Advertisement

Retinal Neurodegeneration as an Early Manifestation of Diabetic Eye Disease and Potential Neuroprotective Therapies

  • Sidra Zafar
  • Mira Sachdeva
  • Benjamin J. Frankfort
  • Roomasa ChannaEmail author
Microvascular Complications—Retinopathy (DL Chao and G Yiu, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Retinopathy

Abstract

Purpose of Review

Diabetic retinopathy (DR) is a major cause of visual impairment and blindness throughout the world. Microvascular changes have long been regarded central to disease pathogenesis. In recent years, however, retinal neurodegeneration is increasingly being hypothesized to occur prior to the vascular changes classically associated with DR and contribute to disease pathogenesis.

Recent Findings

There is growing structural and functional evidence from human and animal studies that suggests retinal neurodegeneration to be an early component of DR. Identification of new therapeutic targets is an ongoing area of research with several different molecules undergoing testing in animal models for their neuroprotective properties and for possible use in humans.

Summary

Retinal neurodegeneration may play a central role in DR pathogenesis. As new therapies are developed, it will be important to develop criteria for clinically defining retinal neurodegeneration. A standardization of the methods for monitoring neurodegeneration along with more sensitive means of detecting preclinical damage is also needed.

Keywords

Diabetes Diabetic retinopathy Neurodegeneration Neuroprotection 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015;2:17.CrossRefGoogle Scholar
  2. 2.
    Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: a systematic analysis. Lancet Glob Health. 2013;1(6):e339–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005;57(2):173–85.PubMedCrossRefGoogle Scholar
  4. 4.
    Metea MR, Newman EA. Signalling within the neurovascular unit in the mammalian retina. Exp Physiol. 2007;92(4):635–40.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Simo R, Hernandez C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25(1):23–33.PubMedCrossRefGoogle Scholar
  6. 6.
    Park JJ, Soetikno BT, Fawzi AA. Characterization of the middle capillary plexus using optical coherence tomography angiography in healthy and diabetic eyes. Retina. 2016;36(11):2039–50.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chan G, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL, Cringle SJ, et al. Quantitative morphometry of perifoveal capillary networks in the human retina. Invest Ophthalmol Vis Sci. 2012;53(9):5502–14.PubMedCrossRefGoogle Scholar
  8. 8.
    Ames A 3rd, Li YY, Heher EC, Kimble CR. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci. 1992;12(3):840–53.PubMedCrossRefGoogle Scholar
  9. 9.
    Langhans M, Michelson G, Groh M. Effect of breathing 100% oxygen on retinal and optic nerve head capillary blood flow in smokers and non-smokers. Br J Ophthalmol. 1997;81(5):365–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Feng Y, Busch S, Gretz N, Hoffmann S, Hammes HP. Crosstalk in the retinal neurovascular unit – lessons for the diabetic retina. Exp Clin Endocrinol Diabetes. 2012;120(04):199–201.PubMedCrossRefGoogle Scholar
  11. 11.
    Aung MH, Park HN, Han MK, Obertone TS, Abey J, Aseem F, et al. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J Neurosci. 2014;34(3):726–36.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    D'Cruz TS, Weibley BN, Kimball SR, Barber AJ. Post-translational processing of synaptophysin in the rat retina is disrupted by diabetes. PLoS One. 2012;7(9):e44711.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lieth E, LaNoue KF, Antonetti DA, Ratz M. Diabetes reduces glutamate oxidation and glutamine synthesis in the retina. The Penn State Retina Research Group. Exp Eye Res. 2000;70(6):723–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Pemp B, Garhofer G, Weigert G, Karl K, Resch H, Wolzt M, et al. Reduced retinal vessel response to flicker stimulation but not to exogenous nitric oxide in type 1 diabetes. Invest Ophthalmol Vis Sci. 2009;50(9):4029–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Mandecka A, Dawczynski J, Blum M, Muller N, Kloos C, Wolf G, et al. Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care. 2007;30(12):3048–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Garhofer G, Zawinka C, Resch H, Kothy P, Schmetterer L, Dorner GT. Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. Br J Ophthalmol. 2004;88(7):887–91.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gardner TW, Davila JR. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(1):1–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia. 2018;61(9):1902–12.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wolter JR. Diabetic retinopathy. Am J Ophthalmol. 1961;51:1123–41.PubMedGoogle Scholar
  20. 20.
    Araszkiewicz A, Zozulinska-Ziolkiewicz D. Retinal neurodegeneration in the course of diabetes-pathogenesis and clinical perspective. Curr Neuropharmacol. 2016;14(8):805–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Wu SM, Maple BR. Amino acid neurotransmitters in the retina: a functional overview. Vis Res. 1998;38(10):1371–84.PubMedCrossRefGoogle Scholar
  22. 22.
    Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1(8):623–34.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lucas DR, Newhouse JP. The toxic effect of sodium l-glutamate on the inner layers of the retina. AMA Arch Ophthalmol. 1957;58(2):193–201.PubMedCrossRefGoogle Scholar
  24. 24.
    Vorwerk CK, Lipton SA, Zurakowski D, Hyman BT, Sabel BA, Dreyer EB. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci. 1996;37(8):1618–24.PubMedGoogle Scholar
  25. 25.
    Sucher NJ, Lipton SA, Dreyer EB. Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res. 1997;37(24):3483–93.PubMedCrossRefGoogle Scholar
  26. 26.
    Ambati J, Chalam KV, Chawla DK, D'Angio CT, Guillet EG, Rose SJ, et al. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol. 1997;115(9):1161–6.PubMedCrossRefGoogle Scholar
  27. 27.
    Diederen RMH, La Heij EC, Deutz NEP, Kijlstra A, Kessels AGH, van Eijk HMH, et al. Increased glutamate levels in the vitreous of patients with retinal detachment. Exp Eye Res. 2006;83(1):45–50.PubMedCrossRefGoogle Scholar
  28. 28.
    Santiago AR, Hughes JM, Kamphuis W, Schlingemann RO, Ambrosio AF. Diabetes changes ionotropic glutamate receptor subunit expression level in the human retina. Brain Res. 2008;1198:153–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Bloodworth JM Jr. Diabetic retinopathy. Diabetes. 1962;11:1–22.PubMedGoogle Scholar
  30. 30.
    Lieth E, Barber AJ, Xu B, Dice C, Ratz MJ, Tanase D, et al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes. 1998;47(5):815–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Barber AJ. A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27(2):283–90.CrossRefGoogle Scholar
  32. 32.
    Szabó K, Énzsöly A, Dékány B, Szabó A, Hajdú RI, Radovits T, et al. Histological evaluation of diabetic neurodegeneration in the retina of Zucker diabetic fatty (ZDF) rats. Sci Rep. 2017;7:8891.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bogdanov P, Corraliza L, Villena JA, Carvalho AR, Garcia-Arumi J, Ramos D, et al. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration. PLoS One. 2014;9(5):e97302.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Barber AJ, Antonetti DA, Kern TS, Reiter CE, Soans RS, Krady JK, et al. The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci. 2005;46(6):2210–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Aizu Y, Oyanagi K, Hu J, Nakagawa H. Degeneration of retinal neuronal processes and pigment epithelium in the early stage of the streptozotocin-diabetic rats. Neuropathology. 2002;22(3):161–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Seigel GM, Lupien SB, Campbell LM, Ishii DN. Systemic IGF-I treatment inhibits cell death in diabetic rat retina. J Diabetes Complicat. 2006;20(3):196–204.PubMedCrossRefGoogle Scholar
  38. 38.
    Podesta F, Romeo G, Liu WH, Krajewski S, Reed JC, Gerhardinger C, et al. Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol. 2000;156(3):1025–32.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Oshitari T, Yamamoto S, Hata N, Roy S. Mitochondria- and caspase-dependent cell death pathway involved in neuronal degeneration in diabetic retinopathy. Br J Ophthalmol. 2008;92(4):552–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Abu-El-Asrar AM, Dralands L, Missotten L, Al-Jadaan IA, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci. 2004;45(8):2760–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Valverde AM, Miranda S, García-Ramírez M, González-Rodriguez Á, Hernández C, Simó R. Proapoptotic and survival signaling in the neuroretina at early stages of diabetic retinopathy. Mol Vis. 2013;19:47–53.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Fu S, Dong S, Zhu M, Sherry DM, Wang C, You Z, et al. Müller glia are a major cellular source of survival signals for retinal neurons in diabetes. Diabetes. 2015;64(10):3554–63.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gastinger MJ, Singh RSJ, Barber AJ. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas. Invest Ophthalmol Vis Sci. 2006;47(7):3143–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Park SH, Park JW, Park SJ, Kim KY, Chung JW, Chun MH, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia. 2003;46(9):1260–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Kowluru RA, Mishra M. Oxidative stress, mitochondrial damage and diabetic retinopathy. Biochim Biophys Acta. 2015;1852(11):2474–83.PubMedCrossRefGoogle Scholar
  46. 46.
    Du Y, Veenstra A, Palczewski K, Kern TS. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proc Natl Acad Sci U S A. 2013;110(41):16586–91.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Tonade D, Liu H, Palczewski K, Kern TS. Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes. Diabetologia. 2017;60(10):2111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tonade D, Liu H, Kern TS. Photoreceptor cells produce inflammatory mediators that contribute to endothelial cell death in diabetes. Invest Ophthalmol Vis Sci. 2016;57(10):4264–71.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    de Gooyer TE, Stevenson KA, Humphries P, Simpson DA, Gardiner TA, Stitt AW. Retinopathy is reduced during experimental diabetes in a mouse model of outer retinal degeneration. Invest Ophthalmol Vis Sci. 2006;47(12):5561–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Carrasco E, Hernandez C, Miralles A, Huguet P, Farres J, Simo R. Lower somatostatin expression is an early event in diabetic retinopathy and is associated with retinal neurodegeneration. Diabetes Care. 2007;30(11):2902–8.PubMedCrossRefGoogle Scholar
  51. 51.
    •• Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A. 2016;113(19):E2655–64. This 4-year longitudinal study in people with DM with no or minimal DR shows that DRN precedes signs of microvasculopathy and is progressive and independent of glycated hemoglobin, age, and sex. PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Masser DR, Otalora L, Clark NW, Kinter MT, Elliott MH, Freeman WM. Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy. J Neurochem. 2017;143(5):595–608.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cogan DG, Toussaint D, Kuwabara T. Retinal vascular patterns. IV. Diabetic retinopathy. Arch Ophthalmol. 1961;66:366–78.PubMedCrossRefGoogle Scholar
  54. 54.
    Papachristodoulou D, Heath H, Kang SS. The development of retinopathy in sucrose-fed and streptozotocin-diabetic rats. Diabetologia. 1976;12(4):367–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Kanamori A, Nakamura M, Mukuno H, Maeda H, Negi A. Diabetes has an additive effect on neural apoptosis in rat retina with chronically elevated intraocular pressure. Curr Eye Res. 2004;28(1):47–54.PubMedCrossRefGoogle Scholar
  56. 56.
    LoDuca AL, Zhang C, Zelkha R, Shahidi M. Thickness mapping of retinal layers by spectral domain optical coherence tomography. Am J Ophthalmol. 2010;150(6):849–55.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Costa RA, Skaf M, Melo LA Jr, Calucci D, Cardillo JA, Castro JC, et al. Retinal assessment using optical coherence tomography. Prog Retin Eye Res. 2006;25(3):325–53.PubMedCrossRefGoogle Scholar
  58. 58.
    Ctori I, Huntjens B. Repeatability of foveal measurements using spectralis optical coherence tomography segmentation software. PLoS One. 2015;10(6):e0129005.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Massin P, Vicaut E, Haouchine B, Erginay A, Paques M, Gaudric A. Reproducibility of retinal mapping using optical coherence tomography. Arch Ophthalmol. 2001;119(8):1135–42.PubMedCrossRefGoogle Scholar
  60. 60.
    Scarinci F, Picconi F, Virgili G, Giorno P, Di Renzo A, Varano M, et al. Single retinal layer evaluation in patients with type 1 diabetes with no or early signs of diabetic retinopathy: the first hint of neurovascular crosstalk damage between neurons and capillaries? Ophthalmologica. 2017;237(4):223–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Ng DS, Chiang PP, Tan G, Cheung CG, Cheng CY, Cheung CY, et al. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin Exp Ophthalmol. 2016;44(4):243–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Gundogan FC, Akay F, Uzun S, Yolcu U, Cagiltay E, Toyran S. Early neurodegeneration of the inner retinal layers in type 1 diabetes mellitus. Ophthalmologica. 2016;235(3):125–32.PubMedCrossRefGoogle Scholar
  63. 63.
    El-Fayoumi D, Badr Eldine NM, Esmael AF, Ghalwash D, Soliman HM. Retinal nerve fiber layer and ganglion cell complex thicknesses are reduced in children with type 1 diabetes with no evidence of vascular retinopathy. Invest Ophthalmol Vis Sci. 2016;57(13):5355–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Dhasmana R, Sah S, Gupta N. Study of retinal nerve fibre layer thickness in patients with diabetes mellitus using Fourier domain optical coherence tomography. J Clin Diagn Res. 2016;10(7):Nc05–9.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Carpineto P, Toto L, Aloia R, Ciciarelli V, Borrelli E, Vitacolonna E, et al. Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus. Eye. 2016;30(5):673–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rodrigues EB, Urias MG, Penha FM, Badaro E, Novais E, Meirelles R, et al. Diabetes induces changes in neuroretina before retinal vessels: a spectral-domain optical coherence tomography study. Int J Retina Vitreous. 2015;1:4.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Demir M, Oba E, Sensoz H, Ozdal E. Retinal nerve fiber layer and ganglion cell complex thickness in patients with type 2 diabetes mellitus. Indian J Ophthalmol. 2014;62(6):719–20.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    van Dijk HW, Verbraak FD, Kok PH, Stehouwer M, Garvin MK, Sonka M, et al. Early neurodegeneration in the retina of type 2 diabetic patients. Invest Ophthalmol Vis Sci. 2012;53(6):2715–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    van Dijk HW, Verbraak FD, Kok PHB, Garvin MK, Sonka M, Lee K, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(7):3660–5.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Chen Y, Li J, Yan Y, Shen X. Diabetic macular morphology changes may occur in the early stage of diabetes. BMC Ophthalmol. 2016;16:12.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cabrera DeBuc D, Somfai GM. Early detection of retinal thickness changes in diabetes using optical coherence tomography. Med Sci Monit. 2010;16(3):Mt15–21.PubMedGoogle Scholar
  72. 72.
    Verma A, Raman R, Vaitheeswaran K, Pal SS, Laxmi G, Gupta M, et al. Does neuronal damage precede vascular damage in subjects with type 2 diabetes mellitus and having no clinical diabetic retinopathy? Ophthalmic Res. 2012;47(4):202–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Pierro L, Iuliano L, Cicinelli MV, Casalino G, Bandello F. Retinal neurovascular changes appear earlier in type 2 diabetic patients. Eur J Ophthalmol. 2017;27(3):346–51.PubMedCrossRefGoogle Scholar
  74. 74.
    van Dijk HW, Kok PHB, Garvin M, Sonka M, DeVries JH, Michels RPJ, et al. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Invest Ophthalmol Vis Sci. 2009;50(7):3404–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tavares Ferreira J, Alves M, Dias-Santos A, Costa L, Santos BO, Cunha JP, et al. Retinal neurodegeneration in diabetic patients without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2016;57(14):6455–60.PubMedCrossRefGoogle Scholar
  76. 76.
    Zhu T, Ma J, Li Y, Zhang Z. Association between retinal neuronal degeneration and visual function impairment in type 2 diabetic patients without diabetic retinopathy. Sci China Life Sci. 2015;58(6):550–5.PubMedCrossRefGoogle Scholar
  77. 77.
    Vujosevic S, Midena E. Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res. 2013;2013:8.Google Scholar
  78. 78.
    Araszkiewicz A, Zozulinska-Ziolkiewicz D, Meller M, Bernardczyk-Meller J, Pilacinski S, Rogowicz-Frontczak A, et al. Neurodegeneration of the retina in type 1 diabetic patients. Pol Arch Med Wewn. 2012;122(10):464–70.PubMedGoogle Scholar
  79. 79.
    van Dijk HW, Verbraak FD, Stehouwer M, Kok PH, Garvin MK, Sonka M, et al. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vis Res. 2011;51(2):224–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Verma A, Rani PK, Raman R, Pal SS, Laxmi G, Gupta M, et al. Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye (Lond). 2009;23(9):1824–30.CrossRefGoogle Scholar
  81. 81.
    Oshitari T, Hanawa K, Adachi-Usami E. Changes of macular and RNFL thicknesses measured by stratus OCT in patients with early stage diabetes. Eye (Lond). 2009;23(4):884–9.CrossRefGoogle Scholar
  82. 82.
    Asefzadeh B, Fisch BM, Parenteau CE, Cavallerano AA. Macular thickness and systemic markers for diabetes in individuals with no or mild diabetic retinopathy. Clin Exp Ophthalmol. 2008;36(5):455–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Demirkaya N, van Dijk HW, van Schuppen SM, Abramoff MD, Garvin MK, Sonka M, et al. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(7):4934–40.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Do carmo A, Ramos P, Reis A, Proenca R, Cunha-vaz JG. Breakdown of the inner and outer blood retinal barrier in streptozotocin-induced diabetes. Exp Eye Res. 1998;67(5):569–75.CrossRefGoogle Scholar
  85. 85.
    Bowd C, Weinreb RN, Williams JM, Zangwill LM. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol. 2000;118(1):22–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Rauscher FM, Sekhon N, Feuer WJ, Budenz DL. Myopia affects retinal nerve fiber layer measurements as determined by optical coherence tomography. J Glaucoma. 2009;18(7):501–5.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Chhablani J, Sharma A, Goud A, Peguda HK, Rao HL, Begum VU, et al. Neurodegeneration in type 2 diabetes: evidence from spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56(11):6333–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Falsini B, Porciatti V, Scalia G, Caputo S, Minnella A, Di Leo MA, et al. Steady-state pattern electroretinogram in insulin-dependent diabetics with no or minimal retinopathy. Doc Ophthalmol. 1989;73(2):193–200.PubMedCrossRefGoogle Scholar
  89. 89.
    Di Leo MA, Falsini B, Caputo S, Ghirlanda G, Porciatti V, Greco AV. Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia. 1990;33(12):726–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Caputo S, Di Leo MA, Falsini B, Ghirlanda G, Porciatti V, Minella A, et al. Evidence for early impairment of macular function with pattern ERG in type I diabetic patients. Diabetes Care. 1990;13(4):412–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Bearse MA Jr, Han Y, Schneck ME, Adams AJ. Retinal function in normal and diabetic eyes mapped with the slow flash multifocal electroretinogram. Invest Ophthalmol Vis Sci. 2004;45(1):296–304.PubMedCrossRefGoogle Scholar
  92. 92.
    Shimada Y, Li Y, Bearse MA Jr, Sutter EE, Fung W. Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol. 2001;85(4):414–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Han Y, Bearse MA Jr, Schneck ME, Barez S, Jacobsen CH, Adams AJ. Multifocal electroretinogram delays predict sites of subsequent diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45(3):948–54.PubMedCrossRefGoogle Scholar
  94. 94.
    Han Y, Adams AJ, Bearse MA Jr, Schneck ME. Multifocal electroretinogram and short-wavelength automated perimetry measures in diabetic eyes with little or no retinopathy. Arch Ophthalmol. 2004;122(12):1809–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Lakhani E, Wright T, Abdolell M, Westall C. Multifocal ERG defects associated with insufficient long-term glycemic control in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(10):5297–303.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bronson-Castain KW, Bearse MA Jr, Neuville J, Jonasdottir S, King-Hooper B, Barez S, et al. Adolescents with type 2 diabetes: early indications of focal retinal neuropathy, retinal thinning, and venular dilation. Retina. 2009;29(5):618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Han Y, Schneck ME, Bearse JMA, Barez S, Jacobsen CH, Jewell NP, et al. Formulation and evaluation of a predictive model to identify the sites of future diabetic retinopathy. Invest Ophthalmol Vis Sci. 2004;45(11):4106–12.PubMedCrossRefGoogle Scholar
  98. 98.
    Ng JS, Bearse JMA, Schneck ME, Barez S, Adams AJ. Local diabetic retinopathy prediction by multifocal ERG delays over 3 years. Invest Ophthalmol Vis Sci. 2008;49(4):1622–8.PubMedCrossRefGoogle Scholar
  99. 99.
    • Santos AR, Ribeiro L, Bandello F, Lattanzio R, Egan C, Frydkjaer-Olsen U, et al. Functional and structural findings of neurodegeneration in early stages of diabetic retinopathy: cross-sectional analyses of baseline data of the EUROCONDOR project. Diabetes. 2017;66(9):2503–10. Findings from this study suggest that neurodegeneration plays a role in the pathogenesis of early stages of DR in a large proportion but not in all patients with T2DM. PubMedCrossRefGoogle Scholar
  100. 100.
    Nilsson M. The rarebit fovea test: a new measure of visual function: Institutionen för klinisk neurovetenskap/Department of Clinical Neuroscience; 2008.Google Scholar
  101. 101.
    Balta O, Sungur G, Yakin M, Unlu N, Balta OB, Ornek F. Pattern visual evoked potential changes in diabetic patients without retinopathy. J Ophthalmol. 2017;2017:6.CrossRefGoogle Scholar
  102. 102.
    Heravian J, Ehyaei A, Shoeibi N, Azimi A, Ostadi-Moghaddam H, Yekta A-A, et al. Pattern visual evoked potentials in patients with type II diabetes mellitus. J Ophthalmic Vis Res. 2012;7(3):225–30.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Mariani E, Moreo G, Colucci GB. Study of visual evoked potentials in diabetics without retinopathy: correlations with clinical findings and polyneuropathy. Acta Neurol Scand. 1990;81(4):337–40.PubMedCrossRefGoogle Scholar
  104. 104.
    Ponte F, Giuffre G, Anastasi M, Lauricella M. Involvment of the visual evoked potentials in type I insulin-dependent diabetes. Metab Pediatr Syst Ophthalmol (1985). 1986;9(2–4):77–80.Google Scholar
  105. 105.
    Raman P, Sodani A, George B. A study of visual evoked potential changes in diabetes mellitus. Int J Diab Dev Countries. 1997;17:69–73.Google Scholar
  106. 106.
    Simonsen SE. The value of the oscillatory potential in selecting juvenile diabetics at risk of developing proliferative retinopathy. Acta Ophthalmol. 1980;58(6):865–78.CrossRefGoogle Scholar
  107. 107.
    van der Torren K, van Lith G. Oscillatory potentials in early diabetic retinopathy. Doc Ophthalmol. 1989;71(4):375–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Yonemura D, Kawasaki K. New approaches to ophthalmic electrodiagnosis by retinal oscillatory potential, drug-induced responses from retinal pigment epithelium and cone potential. Doc Ophthalmol. 1979;48(1):163–222.PubMedCrossRefGoogle Scholar
  109. 109.
    Bresnick GH, Korth K, Groo A, Palta M. Electroretinographic oscillatory potentials predict progression of diabetic retinopathy: preliminary report. Arch Ophthalmol. 1984;102(9):1307–11.PubMedCrossRefGoogle Scholar
  110. 110.
    Bresnick GH, Palta M. Oscillatory potential amplitudes: relation to severity of diabetic retinopathy. Arch Ophthalmol. 1987;105(7):929–33.PubMedCrossRefGoogle Scholar
  111. 111.
    Juen S, Kieselbach GF. Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol. 1990;108(3):372–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Andrade LCO, Souza GS, Lacerda EMCB, Nazima MTST, Rodrigues AR, Otero LM, et al. Influence of retinopathy on the achromatic and chromatic vision of patients with type 2 diabetes. BMC Ophthalmol. 2014;14:104.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Feitosa-Santana C, Paramei GV, Nishi M, Gualtieri M, Costa MF, Ventura DF. Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test. Ophthalmic Physiol Opt. 2010;30(5):717–23.PubMedCrossRefGoogle Scholar
  114. 114.
    Sokol S, Moskowitz A, Skarf B, Evans R, Molitch M, Senior B. Contrast sensitivity in diabetics with and without background retinopathy. Arch Ophthalmol. 1985;103(1):51–4.PubMedCrossRefGoogle Scholar
  115. 115.
    Dosso AA, Bonvin ER, Morel Y, Golay A, Assal JP, Leuenberger PM. Risk factors associated with contrast sensitivity loss in diabetic patients. Graefes Arch Clin Exp Ophthalmol. 1996;234(5):300–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Greenstein VC, Thomas SR, Blaustein H, Koenig K, Carr RE. Effects of early diabetic retinopathy on rod system sensitivity. Optom Vis Sci. 1993;70(1):18–23.PubMedCrossRefGoogle Scholar
  117. 117.
    Amemiya T. Dark adaptation in diabetics. Ophthalmologica. 1977;174(6):322–6.PubMedCrossRefGoogle Scholar
  118. 118.
    Di Leo MA, Caputo S, Falsini B, Porciatti V, Minnella A, Greco AV, et al. Nonselective loss of contrast sensitivity in visual system testing in early type I diabetes. Diabetes Care. 1992;15(5):620–5.PubMedCrossRefGoogle Scholar
  119. 119.
    Wachtmeister L. Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res. 1998;17(4):485–521.PubMedCrossRefGoogle Scholar
  120. 120.
    Bresnick GH, Palta M. Predicting progression to severe proliferative diabetic retinopathy. Arch Ophthalmol. 1987;105(6):810–4.PubMedCrossRefGoogle Scholar
  121. 121.
    Green FD, Ghafour IM, Allan D, Barrie T, McClure E, Foulds WS. Colour vision of diabetics. Br J Ophthalmol. 1985;69(7):533–6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Trick GL, Burde RM, Gordon MO, Santiago JV, Kilo C. The relationship between hue discrimination and contrast sensitivity deficits in patients with diabetes mellitus. Ophthalmology. 1988;95(5):693–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Shoji T, Sakurai Y, Sato H, Chihara E, Takeuchi M. Do type 2 diabetes patients without diabetic retinopathy or subjects with impaired fasting glucose have impaired colour vision? The Okubo Color Study Report. Diabet Med. 2011;28(7):865–71.PubMedCrossRefGoogle Scholar
  124. 124.
    Gella L, Raman R, Kulothungan V, Pal SS, Ganesan S, Sharma T. Impairment of colour vision in diabetes with no retinopathy: Sankara Nethralaya diabetic retinopathy epidemiology and molecular genetics study (SNDREAMS- II, report 3). PLoS One. 2015;10(6):e0129391.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Fong DS, Barton FB, Bresnick GH. Impaired color vision associated with diabetic retinopathy: early treatment diabetic retinopathy study report no. 15. Am J Ophthalmol. 1999;128(5):612–7.PubMedCrossRefGoogle Scholar
  126. 126.
    Nguyen TT, Kawasaki R, Wang JJ, Kreis AJ, Shaw J, Vilser W, et al. Flicker light–induced retinal vasodilation in diabetes and diabetic retinopathy. Diabetes Care. 2009;32(11):2075–80.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Barnstable CJ, Tombran-Tink J. Neuroprotective and antiangiogenic actions of PEDF in the eye: molecular targets and therapeutic potential. Prog Retin Eye Res. 2004;23(5):561–77.PubMedCrossRefGoogle Scholar
  128. 128.
    Zheng B, Li T, Chen H, Xu X, Zheng Z. Correlation between ficolin-3 and vascular endothelial growth factor-to-pigment epithelium-derived factor ratio in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152(6):1039–43.PubMedCrossRefGoogle Scholar
  129. 129.
    Shen X, Zhong Y, Xie B, Cheng Y, Jiao Q. Pigment epithelium derived factor as an anti-inflammatory factor against decrease of glutamine synthetase expression in retinal Müller cells under high glucose conditions. Graefes Arch Clin Exp Ophthalmol. 2010;248(8):1127–36.PubMedCrossRefGoogle Scholar
  130. 130.
    Yoshida Y, Yamagishi S-I, Matsui T, Jinnouchi Y, Fukami K, Imaizumi T, et al. Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy. Diabetes Metab Res Rev. 2009;25(7):678–86.PubMedCrossRefGoogle Scholar
  131. 131.
    Barber AJ, Nakamura M, Wolpert EB, Reiter CE, Seigel GM, Antonetti DA, et al. Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem. 2001;276(35):32814–21.PubMedCrossRefGoogle Scholar
  132. 132.
    Reiter CE, Wu X, Sandirasegarane L, Nakamura M, Gilbert KA, Singh RS, et al. Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes. 2006;55(4):1148–56.PubMedCrossRefGoogle Scholar
  133. 133.
    Seki M, Tanaka T, Nawa H, Usui T, Fukuchi T, Ikeda K, et al. Involvement of brain-derived neurotrophic factor in early retinal neuropathy of streptozotocin-induced diabetes in rats. Diabetes. 2004;53(9):2412–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Hu Y, Cho S, Goldberg JL. Neurotrophic effect of a novel TrkB agonist on retinal ganglion cells. Invest Ophthalmol Vis Sci. 2010;51(3):1747–54.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bai Y, Xu J, Brahimi F, Zhuo Y, Sarunic MV, Saragovi HU. An agonistic TrkB mAb causes sustained TrkB activation, delays RGC death, and protects the retinal structure in optic nerve axotomy and in glaucoma. Invest Ophthalmol Vis Sci. 2010;51(9):4722–31.PubMedCrossRefGoogle Scholar
  136. 136.
    Dostalova I, Haluzikova D, Haluzik M. Fibroblast growth factor 21: a novel metabolic regulator with potential therapeutic properties in obesity/type 2 diabetes mellitus. Physiol Res. 2009;58(1):1–7.PubMedGoogle Scholar
  137. 137.
    Jiang X, Zhang C, Xin Y, Huang Z, Tan Y, Huang Y, et al. Protective effect of FGF21 on type 1 diabetes-induced testicular apoptotic cell death probably via both mitochondrial- and endoplasmic reticulum stress-dependent pathways in the mouse model. Toxicol Lett. 2013;219(1):65–76.PubMedCrossRefGoogle Scholar
  138. 138.
    Zhang C, Shao M, Yang H, Chen L, Yu L, Cong W, et al. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One. 2013;8(12):e82275.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Cheng Y, Zhang J, Guo W, Li F, Sun W, Chen J, et al. Up-regulation of Nrf2 is involved in FGF21-mediated fenofibrate protection against type 1 diabetic nephropathy. Free Radic Biol Med. 2016;93:94–109.PubMedCrossRefGoogle Scholar
  140. 140.
    Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236(2):313–22.PubMedCrossRefGoogle Scholar
  141. 141.
    Fu Z, Wang Z, Liu CH, Gong Y, Cakir B, Liegl R, et al. Fibroblast growth factor 21 protects photoreceptor function in type 1 diabetic mice. Diabetes. 2018;67(5):974–85.PubMedCrossRefGoogle Scholar
  142. 142.
    Simó R, Lecube A, Sararols L, García-Arumí J, Segura RM, Casamitjana R, et al. Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients. Diabetes Care. 2002;25(12):2282–6.PubMedCrossRefGoogle Scholar
  143. 143.
    Hernandez C, Bogdanov P, Corraliza L, Garcia-Ramirez M, Sola-Adell C, Arranz JA, et al. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes. 2016;65(1):172–87.PubMedGoogle Scholar
  144. 144.
    Hernandez C, Bogdanov P, Sola-Adell C, Sampedro J, Valeri M, Genis X, et al. Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. Diabetologia. 2017;60(11):2285–98.PubMedCrossRefGoogle Scholar
  145. 145.
    Colafrancesco V, Coassin M, Rossi S, Aloe L. Effect of eye NGF administration on two animal models of retinal ganglion cells degeneration. Ann Ist Super Sanita. 2011;47(3):284–9.PubMedGoogle Scholar
  146. 146.
    Wilkinson-Berka JL. Angiotensin and diabetic retinopathy. Int J Biochem Cell Biol. 2006;38(5–6):752–65.PubMedCrossRefGoogle Scholar
  147. 147.
    Ola MS, Ahmed MM, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem Res. 2013;38(8):1572–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Kurihara T, Ozawa Y, Nagai N, Shinoda K, Noda K, Imamura Y, et al. Angiotensin II type 1 receptor signaling contributes to synaptophysin degradation and neuronal dysfunction in the diabetic retina. Diabetes. 2008;57(8):2191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kumar B, Gupta SK, Srinivasan BP, Nag TC, Srivastava S, Saxena R, et al. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats. Microvasc Res. 2013;87:65–74.PubMedCrossRefGoogle Scholar
  150. 150.
    Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R, Jha KA, et al. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res. 2014;125:193–202.PubMedCrossRefGoogle Scholar
  151. 151.
    Ibrahim AS, El-Shishtawy MM, Peña A Jr, Liou GI. Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol Vis. 2010;16:2033.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Mrudula T, Suryanarayana P, Srinivas PNBS, Reddy GB. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Biochem Biophys Res Commun. 2007;361(2):528–32.PubMedCrossRefGoogle Scholar
  153. 153.
    Quaranta L, Bettelli S, Uva MG, Semeraro F, Turano R, Gandolfo E. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003;110(2):359–62 discussion 362-354.PubMedCrossRefGoogle Scholar
  154. 154.
    Guo X, Kong X, Huang R, Jin L, Ding X, He M, et al. Effect of Ginkgo biloba on visual field and contrast sensitivity in Chinese patients with normal tension glaucoma: a randomized, crossover clinical trial. Invest Ophthalmol Vis Sci. 2014;55(1):110–6.PubMedCrossRefGoogle Scholar
  155. 155.
    Kusari J, Zhou S, Padillo E, Clarke KG, Gil DW. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2007;48(11):5152–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Almasieh M, Levin LA. Neuroprotection in glaucoma: animal models and clinical trials. Ann Rev Vis Sci. 2017;3:91–120.CrossRefGoogle Scholar
  157. 157.
    Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671–81.PubMedCrossRefGoogle Scholar
  158. 158.
    Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2013;2(2):CD006539.PubMedCentralGoogle Scholar
  159. 159.
    Sena DF, Lindsley K. Neuroprotection for treatment of glaucoma in adults. Cochrane Database Syst Rev. 2017;1:Cd006539.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Birch DG, Weleber RG, Duncan JL, Jaffe GJ, Tao W, Ciliary Neurotrophic Factor Retinitis Pigmentosa Study G. Randomized trial of ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for retinitis pigmentosa. Am J Ophthalmol. 2013;156(2):283–292.e281.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Miao I, Bhakta AS, Sredar N, Ivers KM, Patel NB, Queener HM, et al. In vivo examination of cone photoreceptors in patients with retinitis pigmentosa implanted over five years ago with encapsulated ciliary neurotrophic factor. Invest Ophthalmol Vis Sci. 2014;55(13):2619.Google Scholar
  162. 162.
    Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci. 2011;52(5):2219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Chew EY, Clemons TE, Jaffe GJ, Johnson CA, Farsiu S, Lad EM, et al. Effect of ciliary neurotrophic factor on retinal neurodegeneration in patients with macular telangiectasia type 2: a randomized clinical trial. Ophthalmology. 2018.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sidra Zafar
    • 1
  • Mira Sachdeva
    • 1
  • Benjamin J. Frankfort
    • 2
  • Roomasa Channa
    • 1
    • 2
    Email author
  1. 1.Wilmer Eye InstituteJohns Hopkins HospitalBaltimoreUSA
  2. 2.Department of OphthalmologyBaylor College of MedicineHoustonUSA

Personalised recommendations