Advertisement

Current Diabetes Reports

, 19:69 | Cite as

Extracellular Vesicles in Type 1 Diabetes: Messengers and Regulators

  • Sarita Negi
  • Alissa K. Rutman
  • Steven ParaskevasEmail author
Pathogenesis of Type 1 Diabetes (A Pugliese and SJ Richardson, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pathogenesis of Type 1 Diabetes

Abstract

Purpose of Review

Theories about the pathogenesis of type 1 diabetes (T1D) refer to the potential of primary islet inflammatory signaling as a trigger for the loss of self-tolerance leading to disease onset. Emerging evidence suggests that extracellular vesicles (EV) may represent the missing link between inflammation and autoimmunity. Here, we review the evidence for a role of EV in the pathogenesis of T1D, as well as discuss their potential value in the clinical sphere, as biomarkers and therapeutic agents.

Recent Findings

EV derived from β cells are enriched in diabetogenic autoantigens and miRNAs that are selectively sorted and packaged. These EV play a pivotal role in antigen presentation and cell to cell communication leading to activation of autoimmune responses. Furthermore, recent evidence suggests the potential of EV as novel tools in clinical diagnostics and therapeutic interventions.

Summary

In-depth analysis of EV cargo using modern multi-parametric technologies may be useful in enhancing our understanding of EV-mediated immune mechanisms and in identifying robust biomarkers and therapeutic strategies for T1D.

Keywords

Type 1 diabetes Extracellular vesicles Islets of Langerhans β-cell injury Autoimmunity Biomarkers 

Notes

Funding

This work was supported by the Canadian Donation and Transplantation Program (CDTRP), McGill University Health Centre Foundation (Royal Victoria Hospital), and Astellas Pharmaceuticals. A.K.R is supported by a Fonds de recherche du Québec Santé (FRQS) Doctoral Fellowship and a Research Institute of McGill University Health Centre (RI-MUHC) Studentship.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Atkinson MA, Kaufman DL, Campbell L, Gibbs KA, Shah SC, Bu DF, et al. Response of peripheral-blood mononuclear cells to glutamate decarboxylase in insulin-dependent diabetes. Lancet. 1992;339(8791):458–9.CrossRefGoogle Scholar
  2. 2.
    Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007;104(43):17040–5.  https://doi.org/10.1073/pnas.0705894104.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Maclaren N, Lan M, Coutant R, Schatz D, Silverstein J, Muir A, et al. Only multiple autoantibodies to islet cells (ICA), insulin, GAD65, IA-2 and IA-2beta predict immune-mediated (type 1) diabetes in relatives. J Autoimmun. 1999;12(4):279–87.  https://doi.org/10.1006/jaut.1999.0281.CrossRefPubMedGoogle Scholar
  4. 4.
    Achenbach P, Warncke K, Reiter J, Naserke HE, Williams AJ, Bingley PJ, et al. Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes. 2004;53(2):384–92.CrossRefGoogle Scholar
  5. 5.
    Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–9.  https://doi.org/10.1001/jama.2013.6285.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2011;57(6):e1–e47.  https://doi.org/10.1373/clinchem.2010.161596.CrossRefPubMedGoogle Scholar
  7. 7.
    Daneman D. Type 1 diabetes. Lancet. 2006;367(9513):847–58.  https://doi.org/10.1016/s0140-6736(06)68341-4.CrossRefPubMedGoogle Scholar
  8. 8.
    Simonsen JR, Harjutsalo V, Jarvinen A, Kirveskari J, Forsblom C, Groop PH, et al. Bacterial infections in patients with type 1 diabetes: a 14-year follow-up study. BMJ Open Diabetes Res Care. 2015;3(1):e000067.  https://doi.org/10.1136/bmjdrc-2014-000067.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Korsgren S, Molin Y, Salmela K, Lundgren T, Melhus A, Korsgren O. On the etiology of type 1 diabetes: a new animal model signifying a decisive role for bacteria eliciting an adverse innate immunity response. Am J Pathol. 2012;181(5):1735–48.  https://doi.org/10.1016/j.ajpath.2012.07.022.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Morse ZJ, Horwitz MS. Innate viral receptor signaling determines type 1 diabetes onset. Front Endocrinol. 2017;8:249.  https://doi.org/10.3389/fendo.2017.00249.CrossRefGoogle Scholar
  11. 11.
    Thomson G, Valdes AM, Noble JA, Kockum I, Grote MN, Najman J, et al. Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens. 2007;70(2):110–27.  https://doi.org/10.1111/j.1399-0039.2007.00867.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Lambert AP, Gillespie KM, Thomson G, Cordell HJ, Todd JA, Gale EAM, et al. Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. J Clin Endocrinol Metab. 2004;89(8):4037–43.  https://doi.org/10.1210/jc.2003-032084.CrossRefPubMedGoogle Scholar
  13. 13.
    Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet. 1996;59(5):1134–48.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Roark CL, Anderson KM, Simon LJ, Schuyler RP, Aubrey MT, Freed BM. Multiple HLA epitopes contribute to type 1 diabetes susceptibility. Diabetes. 2014;63(1):323–31.  https://doi.org/10.2337/db13-1153.CrossRefPubMedGoogle Scholar
  15. 15.
    Steck AK, Wong R, Wagner B, Johnson K, Liu E, Romanos J, et al. Effects of non-HLA gene polymorphisms on development of islet autoimmunity and type 1 diabetes in a population with high-risk HLA-DR,DQ genotypes. Diabetes. 2012;61(3):753–8.  https://doi.org/10.2337/db11-1228.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209(1):51–60.  https://doi.org/10.1084/jem.20111187.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Babon JA, DeNicola ME, Blodgett DM, Crevecoeur I, Buttrick TS, Maehr R, et al. Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes. Nat Med. 2016;22(12):1482–7.  https://doi.org/10.1038/nm.4203.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155(2):173–81.  https://doi.org/10.1111/j.1365-2249.2008.03860.x.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Leete P, Willcox A, Krogvold L, Dahl-Jorgensen K, Foulis AK, Richardson SJ, et al. Differential insulitic profiles determine the extent of beta-cell destruction and the age at onset of type 1 diabetes. Diabetes. 2016;65(5):1362–9.  https://doi.org/10.2337/db15-1615.CrossRefPubMedGoogle Scholar
  20. 20.
    Roep BO, Kracht MJ, van Lummel M, Zaldumbide A. A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes. Curr Opin Immunol. 2016;43:67–73.  https://doi.org/10.1016/j.coi.2016.09.007.CrossRefPubMedGoogle Scholar
  21. 21.
    Mannering SI, Harrison LC, Williamson NA, Morris JS, Thearle DJ, Jensen KP, et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med. 2005;202(9):1191–7.  https://doi.org/10.1084/jem.20051251.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Crawford F, Stadinski B, Jin N, Michels A, Nakayama M, Pratt P, et al. Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc Natl Acad Sci U S A. 2011;108(40):16729–34.  https://doi.org/10.1073/pnas.1113954108.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wan X, Zinselmeyer BH, Zakharov PN, Vomund AN, Taniguchi R, Santambrogio L, et al. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature. 2018;560(7716):107–11.  https://doi.org/10.1038/s41586-018-0341-6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351(6274):711–4.  https://doi.org/10.1126/science.aad2791.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22;30:3.22.1–3.22.29.  https://doi.org/10.1002/0471143030.cb0322s30.CrossRefGoogle Scholar
  26. 26.
    Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.  https://doi.org/10.1080/20013078.2018.1535750.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci : CMLS. 2011;68(16):2667–88.  https://doi.org/10.1007/s00018-011-0689-3. CrossRefPubMedGoogle Scholar
  28. 28.
    Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.  https://doi.org/10.1016/j.cell.2016.01.043.CrossRefPubMedGoogle Scholar
  29. 29.
    Christgau S, Aanstoot HJ, Schierbeck H, Begley K, Tullin S, Hejnaes K, et al. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J Cell Biol. 1992;118(2):309–20.CrossRefGoogle Scholar
  30. 30.
    Lee HS, Jeong J, Lee KJ. Characterization of vesicles secreted from insulinoma NIT-1 cells. J Proteome Res. 2009;8(6):2851–62.  https://doi.org/10.1021/pr900009y.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sheng H, Hassanali S, Nugent C, Wen L, Hamilton-Williams E, Dias P, et al. Insulinoma-released exosomes or microparticles are immunostimulatory and can activate autoreactive T cells spontaneously developed in nonobese diabetic mice. J Immunol. 2011;187(4):1591–600.  https://doi.org/10.4049/jimmunol.1100231.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cianciaruso C, Phelps EA, Pasquier M, Hamelin R, Demurtas D, Alibashe Ahmed M, et al. Primary human and rat beta-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity. Diabetes. 2017;66(2):460–73.  https://doi.org/10.2337/db16-0671.CrossRefPubMedGoogle Scholar
  33. 33.
    Hasilo CP, Negi S, Allaeys I, Cloutier N, Rutman AK, Gasparrini M, et al. Presence of diabetes autoantigens in extracellular vesicles derived from human islets. Sci Rep. 2017;7(1):5000.  https://doi.org/10.1038/s41598-017-04977-y. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fu Q, Jiang H, Wang Z, Wang X, Chen H, Shen Z, et al. Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging. 2018;10(12):3986–99.  https://doi.org/10.18632/aging.101689.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ribeiro D, Andersson EM, Heath N, Persson-Kry A, Collins R, Hicks R, et al. Human pancreatic islet-derived extracellular vesicles modulate insulin expression in 3D-differentiating iPSC clusters. PLoS One. 2017;12(11):e0187665.  https://doi.org/10.1371/journal.pone.0187665.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Figliolini F, Cantaluppi V, De Lena M, Beltramo S, Romagnoli R, Salizzoni M, et al. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS One. 2014;9(7):e102521.  https://doi.org/10.1371/journal.pone.0102521.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Guay C, Menoud V, Rome S, Regazzi R. Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal: CCS. 2015;13:17.  https://doi.org/10.1186/s12964-015-0097-7.CrossRefPubMedGoogle Scholar
  38. 38.
    Bradshaw EM, Raddassi K, Elyaman W, Orban T, Gottlieb PA, Kent SC, et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol. 2009;183(7):4432–9.  https://doi.org/10.4049/jimmunol.0900576.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wachlin G, Augstein P, Schroder D, Kuttler B, Kloting I, Heinke P, et al. IL-1beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J Autoimmun. 2003;20(4):303–12.CrossRefGoogle Scholar
  40. 40.
    Wogensen LD, Kolb-Bachofen V, Christensen P, Dinarello CA, Mandrup-Poulsen T, Martin S, et al. Functional and morphological effects of interleukin-1 beta on the perfused rat pancreas. Diabetologia. 1990;33(1):15–23.CrossRefGoogle Scholar
  41. 41.
    Palmisano G, Jensen SS, Le Bihan MC, Laine J, McGuire JN, Pociot F, et al. Characterization of membrane-shed microvesicles from cytokine-stimulated beta-cells using proteomics strategies. Mol Cell Proteomics : MCP. 2012;11(8):230–43.  https://doi.org/10.1074/mcp.M111.012732.CrossRefPubMedGoogle Scholar
  42. 42.
    Bassaganas S, Allende H, Cobler L, Ortiz MR, Llop E, de Bolos C, et al. Inflammatory cytokines regulate the expression of glycosyltransferases involved in the biosynthesis of tumor-associated sialylated glycans in pancreatic cancer cell lines. Cytokine. 2015;75(1):197–206.  https://doi.org/10.1016/j.cyto.2015.04.006.CrossRefPubMedGoogle Scholar
  43. 43.
    Kang T, Jensen P, Huang H, Lund Christensen G, Billestrup N, Larsen MR. Characterization of the molecular mechanisms underlying glucose stimulated insulin secretion from isolated pancreatic beta-cells using post-translational modification specific proteomics (PTMomics). Mol Cell Proteomics : MCP. 2018;17(1):95–110.  https://doi.org/10.1074/mcp.RA117.000217.CrossRefPubMedGoogle Scholar
  44. 44.
    Ortis F, Naamane N, Flamez D, Ladriere L, Moore F, Cunha DA, et al. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells. Diabetes. 2010;59(2):358–74.  https://doi.org/10.2337/db09-1159.CrossRefPubMedGoogle Scholar
  45. 45.
    D'Hertog W, Maris M, Ferreira GB, Verdrengh E, Lage K, Hansen DA, et al. Novel insights into the global proteome responses of insulin-producing INS-1E cells to different degrees of endoplasmic reticulum stress. J Proteome Res. 2010;9(10):5142–52.  https://doi.org/10.1021/pr1004086.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhu Q, Kang J, Miao H, Feng Y, Xiao L, Hu Z, et al. Low-dose cytokine-induced neutral ceramidase secretion from INS-1 cells via exosomes and its anti-apoptotic effect. FEBS J. 2014;281(12):2861–70.  https://doi.org/10.1111/febs.12826.CrossRefPubMedGoogle Scholar
  47. 47.
    Sims EK, Lakhter AJ, Anderson-Baucum E, Kono T, Tong X, Evans-Molina C. MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia. 2017;60(6):1057–65.  https://doi.org/10.1007/s00125-017-4237-z.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    •• Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA, et al. Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia. 2018;61(5):1124–34.  https://doi.org/10.1007/s00125-018-4559-5. This study shows an increase in miR-21-5p in circulating EV of newly diagnosed children with T1D and in the serum EV of prediabetic NOD mice whereas total serum miR-21-5p levels were lower in the same patients.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Invest. 2017;127(8):2881–91.  https://doi.org/10.1172/jci94549.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Uno S, Imagawa A, Okita K, Sayama K, Moriwaki M, Iwahashi H, et al. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes. Diabetologia. 2007;50(3):596–601.  https://doi.org/10.1007/s00125-006-0569-9.CrossRefPubMedGoogle Scholar
  51. 51.
    Calderon B, Carrero JA, Unanue ER. The central role of antigen presentation in islets of Langerhans in autoimmune diabetes. Curr Opin Immunol. 2014;26:32–40.  https://doi.org/10.1016/j.coi.2013.10.011.CrossRefPubMedGoogle Scholar
  52. 52.
    Calderon B, Suri A, Miller MJ, Unanue ER. Dendritic cells in islets of Langerhans constitutively present beta cell-derived peptides bound to their class II MHC molecules. Proc Natl Acad Sci U S A. 2008;105(16):6121–6.  https://doi.org/10.1073/pnas.0801973105.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Melli K, Friedman RS, Martin AE, Finger EB, Miao G, Szot GL, et al. Amplification of autoimmune response through induction of dendritic cell maturation in inflamed tissues. J Immunol. 2009;182(5):2590–600.  https://doi.org/10.4049/jimmunol.0803543.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Haase C, Skak K, Michelsen BK, Markholst H. Local activation of dendritic cells leads to insulitis and development of insulin-dependent diabetes in transgenic mice expressing CD154 on the pancreatic beta-cells. Diabetes. 2004;53(10):2588–95.CrossRefGoogle Scholar
  55. 55.
    Turley S, Poirot L, Hattori M, Benoist C, Mathis D. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198(10):1527–37.  https://doi.org/10.1084/jem.20030966.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Vomund AN, Zinselmeyer BH, Hughes J, Calderon B, Valderrama C, Ferris ST, et al. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells. Proc Natl Acad Sci U S A. 2015;112(40):E5496–502.  https://doi.org/10.1073/pnas.1515954112.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    •• Rutman AK, Negi S, Gasparrini M, Hasilo CP, Tchervenkov J, Paraskevas S. Immune response to extracellular vesicles from human islets of Langerhans in patients with type 1 diabetes. Endocrinology. 2018;159(11):3834–47.  https://doi.org/10.1210/en.2018-00649. Findings from this study show that human islet extracellular vesicles induce memory T and B cell activation and GAD65 antibody production in PBMC of patients with T1D.CrossRefPubMedGoogle Scholar
  58. 58.
    Bashratyan R, Sheng H, Regn D, Rahman MJ, Dai YD. Insulinoma-released exosomes activate autoreactive marginal zone-like B cells that expand endogenously in prediabetic NOD mice. Eur J Immunol. 2013;43(10):2588–97.  https://doi.org/10.1002/eji.201343376.CrossRefPubMedGoogle Scholar
  59. 59.
    Arita S, Baba E, Shibata Y, Niiro H, Shimoda S, Isobe T, et al. B cell activation regulates exosomal HLA production. Eur J Immunol. 2008;38(5):1423–34.  https://doi.org/10.1002/eji.200737694.CrossRefPubMedGoogle Scholar
  60. 60.
    Segura E, Amigorena S, Thery C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol Dis. 2005;35(2):89–93.  https://doi.org/10.1016/j.bcmd.2005.05.003.CrossRefPubMedGoogle Scholar
  61. 61.
    Admyre C, Grunewald J, Thyberg J, Gripenback S, Tornling G, Eklund A, et al. Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J. 2003;22(4):578–83.CrossRefGoogle Scholar
  62. 62.
    Foulis AK, Liddle CN, Farquharson MA, Richmond JA, Weir RS. The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia. 1986;29(5):267–74.CrossRefGoogle Scholar
  63. 63.
    Foulis AK, Farquharson MA, Hardman R. Aberrant expression of class II major histocompatibility complex molecules by B cells and hyperexpression of class I major histocompatibility complex molecules by insulin containing islets in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987;30(5):333–43.CrossRefGoogle Scholar
  64. 64.
    Richardson SJ, Rodriguez-Calvo T, Gerling IC, Mathews CE, Kaddis JS, Russell MA, et al. Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia. 2016;59(11):2448–58.  https://doi.org/10.1007/s00125-016-4067-4.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Russell MA, Redick SD, Blodgett DM, Richardson SJ, Leete P, Krogvold L, et al. HLA class II antigen processing and presentation pathway components demonstrated by transcriptome and protein analyses of islet beta-cells from donors with type 1 diabetes. Diabetes. 2019;68(5):988–1001.  https://doi.org/10.2337/db18-0686.CrossRefPubMedGoogle Scholar
  66. 66.
    Jackson AM, Connolly JE, Matsumoto S, Noguchi H, Onaca N, Levy MF, et al. Evidence for induced expression of HLA class II on human islets: possible mechanism for HLA sensitization in transplant recipients. Transplantation. 2009;87(4):500–6.  https://doi.org/10.1097/TP.0b013e318195fc33.CrossRefPubMedGoogle Scholar
  67. 67.
    Ylipaasto P, Kutlu B, Rasilainen S, Rasschaert J, Salmela K, Teerijoki H, et al. Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia. 2005;48(8):1510–22.  https://doi.org/10.1007/s00125-005-1839-7.CrossRefPubMedGoogle Scholar
  68. 68.
    Pujol-Borrell R, Todd I, Doshi M, Bottazzo GF, Sutton R, Gray D, et al. HLA class II induction in human islet cells by interferon-gamma plus tumour necrosis factor or lymphotoxin. Nature. 1987;326(6110):304–6.  https://doi.org/10.1038/326304a0.CrossRefPubMedGoogle Scholar
  69. 69.
    Lopes M, Kutlu B, Miani M, Bang-Berthelsen CH, Storling J, Pociot F, et al. Temporal profiling of cytokine-induced genes in pancreatic beta-cells by meta-analysis and network inference. Genomics. 2014;103(4):264–75.  https://doi.org/10.1016/j.ygeno.2013.12.007.CrossRefPubMedGoogle Scholar
  70. 70.
    Vallabhajosyula P, Korutla L, Habertheuer A, Yu M, Rostami S, Yuan CX, et al. Tissue-specific exosome biomarkers for noninvasively monitoring immunologic rejection of transplanted tissue. J Clin Invest. 2017;127(4):1375–91.  https://doi.org/10.1172/jci87993.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A. 2017;114(43):E9066–e75.  https://doi.org/10.1073/pnas.1704862114.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ratajczak MZ, Ratajczak J. Horizontal transfer of RNA and proteins between cells by extracellular microvesicles: 14 years later. Clin Trans Med. 2016;5(1):7.  https://doi.org/10.1186/s40169-016-0087-4.CrossRefGoogle Scholar
  73. 73.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.  https://doi.org/10.1038/ncb1596.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Cloutier N, Tan S, Boudreau LH, Cramb C, Subbaiah R, Lahey L, et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013;5(2):235–49.  https://doi.org/10.1002/emmm.201201846.CrossRefPubMedGoogle Scholar
  75. 75.
    Dieude M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, et al. The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med. 2015;7(318):318ra200.  https://doi.org/10.1126/scitranslmed.aac9816.CrossRefPubMedGoogle Scholar
  76. 76.
    Kimura K, Hohjoh H, Fukuoka M, Sato W, Oki S, Tomi C, et al. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun. 2018;9(1):17.  https://doi.org/10.1038/s41467-017-02406-2.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bonner C, Bacon S, Concannon CG, Rizvi SR, Baquie M, Farrelly AM, et al. INS-1 cells undergoing caspase-dependent apoptosis enhance the regenerative capacity of neighboring cells. Diabetes. 2010;59(11):2799–808.  https://doi.org/10.2337/db09-1478.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Spinas GA, Mandrup-Poulsen T, Molvig J, Baek L, Bendtzen K, Dinarello CA, et al. Low concentrations of interleukin-1 stimulate and high concentrations inhibit insulin release from isolated rat islets of Langerhans. Acta Endocrinol. 1986;113(4):551–8.CrossRefGoogle Scholar
  79. 79.
    Pukel C, Baquerizo H, Rabinovitch A. Destruction of rat islet cell monolayers by cytokines. Synergistic interactions of interferon-gamma, tumor necrosis factor, lymphotoxin, and interleukin 1. Diabetes. 1988;37(1):133–6.CrossRefGoogle Scholar
  80. 80.
    Grunnet LG, Aikin R, Tonnesen MF, Paraskevas S, Blaabjerg L, Storling J, et al. Proinflammatory cytokines activate the intrinsic apoptotic pathway in beta-cells. Diabetes. 2009;58(8):1807–15.  https://doi.org/10.2337/db08-0178.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Johansson A, Olerud J, Johansson M, Carlsson PO. Angiostatic factors normally restrict islet endothelial cell proliferation and migration: implications for islet transplantation. Transpl Int: Off J Eur Soc Organ Transpl. 2009;22(12):1182–8.CrossRefGoogle Scholar
  82. 82.
    Oh K, Kim SR, Kim DK, Seo MW, Lee C, Lee HM, et al. In vivo differentiation of therapeutic insulin-producing cells from bone marrow cells via extracellular vesicle-mimetic nanovesicles. ACS Nano. 2015;9(12):11718–27.  https://doi.org/10.1021/acsnano.5b02997.CrossRefPubMedGoogle Scholar
  83. 83.
    Guay C, Kruit JK, Rome S, Menoud V, Mulder NL, Jurdzinski A, et al. Lymphocyte-derived exosomal microRNAs promote pancreatic beta cell death and may contribute to type 1 diabetes development. Cell Metab. 2019;29(2):348–61.e6.  https://doi.org/10.1016/j.cmet.2018.09.011.CrossRefPubMedGoogle Scholar
  84. 84.
    Rahman MJ, Regn D, Bashratyan R, Dai YD. Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice. Diabetes. 2014;63(3):1008–20.  https://doi.org/10.2337/db13-0859.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Garcia-Contreras M, Shah SH, Tamayo A, Robbins PD, Golberg RB, Mendez AJ, et al. Plasma-derived exosome characterization reveals a distinct microRNA signature in long duration type 1 diabetes. Sci Rep. 2017;7(1):5998.  https://doi.org/10.1038/s41598-017-05787-y. CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Tokarz A, Szuscik I, Kusnierz-Cabala B, Kapusta M, Konkolewska M, Zurakowski A, et al. Extracellular vesicles participate in the transport of cytokines and angiogenic factors in diabetic patients with ocular complications. Folia Med Cracov. 2015;55(4):35–48.PubMedGoogle Scholar
  87. 87.
    Salomon C, Scholz-Romero K, Sarker S, Sweeney E, Kobayashi M, Correa P, et al. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes. 2016;65(3):598–609.  https://doi.org/10.2337/db15-0966.CrossRefPubMedGoogle Scholar
  88. 88.
    Ishida K, Taguchi K, Hida M, Watanabe S, Kawano K, Matsumoto T, et al. Circulating microparticles from diabetic rats impair endothelial function and regulate endothelial protein expression. Acta Physiologica (Oxford, England). 2016;216(2):211–20.  https://doi.org/10.1111/apha.12561. CrossRefGoogle Scholar
  89. 89.
    Zhang H, Liu J, Qu D, Wang L, Wong CM, Lau CW, et al. Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A. 2018;115(29):E6927–e36.  https://doi.org/10.1073/pnas.1721521115.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Huang C, Fisher KP, Hammer SS, Navitskaya S, Blanchard GJ, Busik JV. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway. Diabetes. 2018;67(8):1639–49.  https://doi.org/10.2337/db17-1587.CrossRefPubMedGoogle Scholar
  91. 91.
    Heinrich LF, Andersen DK, Cleasby ME, Lawson C. Long-term high fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells. Br J Nutr. 2015;113(11):1704–11.  https://doi.org/10.1017/s0007114515001117. CrossRefPubMedGoogle Scholar
  92. 92.
    Hogan MF, Hull RL. The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia. 2017;60(6):952–9.  https://doi.org/10.1007/s00125-017-4272-9.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, et al. Intra-islet endothelial cell and beta-cell crosstalk: implication for islet cell transplantation. World J Transplant. 2017;7(2):117–28.  https://doi.org/10.5500/wjt.v7.i2.117.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Knip M, Korhonen S, Kulmala P, Veijola R, Reunanen A, Raitakari OT, et al. Prediction of type 1 diabetes in the general population. Diabetes Care. 2010;33(6):1206–12.  https://doi.org/10.2337/dc09-1040.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Bonifacio E. Predicting type 1 diabetes using biomarkers. Diabetes Care. 2015;38(6):989–96.  https://doi.org/10.2337/dc15-0101.CrossRefPubMedGoogle Scholar
  96. 96.
    Steck AK, Dong F, Waugh K, Frohnert BI, Yu L, Norris JM, et al. Predictors of slow progression to diabetes in children with multiple islet autoantibodies. J Autoimmun. 2016;72:113–7.  https://doi.org/10.1016/j.jaut.2016.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Wang J, Miao D, Babu S, Yu J, Barker J, Klingensmith G, et al. Prevalence of autoantibody-negative diabetes is not rare at all ages and increases with older age and obesity. J Clin Endocrinol Metab. 2007;92(1):88–92.  https://doi.org/10.1210/jc.2006-1494.CrossRefPubMedGoogle Scholar
  98. 98.
    Sabatier F, Darmon P, Hugel B, Combes V, Sanmarco M, Velut JG, et al. Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes. 2002;51(9):2840–5.CrossRefGoogle Scholar
  99. 99.
    Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One. 2012;7(3):e30679.  https://doi.org/10.1371/journal.pone.0030679.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 2014;3. doi: https://doi.org/10.3402/jev.v3.23743.CrossRefGoogle Scholar
  101. 101.
    Assmann TS, Recamonde-Mendoza M, De Souza BM, Crispim D. MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect. 2017;6(8):773–90.  https://doi.org/10.1530/EC-17-0248.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Nielsen LB, Wang C, Sorensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res. 2012;2012:896362.  https://doi.org/10.1155/2012/896362.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One. 2013;8(11):e73798.  https://doi.org/10.1371/journal.pone.0073798.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Kalani A, Mohan A, Godbole MM, Bhatia E, Gupta A, Sharma RK, et al. Wilm's tumor-1 protein levels in urinary exosomes from diabetic patients with or without proteinuria. PLoS One. 2013;8(3):e60177.  https://doi.org/10.1371/journal.pone.0060177.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Mazzeo A, Beltramo E, Lopatina T, Gai C, Trento M, Porta M. Molecular and functional characterization of circulating extracellular vesicles from diabetic patients with and without retinopathy and healthy subjects. Exp Eye Res. 2018;176:69–77.  https://doi.org/10.1016/j.exer.2018.07.003.CrossRefPubMedGoogle Scholar
  106. 106.
    Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, et al. Stability of circulating blood-based microRNAs—pre-analytic methodological considerations. PLoS One. 2017;12(2):e0167969.  https://doi.org/10.1371/journal.pone.0167969.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Sanz-Rubio D, Martin-Burriel I, Gil A, Cubero P, Forner M, Khalyfa A, et al. Stability of circulating exosomal miRNAs in healthy subjects. Sci Rep. 2018;8(1):10306.  https://doi.org/10.1038/s41598-018-28748-5.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Snowhite IV, Allende G, Sosenko J, Pastori RL, Messinger Cayetano S, Pugliese A. Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes. Diabetologia. 2017;60(8):1409–22.  https://doi.org/10.1007/s00125-017-4294-3.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Toti F, Bayle F, Berney T, Egelhofer H, Richard MJ, Greget M, et al. Studies of circulating microparticle release in peripheral blood after pancreatic islet transplantation. Transplant Proc. 2011;43(9):3241–5.  https://doi.org/10.1016/j.transproceed.2011.10.024.CrossRefPubMedGoogle Scholar
  110. 110.
    Korutla L, Rickels MR, Hu RW, Freas A, Reddy S, Habertheuer A, et al. Noninvasive diagnosis of recurrent autoimmune type 1 diabetes after islet cell transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2019;19:1852–8.  https://doi.org/10.1111/ajt.15322.CrossRefGoogle Scholar
  111. 111.
    Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7:e2062.  https://doi.org/10.1038/cddis.2015.327.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57(7):1759–67.  https://doi.org/10.2337/db08-0180.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    El-Badawy A, El-Badri N. Clinical efficacy of stem cell therapy for diabetes mellitus: a meta-analysis. PLoS One. 2016;11(4):e0151938.  https://doi.org/10.1371/journal.pone.0151938.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189.  https://doi.org/10.1126/scitranslmed.aad4134.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juscinska J, et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets—results of one year follow-up. Clin Immunol. 2014;153(1):23–30.  https://doi.org/10.1016/j.clim.2014.03.016.CrossRefPubMedGoogle Scholar
  116. 116.
    Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999-2010. Diabetes Care. 2012;35(7):1436–45.  https://doi.org/10.2337/dc12-0063.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care. 2011;34(9):2026–32.  https://doi.org/10.2337/dc11-0472.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Favaro E, Carpanetto A, Lamorte S, Fusco A, Caorsi C, Deregibus MC, et al. Human mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid decarboxylase in patients with type 1 diabetes. Diabetologia. 2014;57(8):1664–73.  https://doi.org/10.1007/s00125-014-3262-4.CrossRefPubMedGoogle Scholar
  119. 119.
    Favaro E, Carpanetto A, Caorsi C, Giovarelli M, Angelini C, Cavallo-Perin P, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients. Diabetologia. 2016;59(2):325–33.  https://doi.org/10.1007/s00125-015-3808-0.CrossRefPubMedGoogle Scholar
  120. 120.
    Shigemoto-Kuroda T, Oh JY, Kim DK, Jeong HJ, Park SY, Lee HJ, et al. MSC-derived extracellular vesicles attenuate immune responses in two autoimmune murine models: type 1 diabetes and uveoretinitis. Stem Cell Reports. 2017;8(5):1214–25.  https://doi.org/10.1016/j.stemcr.2017.04.008.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014;41(1):89–103.  https://doi.org/10.1016/j.immuni.2014.05.019.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Aiello S, Rocchetta F, Longaretti L, Faravelli S, Todeschini M, Cassis L, et al. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci Rep. 2017;7(1):11518.  https://doi.org/10.1038/s41598-017-08617-3.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Kim SH, Bianco NR, Shufesky WJ, Morelli AE, Robbins PD. MHC class II+ exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent manner. J Immunol. 2007;179(4):2235–41.CrossRefGoogle Scholar
  124. 124.
    Ebrahim N, Mostafa O, El Dosoky RE, Ahmed IA, Saad AS, Mostafa A, et al. Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model. Stem Cell Res Ther. 2018;9(1):175.  https://doi.org/10.1186/s13287-018-0924-z.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Konari N, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep. 2016;6:34842.  https://doi.org/10.1038/srep34842.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep. 2016;6:24805.  https://doi.org/10.1038/srep24805.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Cantaluppi V, Biancone L, Figliolini F, Beltramo S, Medica D, Deregibus MC, et al. Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant. 2012;21(6):1305–20.  https://doi.org/10.3727/096368911X627534.CrossRefPubMedGoogle Scholar
  128. 128.
    Wen D, Peng Y, Liu D, Weizmann Y, Mahato RI. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation. J Control Release : Off J Control Release Soc. 2016;238:166–75.  https://doi.org/10.1016/j.jconrel.2016.07.044.CrossRefGoogle Scholar
  129. 129.
    Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710.  https://doi.org/10.1021/nn402232g.CrossRefPubMedGoogle Scholar
  130. 130.
    Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.  https://doi.org/10.1016/j.biomaterials.2017.10.012.CrossRefPubMedGoogle Scholar
  131. 131.
    Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine. 2018;14(1):195–204.  https://doi.org/10.1016/j.nano.2017.09.011.CrossRefPubMedGoogle Scholar
  132. 132.
    Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, et al. Targeted exosome-mediated delivery of opioid receptor mu siRNA for the treatment of morphine relapse. Sci Rep. 2015;5:17543.  https://doi.org/10.1038/srep17543.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Garcia-Manrique P, Gutierrez G, Blanco-Lopez MC. Fully artificial exosomes: towards new theranostic biomaterials. Trends Biotechnol. 2018;36(1):10–4.  https://doi.org/10.1016/j.tibtech.2017.10.005.CrossRefPubMedGoogle Scholar
  134. 134.
    Jo W, Jeong D, Kim J, Cho S, Jang SC, Han C, et al. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 2014;14(7):1261–9.  https://doi.org/10.1039/c3lc50993a.CrossRefPubMedGoogle Scholar
  135. 135.
    Colombani T, Peuziat P, Dallet L, Haudebourg T, Mevel M, Berchel M, et al. Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery. J Control Release. 2017;249:131–42.  https://doi.org/10.1016/j.jconrel.2017.01.041.CrossRefPubMedGoogle Scholar
  136. 136.
    Lewis JS, Dolgova NV, Zhang Y, Xia CQ, Wasserfall CH, Atkinson MA, et al. A combination dual-sized microparticle system modulates dendritic cells and prevents type 1 diabetes in prediabetic NOD mice. Clin Immunol. 2015;160(1):90–102.  https://doi.org/10.1016/j.clim.2015.03.023.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sarita Negi
    • 1
    • 2
  • Alissa K. Rutman
    • 1
    • 2
  • Steven Paraskevas
    • 1
    • 2
    Email author
  1. 1.Human Islet Transplant Laboratory, Department of Surgery, D5.5736, Royal Victoria HospitalMcGill University Health CentreMontréalCanada
  2. 2.Canadian Donation and Transplantation Research ProgramEdmontonCanada

Personalised recommendations