Advertisement

Current Status on Immunological Therapies for Type 1 Diabetes Mellitus

  • Griselda Lim Loo Xin
  • Yap Pui Khee
  • Tan Yoke Ying
  • Jestin Chellian
  • Gaurav Gupta
  • Anil Philip Kunnath
  • Srinivas Nammi
  • Trudi Collet
  • Philip Michael Hansbro
  • Kamal Dua
  • Dinesh Kumar ChellappanEmail author
Therapies and New Technologies in the Treatment of Diabetes (M Pietropaolo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Therapies and New Technologies in the Treatment of Diabetes

Abstract

Purpose of Review

Type 1 diabetes (T1D) occurs when there is destruction of beta cells within the islets of Langerhans in the pancreas due to autoimmunity. It is considered a complex disease, and different complications can surface and worsen the condition if T1D is not managed well. Since it is an incurable disease, numerous treatments and therapies have been postulated in order to control T1D by balancing hyperglycemia control while minimizing hypoglycemic episodes. The purpose of this review is to primarily look into the current state of the available immunological therapies and their advantages for the treatment of T1D.

Recent Findings

Over the years, immunological therapy has become the center of attraction to treat T1D. Immunomodulatory approaches on non-antigens involving agents such as cyclosporine A, mycophenolate mofetil, anti-CD20, cytotoxic T cells, anti-TNF, anti-CD3, and anti-thymocyte globulin as well as immunomodulative approaches on antigens such as insulin, glutamic acid decarboxylase, and heat shock protein 60 have been studied. Aside from these two approaches, studies and trials have also been conducted on regulatory T cells, dendritic cells, interleukin 2, interleukin 4, M2 macrophages, and rapamycin/interleukin 2 combination therapy to test their effects on patients with T1D. Many of these agents have successfully suppressed T1D in non-obese diabetic (NOD) mice and in human trials. However, some have shown negative results.

Summary

To date, the insights into the management of the immune system have been increasing rapidly to search for potential therapies and treatments for T1D. Nevertheless, some of the challenges are still inevitable. A lot of work and effort need to be put into the investigation on T1D through immunological therapy, particularly to reduce complications to improve and enhance clinical outcomes.

Keywords

T1D Immunotherapies Non-antigenic agents Antigenic agents 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33 Suppl 1:S62–9.  https://doi.org/10.2337/dc10-S062.CrossRefGoogle Scholar
  2. 2.
    Gupta G, de Jesus Andreoli Pinto T, Chellappan DK, Mishra A, Malipeddi H, Dua K. A clinical update on metformin and lung cancer in diabetic patients. Panminerva Med. 2018;60(2):70–5.  https://doi.org/10.23736/s0031-0808.18.03394-3.CrossRefGoogle Scholar
  3. 3.
    American Diabetes A. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–S9.  https://doi.org/10.2337/dc10-S062.CrossRefGoogle Scholar
  4. 4.
    Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(11). doi: https://doi.org/10.1101/cshperspect.a007641.CrossRefPubMedGoogle Scholar
  5. 5.
    Eisenbarth GS. Update in type 1 diabetes. J Clin Endocrinol Metab. 2007;92(7):2403–7.  https://doi.org/10.1210/jc.2007-0339.CrossRefGoogle Scholar
  6. 6.
    Morales J, Schneider D. Hypoglycemia. Am J Med. 2014;127(10 Suppl):S17–24.  https://doi.org/10.1016/j.amjmed.2014.07.004.CrossRefGoogle Scholar
  7. 7.
    Michels A, Zhang L, Khadra A, Kushner JA, Redondo MJ, Pietropaolo M. Prediction and prevention of type 1 diabetes: update on success of prediction and struggles at prevention. Pediatr Diabetes. 2015;16(7):465–84.CrossRefPubMedGoogle Scholar
  8. 8.
    Rigby MR, Ehlers MR. Targeted immune interventions for type 1 diabetes: not as easy as it looks! Curr Opin Endocrinol Diabetes Obes. 2014;21(4):271–8.  https://doi.org/10.1097/med.0000000000000075.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Weigmann B, Franke RK, Daniel C. Immunotherapy in autoimmune type 1 diabetes. Rev Diabet Stud. 2012;9(2–3):68–81.  https://doi.org/10.1900/rds.2012.9.68.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Durnian JM, Stewart RM, Tatham R, Batterbury M, Kaye SB. Cyclosporin-A associated malignancy. Clin Ophthalmol. 2007;1(4):421–30.PubMedCentralPubMedGoogle Scholar
  11. 11.
    Chatenoud L, Warncke K, Ziegler AG. Clinical immunologic interventions for the treatment of type 1 diabetes. Cold Spring Harbor Perspectives in Medicine. 2012;2(8). doi: https://doi.org/10.1101/cshperspect.a007716.CrossRefPubMedGoogle Scholar
  12. 12.
    Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47(2):85–118.  https://doi.org/10.1016/S0162-3109(00)00188-0.CrossRefGoogle Scholar
  13. 13.
    Heatwole C, Ciafaloni E. Mycophenolate mofetil for myasthenia gravis: a clear and present controversy. Neuropsychiatr Dis Treat. 2008;4(6):1203–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Gottlieb PA, Quinlan S, Krause-Steinrauf H, Greenbaum CJ, Wilson DM, Rodriguez H, et al. Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new-onset type 1 diabetes. Diabetes Care. 2010;33(4):826–32.  https://doi.org/10.2337/dc09-1349.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Emer JJ, Claire W. Rituximab: a review of dermatological applications. J Clin Aesthet Dermatol. 2009;2(5):29–37.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Randall KL. Rituximab in autoimmune diseases. Aust Prescr. 2016;39(4):131–4.  https://doi.org/10.18773/austprescr.2016.053.CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Pescovitz MD, Greenbaum CJ, Bundy B, Becker DJ, Gitelman SE, Goland R, et al. B-lymphocyte depletion with rituximab and β-cell function: two-year results. Diabetes Care. 2014;37(2):453–9.  https://doi.org/10.2337/dc13-0626.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Mayer E, Holzl M, Ahmadi S, Dillinger B, Pilat N, Fuchs D, et al. CTLA4-Ig immunosuppressive activity at the level of dendritic cell/T cell crosstalk. Int Immunopharmacol. 2013;15(3):638–45.  https://doi.org/10.1016/j.intimp.2013.02.007.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Vital EM, Emery P. Abatacept in the treatment of rheumatoid arthritis. Ther Clin Risk Manag. 2006;2(4):365–75.CrossRefPubMedGoogle Scholar
  20. 20.
    Melvin G, Sandhiya S, Subraja K. Belatacept: a worthy alternative to cyclosporine? J Pharmacol Pharmacother. 2012;3(1):90–2.  https://doi.org/10.4103/0976-500x.92499.CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Tooley JE, Waldron-Lynch F, Herold KC. New and future immunomodulatory therapy in type 1 diabetes. Trends Mol Med. 2012;18(3):173–81.  https://doi.org/10.1016/j.molmed.2012.01.001.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412–9.  https://doi.org/10.1016/s0140-6736(11)60886-6.CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: past, present and future. Int Immunol. 2015;27(1):55–62.  https://doi.org/10.1093/intimm/dxu102.CrossRefGoogle Scholar
  24. 24.
    Tack CJ, Kleijwegt FS, Van Riel PL, Roep BO. Development of type 1 diabetes in a patient treated with anti-TNF-alpha therapy for active rheumatoid arthritis. Diabetologia. 2009;52(7):1442–4.  https://doi.org/10.1007/s00125-009-1381-0.CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S, et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32(7):1244–9.  https://doi.org/10.2337/dc09-0054.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Penaranda C, Tang Q, Bluestone JA. Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells. J Immunol (Baltimore, Md : 1950). 2011;187(4):2015–22.  https://doi.org/10.4049/jimmunol.1100713.CrossRefGoogle Scholar
  27. 27.
    Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1692–8.  https://doi.org/10.1056/NEJMoa012864.CrossRefGoogle Scholar
  28. 28.
    Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352(25):2598–608.  https://doi.org/10.1056/NEJMoa043980.CrossRefGoogle Scholar
  29. 29.
    Herold KC, Gitelman S, Greenbaum C, Puck J, Hagopian W, Gottlieb P, et al. Treatment of patients with new onset type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years. Clin Immunol. 2009;132(2):166–73.  https://doi.org/10.1016/j.clim.2009.04.007.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Hagopian W, Ferry RJ Jr, Sherry N, Carlin D, Bonvini E, Johnson S, et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protege trial. Diabetes. 2013;62(11):3901–8.  https://doi.org/10.2337/db13-0236.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Mohty M. Mechanisms of action of antithymocyte globulin: T-cell depletion and beyond. Leukemia. 2007;21(7):1387–94.  https://doi.org/10.1038/sj.leu.2404683.CrossRefGoogle Scholar
  32. 32.
    Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity. 2010;32(4):488–99.  https://doi.org/10.1016/j.immuni.2010.04.002.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    • Gitelman SE, Gottlieb PA, Felner EI, Willi SM, Fisher LK, Moran A, et al. Antithymocyte globulin therapy for patients with recent-onset type 1 diabetes: 2 year results of a randomised trial. Diabetologia. 2016;59(6):1153–61.  https://doi.org/10.1007/s00125-016-3917-4. This study discusses the findings observed from a 2-year randomised trial on antithymocyte globulin in new-onset type 1 diabetes. CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Coppieters KT, Harrison LC, von Herrath MG. Trials in type 1 diabetes: antigen-specific therapies. Clin Immunol. 2013;149(3):345–55.  https://doi.org/10.1016/j.clim.2013.02.002.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Clemente-Casares X, Tsai S, Huang C, Santamaria P. Antigen-specific therapeutic approaches in type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(2):a007773.  https://doi.org/10.1101/cshperspect.a007773.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Zhang ZJ, Davidson L, Eisenbarth G, Weiner HL. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc Natl Acad Sci U S A. 1991;88(22):10252–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Harrison LC, Dempsey-Collier M, Kramer DR, Takahashi K. Aerosol insulin induces regulatory CD8 gamma delta T cells that prevent murine insulin-dependent diabetes. J Exp Med. 1996;184(6):2167–74.CrossRefPubMedGoogle Scholar
  38. 38.
    Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial--type 1. Diabetes Care. 2005;28(5):1068–76.CrossRefGoogle Scholar
  39. 39.
    Fourlanos S, Perry C, Gellert SA, Martinuzzi E, Mallone R, Butler J, et al. Evidence that nasal insulin induces immune tolerance to insulin in adults with autoimmune diabetes. Diabetes. 2011;60(4):1237–45.  https://doi.org/10.2337/db10-1360.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Krischer JP, Schatz DA, Bundy B, Skyler JS, Greenbaum CJ. Writing committee for the type 1 diabetes TrialNet Oral insulin study group, effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: a randomized clinical trial. JAMA. 2017;318(19):1891–902.CrossRefPubMedGoogle Scholar
  41. 41.
    Tian J, Atkinson MA, Clare-Salzler M, Herschenfeld A, Forsthuber T, Lehmann PV, et al. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med. 1996;183(4):1561–7.CrossRefGoogle Scholar
  42. 42.
    Ludvigsson J, Cheramy M, Axelsson S, Pihl M, Akerman L, Casas R. GAD-treatment of children and adolescents with recent-onset type 1 diabetes preserves residual insulin secretion after 30 months. Diabetes Metab Res Rev. 2014;30(5):405–14.  https://doi.org/10.1002/dmrr.2503.CrossRefGoogle Scholar
  43. 43.
    Wherrett DK, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomised double-blind trial. Lancet. 2011;378(9788):319–27.  https://doi.org/10.1016/s0140-6736(11)60895-7.CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Ludvigsson J, Hjorth M, Cheramy M, Axelsson S, Pihl M, Forsander G, et al. Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial. Diabetologia. 2011;54(3):634–40.  https://doi.org/10.1007/s00125-010-1988-1.CrossRefGoogle Scholar
  45. 45.
    Pellegrino MW, Nargund AM, Haynes CM. Signaling the mitochondrial unfolded protein response. Biochim Biophys Acta. 2013;1833(2):410–6.  https://doi.org/10.1016/j.bbamcr.2012.02.019.CrossRefGoogle Scholar
  46. 46.
    • Juwono J, Martinus RD. Does Hsp60 provide a link between mitochondrial stress and inflammation in diabetes mellitus. J Diabetes Res. 2016;2016:8017571.  https://doi.org/10.1155/2016/8017571. This review summarises the known relationships between the expression of heat shock protein 60 and type 1 diabetes. CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Elias D, Markovits D, Reshef T, van der Zee R, Cohen IR. Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein. Proc Natl Acad Sci U S A. 1990;87(4):1576–80.CrossRefPubMedGoogle Scholar
  48. 48.
    Raz I, Avron A, Tamir M, Metzger M, Symer L, Eldor R, et al. Treatment of new-onset type 1 diabetes with peptide DiaPep277 is safe and associated with preserved beta-cell function: extension of a randomized, double-blind, phase II trial. Diabetes Metab Res Rev. 2007;23(4):292–8.  https://doi.org/10.1002/dmrr.712.CrossRefGoogle Scholar
  49. 49.
    Lazar L, Ofan R, Weintrob N, Avron A, Tamir M, Elias D, et al. Heat-shock protein peptide DiaPep277 treatment in children with newly diagnosed type 1 diabetes: a randomised, double-blind phase II study. Diabetes Metab Res Rev. 2007;23(4):286–91.  https://doi.org/10.1002/dmrr.711.CrossRefGoogle Scholar
  50. 50.
    Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–36.  https://doi.org/10.1111/j.1365-3083.2009.02308.x.CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Curotto de Lafaille MA, Muriglan S, Sunshine MJ, Lei Y, Kutchukhidze N, Furtado GC, et al. Hyper immunoglobulin E response in mice with monoclonal populations of B and T lymphocytes. J Exp Med. 2001;194(9):1349–59.CrossRefGoogle Scholar
  52. 52.
    Karlsson MR, Rugtveit J, Brandtzaeg P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J Exp Med. 2004;199(12):1679–88.  https://doi.org/10.1084/jem.20032121.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Li Z, Li D, Tsun A, Li B. FOXP3+ regulatory T cells and their functional regulation. Cell Mol Immunol. 2015;12(5):558–65.  https://doi.org/10.1038/cmi.2015.10.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Tonkin DR, He J, Barbour G, Haskins K. Regulatory T cells prevent transfer of type 1 diabetes in NOD mice only when their antigen is present in vivo. J Immunol (Baltimore, Md : 1950). 2008;181(7):4516–22.CrossRefGoogle Scholar
  55. 55.
    Cabrera SM, Rigby MR, Mirmira RG. Targeting regulatory T cells in the treatment of type 1 diabetes mellitus. Curr Mol Med. 2012;12(10):1261–72.CrossRefPubMedGoogle Scholar
  56. 56.
    Okubo Y, Torrey H, Butterworth J, Zheng H, Faustman DL. Treg activation defect in type 1 diabetes: correction with TNFR2 agonism. Clin Transl Immunol. 2016;5(1):e56.  https://doi.org/10.1038/cti.2015.43.CrossRefGoogle Scholar
  57. 57.
    Wu L, Dakic A. Development of dendritic cell system. Cell Mol Immunol. 2004;1(2):112–8.Google Scholar
  58. 58.
    Shang N, Figini M, Shangguan J, Wang B, Sun C, Pan L, et al. Dendritic cells based immunotherapy. Am J Cancer Res. 2017;7(10):2091–102.PubMedCentralPubMedGoogle Scholar
  59. 59.
    Marin-Gallen S, Clemente-Casares X, Planas R, Pujol-Autonell I, Carrascal J, Carrillo J, et al. Dendritic cells pulsed with antigen-specific apoptotic bodies prevent experimental type 1 diabetes. Clin Exp Immunol. 2010;160(2):207–14.  https://doi.org/10.1111/j.1365-2249.2009.04082.x.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Creusot RJ, Giannoukakis N, Trucco M, Clare-Salzler MJ, Fathman CG. It's time to bring dendritic cell therapy to type 1 diabetes. Diabetes. 2014;63(1):20–30.  https://doi.org/10.2337/db13-0886.CrossRefGoogle Scholar
  61. 61.
    Giannoukakis N, Phillips B, Finegold D, Harnaha J, Trucco M. Phase I (safety) study of autologous tolerogenic dendritic cells in type 1 diabetic patients. Diabetes Care. 2011;34(9):2026–32.  https://doi.org/10.2337/dc11-0472.CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med. 2002;196(6):851–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep. 2007;8(12):1142–8.  https://doi.org/10.1038/sj.embor.7401099.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature. 2006;441(7095):890–3.  https://doi.org/10.1038/nature04790.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Grinberg-Bleyer Y, Baeyens A, You S, Elhage R, Fourcade G, Gregoire S, et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J Exp Med. 2010;207(9):1871–8.CrossRefPubMedGoogle Scholar
  66. 66.
    Diaz-de-Durana Y, Lau J, Knee D, Filippi C, Londei M, McNamara P, et al. IL-2 immunotherapy reveals potential for innate beta cell regeneration in the non-obese diabetic mouse model of autoimmune diabetes. PLoS One. 2013;8(10):e78483.  https://doi.org/10.1371/journal.pone.0078483.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Luzina IG, Keegan AD, Heller NM, Rook GA, Shea-Donohue T, Atamas SP. Regulation of inflammation by interleukin-4: a review of "alternatives". J Leukoc Biol. 2012;92(4):753–64.  https://doi.org/10.1189/jlb.0412214.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Rapoport MJ, Jaramillo A, Zipris D, Lazarus AH, Serreze DV, Leiter EH, et al. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J Exp Med. 1993;178(1):87–99.CrossRefGoogle Scholar
  69. 69.
    Cameron MJ, Arreaza GA, Zucker P, Chensue SW, Strieter RM, Chakrabarti S, et al. IL-4 prevents insulitis and insulin-dependent diabetes mellitus in nonobese diabetic mice by potentiation of regulatory T helper-2 cell function. J Immunol (Baltimore, Md : 1950). 1997;159(10):4686–92.Google Scholar
  70. 70.
    Cameron MJ, Arreaza GA, Waldhauser L, Gauldie J, Delovitch TL. Immunotherapy of spontaneous type 1 diabetes in nonobese diabetic mice by systemic interleukin-4 treatment employing adenovirus vector-mediated gene transfer. Gene Ther. 2000;7(21):1840–6.  https://doi.org/10.1038/sj.gt.3301309.CrossRefGoogle Scholar
  71. 71.
    Elhelu MA. The role of macrophages in immunology. J Natl Med Assoc. 1983;75(3):314–7.PubMedCentralPubMedGoogle Scholar
  72. 72.
    Gensel JC, Kopper TJ, Zhang B, Orr MB, Bailey WM. Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci Rep. 2017;7:40144.  https://doi.org/10.1038/srep40144.CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep. 2014;6:13.  https://doi.org/10.12703/p6-13.CrossRefGoogle Scholar
  74. 74.
    Parsa R, Andresen P, Gillett A, Mia S, Zhang XM, Mayans S, et al. Adoptive transfer of immunomodulatory M2 macrophages prevents type 1 diabetes in NOD mice. Diabetes. 2012;61(11):2881–92.  https://doi.org/10.2337/db11-1635.CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Culina S, Boitard C, Mallone R. Antigen-based immune therapeutics for type 1 diabetes: magic bullets or ordinary blanks? Clin Dev Immunol. 2011;2011:286248–15.  https://doi.org/10.1155/2011/286248.CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Long SA, Rieck M, Sanda S, Bollyky JB, Samuels PL, Goland R, et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs beta-cell function. Diabetes. 2012;61(9):2340–8.  https://doi.org/10.2337/db12-0049.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Matthews JB, Staeva TP, Bernstein PL, Peakman M, von Herrath M. Developing combination immunotherapies for type 1 diabetes: recommendations from the ITN-JDRF type 1 diabetes combination therapy assessment group. Clin Exp Immunol. 2010;160(2):176–84.  https://doi.org/10.1111/j.1365-2249.2010.04153.x.CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Lord S, Greenbaum CJ. Disease modifying therapies in type 1 diabetes: where have we been, and where are we going? Pharmacol Res. 2015;98:3–8.  https://doi.org/10.1016/j.phrs.2015.02.002.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, et al. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler. 2012;18(12):1721–36.  https://doi.org/10.1177/1352458512441381.CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Faucard R, Madeira A, Gehin N, Authier FJ, Panaite PA, Lesage C, et al. Human endogenous retrovirus and neuroinflammation in chronic inflammatory demyelinating polyradiculoneuropathy. EBioMedicine. 2016;6:190–8.  https://doi.org/10.1016/j.ebiom.2016.03.001.CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    •• Levet S, Medina J, Joanou J, Demolder A, Queruel N, Reant K et al. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight. 2017;2(17). doi: https://doi.org/10.1172/jci.insight.94387. The study reports on the potential of human endogenous retroviruses as therapeutic targets in the potential cure of type 1 diabetes.
  82. 82.
    Curtin F, Bernard C, Levet S, Perron H, Porchet H, Medina J, et al. A new therapeutic approach for type 1 diabetes: rationale for GNbAC1, an anti-HERV-W-Env monoclonal antibody. Diabetes Obes Metab. 2018;20(9):2075–84.  https://doi.org/10.1111/dom.13357.CrossRefGoogle Scholar
  83. 83.
    Rewers M, Gottlieb P. Immunotherapy for the prevention and treatment of type 1 diabetes: human trials and a look into the future. Diabetes Care. 2009;32(10):1769–82.  https://doi.org/10.2337/dc09-0374.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    von Herrath M, Peakman M, Roep B. Progress in immune-based therapies for type 1 diabetes. Clin Exp Immunol. 2013;172(2):186–202.  https://doi.org/10.1111/cei.12085.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Griselda Lim Loo Xin
    • 1
  • Yap Pui Khee
    • 1
  • Tan Yoke Ying
    • 1
  • Jestin Chellian
    • 2
  • Gaurav Gupta
    • 3
  • Anil Philip Kunnath
    • 4
  • Srinivas Nammi
    • 5
    • 6
  • Trudi Collet
    • 7
  • Philip Michael Hansbro
    • 8
    • 9
  • Kamal Dua
    • 8
    • 9
  • Dinesh Kumar Chellappan
    • 2
    Email author
  1. 1.School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
  2. 2.Department of Life Sciences, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  3. 3.School of Pharmaceutical SciencesJaipur National UniversityJaipurIndia
  4. 4.Division of Applied Biomedical Science and Biotechnology, School of Health SciencesInternational Medical UniversityKuala LumpurMalaysia
  5. 5.School of Science and HealthWestern Sydney UniversitySydneyAustralia
  6. 6.NICM Health Research InstituteWestern Sydney UniversitySydneyAustralia
  7. 7.Innovative Medicines Group, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  8. 8.Discipline of Pharmacy, Graduate School of HealthUniversity of Technology Sydney (UTS)UltimoAustralia
  9. 9.Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and PharmacyThe University of Newcastle (UoN)NewcastleAustralia

Personalised recommendations