org/10.1007/s11695-016-2167-3.CrossRefPubMedGoogle Scholar
  50. 50.
    Isom KA, Andromalos L, Ariagno M, Hartman K, Mogensen KM, Stephanides K, et al. Nutrition and metabolic support recommendations for the bariatric patient. Nutr Clin Pract. 2014;29(6):718–39.  https://doi.org/10.1177/0884533614552850.CrossRefPubMedGoogle Scholar
  51. 51.
    Sherf Dagan S, Goldenshluger A, Globus I, Schweiger C, Kessler Y, Kowen Sandbank G, et al. Nutritional recommendations for adult bariatric surgery patients: clinical practice. Advances in Nutrition: An International Review Journal. 2017;8(2):382–94.  https://doi.org/10.3945/an.116.014258.CrossRefGoogle Scholar
  52. 52.
    Brethauer S. ASMBS position statement on preoperative supervised weight loss requirements. Surg Obes Relat Dis. 2011;7(3):257–60.  https://doi.org/10.1016/j.soard.2011.03.003.CrossRefPubMedGoogle Scholar
  53. 53.
    Fris RJ. Preoperative low energy diet diminishes liver size. Obes Surg. 2004;14(9):1165–70.  https://doi.org/10.1381/0960892042386977.CrossRefPubMedGoogle Scholar
  54. 54.
    Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–9.  https://doi.org/10.1016/s0140-6736(18)32590-x.CrossRefPubMedGoogle Scholar
  55. 55.
    Shyangdan DS, Royle P, Clar C, Sharma P, Waugh N, Snaith A. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2011;10:CD006423.  https://doi.org/10.1002/14651858.CD006423.pub2.CrossRefGoogle Scholar
  56. 56.
    Sherifali D, Nerenberg K, Pullenayegum E, Cheng JE, Gerstein HC. The effect of oral antidiabetic agents on A1C levels: a systematic review and meta-analysis. Diabetes Care. 2010;33(8):1859–64.  https://doi.org/10.2337/dc09-1727.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes. Ann Intern Med. 2013;159(4):262–74.  https://doi.org/10.7326/0003-4819-159-4-201308200-00007.CrossRefPubMedGoogle Scholar
  58. 58.
    9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2019. Diabetes Care. 2019;42(Supplement 1):S90–S102.  https://doi.org/10.2337/dc19-S009.
  59. 59.
    Demma LJ, Carlson KT, Duggan EW, Morrow JG, Umpierrez G. Effect of basal insulin dosage on blood glucose concentration in ambulatory surgery patients with type 2 diabetes. J Clin Anesth. 2017;36:184–8.  https://doi.org/10.1016/j.jclinane.2016.10.003.CrossRefPubMedGoogle Scholar
  60. 60.
    Hirsch IB. Insulin analogues. N Engl J Med. 2005;352(2):174–83.  https://doi.org/10.1056/NEJMra040832.CrossRefPubMedGoogle Scholar
  61. 61.
    Elizarova S, Galstyan GR, Wolffenbuttel BH. Role of premixed insulin analogues in the treatment of patients with type 2 diabetes mellitus: a narrative review. J Diabetes. 2014;6(2):100–10.  https://doi.org/10.1111/1753-0407.12096.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Riddle MC, Rosenstock J, Gerich J. The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care. 2003;26(11):3080–6.  https://doi.org/10.2337/diacare.26.11.3080.CrossRefPubMedGoogle Scholar
  63. 63.
    Rottenstreich A, Keidar A, Yuval JB, Abu-Gazala M, Khalaileh A, Elazary R. Outcome of bariatric surgery in patients with type 1 diabetes mellitus: our experience and review of the literature. Surg Endosc. 2016;30(12):5428–33.  https://doi.org/10.1007/s00464-016-4901-2.CrossRefPubMedGoogle Scholar
  64. 64.
    Aminian A, Kashyap SR, Burguera B, Punchai S, Sharma G, Froylich D, et al. Incidence and clinical features of diabetic ketoacidosis after bariatric and metabolic surgery. Diabetes Care. 2016;39(4):e50–3.  https://doi.org/10.2337/dc15-2647.CrossRefPubMedGoogle Scholar
  65. 65.
    Andalib A, Elbahrawy A, Alshlwi S, Alkhamis A, Hu W, Demyttenaere S, et al. Diabetic ketoacidosis following bariatric surgery in patients with type 2 diabetes: table 1. Diabetes Care. 2016;39(8):e121–e2.  https://doi.org/10.2337/dc16-0280.CrossRefPubMedGoogle Scholar
  66. 66.
    Rizo IM, Apovian CM. Diabetic ketoacidosis post bariatric surgery. Front Endocrinol (Lausanne). 2018;9:812.  https://doi.org/10.3389/fendo.2018.00812.CrossRefGoogle Scholar
  67. 67.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.  https://doi.org/10.1056/NEJMoa012512.CrossRefPubMedGoogle Scholar
  68. 68.
    Bahne E, Sun EWL, Young RL, Hansen M, Sonne DP, Hansen JS, et al. Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight. 2018;3(23).  https://doi.org/10.1172/jci.insight.93936.
  69. 69.
    Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.  https://doi.org/10.1038/nm.4345.CrossRefPubMedGoogle Scholar
  70. 70.
    Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85.  https://doi.org/10.1007/s00125-017-4342-z.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep. 2017;6(3):253–65.  https://doi.org/10.1007/s13679-017-0276-5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Malin SK, Kashyap SR. Effects of metformin on weight loss. Current Opinion in Endocrinology & Diabetes and Obesity. 2014;21(5):323–9.  https://doi.org/10.1097/med.0000000000000095.CrossRefGoogle Scholar
  73. 73.
    Moioli A, Maresca B, Manzione A, Napoletano AM, Coclite D, Pirozzi N, et al. Metformin associated lactic acidosis (MALA): clinical profiling and management. Journal of Nephrology. 2016;29(6):783–9.  https://doi.org/10.1007/s40620-016-0267-8.CrossRefPubMedGoogle Scholar
  74. 74.
    Aberle J, Reining F, Dannheim V, Flitsch J, Klinge A, Mann O. Metformin after bariatric surgery – an acid problem. Exp Clin Endocrinol Diabetes. 2011;120(03):152–3.  https://doi.org/10.1055/s-0031-1285911.CrossRefPubMedGoogle Scholar
  75. 75.
    Deden LN, Aarts EO, Aelfers SCW, van Borren MMGJ, Janssen IMC, Berends FJ, et al. Risk of metformin-associated lactic acidosis (MALA) in patients after gastric bypass surgery. Obes Surg. 2017;28(4):1080–5.  https://doi.org/10.1007/s11695-017-2974-1.CrossRefGoogle Scholar
  76. 76.
    Sudhakaran S, Surani SR. Guidelines for perioperative management of the diabetic patient. Surgery Research and Practice. 2015;2015:1–8.  https://doi.org/10.1155/2015/284063.CrossRefGoogle Scholar
  77. 77.
    Duggan EW, Klopman MA, Berry AJ, Umpierrez G. The Emory University perioperative algorithm for the management of hyperglycemia and diabetes in non-cardiac surgery patients. Current Diabetes Reports. 2016;16(3):34.  https://doi.org/10.1007/s11892-016-0720-z.CrossRefPubMedGoogle Scholar
  78. 78.
    Padwal RS, Gabr RQ, Sharma AM, Langkaas LA, Birch DW, Karmali S, et al. Effect of gastric bypass surgery on the absorption and bioavailability of metformin. Diabetes Care. 2011;34(6):1295–300.  https://doi.org/10.2337/dc10-2140.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Razavi N, Siavash M, Tabbakhian M, Sabzghabaee A. Severity of gastrointestinal side effects of metformin tablet compared to metformin capsule in type 2 diabetes mellitus patients. J Res Pharm Pract. 2017;6(2):73–6.  https://doi.org/10.4103/jrpp.JRPP_17_2.CrossRefGoogle Scholar
  80. 80.
    Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectrum. 2017;30(3):202–10.  https://doi.org/10.2337/ds16-0026.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Drucker DJ. Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nat Clin Pract Endocrinol Metab. 2005;1(1):22–31.  https://doi.org/10.1038/ncpendmet0017.CrossRefPubMedGoogle Scholar
  82. 82.
    Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373(1):11–22.  https://doi.org/10.1056/NEJMoa1411892.CrossRefPubMedGoogle Scholar
  83. 83.
    Jirapinyo P, Jin DX, Qazi T, Mishra N, Thompson CC. A meta-analysis of GLP-1 after Roux-En-Y gastric bypass: impact of surgical technique and measurement strategy. Obes Surg. 2017;28(3):615–26.  https://doi.org/10.1007/s11695-017-2913-1.CrossRefGoogle Scholar
  84. 84.
    • Kaneko S, Ueda Y, Tahara Y. GLP1 receptor agonist liraglutide is an effective therapeutic option for perioperative glycemic control in type 2 diabetes within enhanced recovery after surgery (ERAS) protocols. Eur Surg Res. 2018;59(5–6):349–60.  https://doi.org/10.1159/000494768 This study demonstrated the safety and efficacy of a GLP-1 agonist in the perioperative setting and supports utilization of this class of medications due to their weight loss and cardiovascular and renoprotactive benefits.CrossRefPubMedGoogle Scholar
  85. 85.
    Egan AG, Blind E, Dunder K, de Graeff PA, Hummer BT, Bourcier T, et al. Pancreatic safety of incretin-based drugs — FDA and EMA assessment. N Engl J Med. 2014;370(9):794–7.  https://doi.org/10.1056/NEJMp1314078.CrossRefPubMedGoogle Scholar
  86. 86.
    ClinicalTrials.gov. Evaluation of liraglutide 3.0 mg in patients with poor weight-loss and a suboptimal glucagon-like peptide-1 response (BARIOPTIMISE). Available at: https://clinicaltrials.gov/ct2/show/NCT03341429. Accessed on: 6 September 2019.
  87. 87.
    ClinicalTrials.gov. Effect of GLP-1 receptor agonism after sleeve gastrectomy. Available at: https://clinicaltrials.gov/ct2/show/NCT03115424. Accessed on: 6 September 2019.
  88. 88.
    Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab. 2009;23(4):479–86.  https://doi.org/10.1016/j.beem.2009.03.004.CrossRefPubMedGoogle Scholar
  89. 89.
    Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes. JAMA. 2007;298(2):194–206.  https://doi.org/10.1001/jama.298.2.194.CrossRefPubMedGoogle Scholar
  90. 90.
    Richter B, Bandeira-Echtler E, Bergerhoff K, Lerch C. Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008;2:CD006739.  https://doi.org/10.1002/14651858.CD006739.pub2.CrossRefGoogle Scholar
  91. 91.
    Umpierrez GE, Gianchandani R, Smiley D, Jacobs S, Wesorick DH, Newton C, et al. Safety and efficacy of sitagliptin therapy for the inpatient management of general medicine and surgery patients with type 2 diabetes: a pilot, randomized, controlled study. Diabetes Care. 2013;36(11):3430–5.  https://doi.org/10.2337/dc13-0277.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Shah A, Levesque K, Pierini E, Rojas B, Ahlers M, Stano S, et al. Effect of sitagliptin on glucose control in type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery. Diabetes Obes Metab. 2018;20(4):1018–23.  https://doi.org/10.1111/dom.13139.CrossRefPubMedGoogle Scholar
  93. 93.
    Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of endocrinology on the comprehensive type 2 diabetes management algorithm – 2019 executive summary. Endocr Pract. 2019;25(1):69–100.  https://doi.org/10.4158/cs-2018-0535.CrossRefPubMedGoogle Scholar
  94. 94.
    Kheniser K, Kashyap SR. Canagliflozin versus placebo for post-bariatric surgery patients with persistent type II diabetes: a randomized controlled trial (CARAT). Diabetes Obes Metab. 2017;19(4):609–10.  https://doi.org/10.1111/dom.12860.CrossRefPubMedGoogle Scholar
  95. 95.
    Food and Drug Administration. FDA drug safety communication: FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. 2015. Available from: https://www.fda.gov/media/94822/download.Google Scholar
  96. 96.
    Food and Drug Administration. FDA warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes. 2018. Available from: https://www.fda.gov/media/115602/download.Google Scholar
  97. 97.
    van Niekerk C, Wallace J, Takata M, Yu R. Euglycaemic diabetic ketoacidosis in bariatric surgery patients with type 2 diabetes taking canagliflozin. BMJ Case Reports. 2018;2018.  https://doi.org/10.1136/bcr-2017-221527.
  98. 98.
    Hoenes C, Rashid Q, Pimentel J. Diabetic ketoacidosis in a postoperative gastric bypass patient. Journal of Surgical Case Reports. 2017;2017(7):rjx148.  https://doi.org/10.1093/jscr/rjx148.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Elasha HEA, Wafa W, Meeran K. SGLT2 inhibition may precipitate euglycemic DKA after bariatric surgery. Clinical Diabetes and Research. 2018;2(1):40–2.Google Scholar
  100. 100.
    Umpierrez GE. SGLT2 inhibitors and diabetic ketoacidosis — a growing concern. Nat Rev Endocrinol. 2017;13(8):441–2.  https://doi.org/10.1038/nrendo.2017.77.CrossRefPubMedGoogle Scholar
  101. 101.
    Levine JA, Karam SL, Aleppo G. SGLT2-I in the hospital setting: diabetic ketoacidosis and other benefits and concerns. Current Diabetes Reports. 2017;17(7):54.  https://doi.org/10.1007/s11892-017-0874-3.CrossRefPubMedGoogle Scholar
  102. 102.
    Meyer EJ, Gabb G, Jesudason D. SGLT2 inhibitor–associated euglycemic diabetic ketoacidosis: a South Australian clinical case series and Australian spontaneous adverse event notifications. Diabetes Care. 2018;41(4):e47–e9.  https://doi.org/10.2337/dc17-1721.CrossRefPubMedGoogle Scholar
  103. 103.
    Handelsman Y, Henry RR, Bloomgarden ZT, Dagogo-Jack S, DeFronzo RA, Einhorn D, et al. American Association of Clinical Endocrinologists and American College of endocrinology position statement on the association of Sglt-2 inhibitors and diabetic ketoacidosis. Endocr Pract. 2016;22(6):753–62.  https://doi.org/10.4158/ep161292.Ps.CrossRefPubMedGoogle Scholar
  104. 104.
    Gomez-Peralta F, Abreu C, Lecube A, Bellido D, Soto A, Morales C, et al. Practical approach to initiating SGLT2 inhibitors in type 2 diabetes. Diabetes Therapy. 2017;8(5):953–62.  https://doi.org/10.1007/s13300-017-0277-0.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Chen J, Mackenzie J, Zhai Y, O’Loughlin J, Kholer R, Morrow E, et al. Preventing returns to the emergency department following bariatric surgery. Obes Surg. 2017;27(8):1986–92.  https://doi.org/10.1007/s11695-017-2624-7.CrossRefPubMedGoogle Scholar
  106. 106.
    Alvarenga ES, Lo Menzo E, Szomstein S, Rosenthal RJ. Safety and efficacy of 1020 consecutive laparoscopic sleeve gastrectomies performed as a primary treatment modality for morbid obesity. A single-center experience from the metabolic and bariatric surgical accreditation quality and improvement program. Surg Endosc. 2015;30(7):2673–8.  https://doi.org/10.1007/s00464-015-4548-4.CrossRefPubMedGoogle Scholar
  107. 107.
    Food and Drug Administration. FDA drug safety communication: FDA strengthens kidney warnings for diabetes medicines canagliflozin (Invokana, Invokamet) and dapagliflozin (Farxiga, Xigduo XR). Available from: https://www.fda.gov/media/98683/download.
  108. 108.
    Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.  https://doi.org/10.1056/NEJMoa1811744.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Seidu S, Kunutsor SK, Cos X, Gillani S, Khunti K. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: a systematic review and meta-analysis. Primary Care Diabetes. 2018;12(3):265–83.  https://doi.org/10.1016/j.pcd.2018.02.001.CrossRefPubMedGoogle Scholar
  110. 110.
    Taylor SI, Blau JE, Rother KI. Possible adverse effects of SGLT2 inhibitors on bone. The Lancet Diabetes & Endocrinology. 2015;3(1):8–10.  https://doi.org/10.1016/s2213-8587(14)70227-x.CrossRefGoogle Scholar
  111. 111.
    Bilezikian JP, Watts NB, Usiskin K, Polidori D, Fung A, Sullivan D, et al. Evaluation of bone mineral density and bone biomarkers in patients with type 2 diabetes treated with canagliflozin. The Journal of Clinical Endocrinology & Metabolism. 2016;101(1):44–51.  https://doi.org/10.1210/jc.2015-1860.CrossRefGoogle Scholar
  112. 112.
    Fralick M, Kim SC, Schneeweiss S, Kim D, Redelmeier DA, Patorno E. Fracture risk after initiation of use of canagliflozin. Ann Intern Med. 2019;170(3):155–63.  https://doi.org/10.7326/m18-0567.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Rosak C, Mertes. Critical evaluation of the role of acarbose in the treatment of diabetes: patient considerations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy. 2012;5:357–67.  https://doi.org/10.2147/dmso.S28340.CrossRefGoogle Scholar
  114. 114.
    Catalan VS, Couture JA, LeLorier J. Predictors of persistence of use of the novel antidiabetic agent acarbose. Arch Intern Med. 2001;161(8):1106–12.CrossRefGoogle Scholar
  115. 115.
    Potoczna N, Harfmann S, Steffen R, Briggs R, Bieri N, Horber FF. Bowel habits after bariatric surgery. Obes Surg. 2008;18(10):1287–96.  https://doi.org/10.1007/s11695-008-9456-4.CrossRefPubMedGoogle Scholar
  116. 116.
    Sola D, Rossi L, Schianca GPC, Maffioli P, Bigliocca M, Mella R, et al. State of the art paper sulfonylureas and their use in clinical practice. Arch Med Sci. 2015;4(4):840–8.  https://doi.org/10.5114/aoms.2015.53304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Christopher M. Mulla
    • 1
    • 2
    Email author
  • Harris M. Baloch
    • 1
  • Samar Hafida
    • 2
  1. 1.Division of Endocrinology, Landstuhl Regional Medical CenterUS ArmyLandstuhlGermany
  2. 2.Joslin Diabetes CenterHarvard Medical SchoolBostonUSA

Personalised recommendations