Advertisement

Epigenetic Risk Profile of Diabetic Kidney Disease in High-Risk Populations

  • Lixia Xu
  • Rama Natarajan
  • Zhen ChenEmail author
Microvascular Complications—Nephropathy (M Afkarian and B Roshanravan, Section Editors)
  • 26 Downloads
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Nephropathy

Abstract

Purpose of Review

Epigenetic variations have been shown to reveal vulnerability to diabetes and its complications. Although it has become clear that metabolic derangements, especially hyperglycemia, can impose a long-term metabolic memory that predisposes to diabetic complications, the underlying mechanisms remain to be understood. It has been suggested that epigenetics (e.g., histone modification, DNA methylation, and non-coding RNAs) help link metabolic disruption to aberrancies related to diabetic kidney disease (DKD). In this review, we discuss the key findings and advances made in the epigenetic risk profile of DKD and provide perspectives on the emerging topics that implicate epigenetics in DKD.

Recent Findings

Epigenetic profiles can be profoundly altered in patients with diabetes, in circulating blood cells as well as in renal tissues. These changes provide useful insight into the mechanisms of diabetic kidney injury and progressive kidney dysfunction.

Summary

Increasing evidence supports the role of epigenetic regulation in DKD. More studies are needed to elucidate the mechanism and importance of epigenetic changes in the initiation and progression of DKD and to further explore their diagnostic and therapeutic potential in the clinical management of patients with diabetes who have a high risk for DKD.

Keywords

Diabetic nephropathy Diabetic kidney disease Epigenetic regulation 

Notes

Acknowledgments

The authors would like to acknowledge the support from Ella Fitzgerald Foundation. We apologize to colleagues whose important primary studies we were unable to cite due to space constraints.

Funding Information

This work was supported by the National Natural Science Fund of China 81570609 and 81770667 (to X. L.), and US PHS NIH research grants K99/R00HL122368 (to Z.C.) and R01 DK065073, R01 DK081705, R01DK58191, R01 HL106089 (to R.N.).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jones CA, Krolewski AS, Rogus J, Xue JL, Collins A, Warram JH. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 2005;67(5):1684–91.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):1054–69.CrossRefGoogle Scholar
  3. 3.
    Schultz CJ, Neil HA, Dalton RN, Dunger DB, Oxforn Regional Prospective Study Group. Risk of nephropathy can be detected before the onset of microalbuminuria during the early years after diagnosis of type 1 diabetes. Diabetes Care. 2000;23(12):1811–5.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Tonneijck L, Muskiet MH, Smits MM, van Bommel EJ, Heerspink HJ, van Raalte DH, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28(4):1023–39.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hovind P, Rossing P, Tarnow L, Smidt UM, Parving HH. Progression of diabetic nephropathy. Kidney Int. 2001;59(2):702–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Najafian B, Mauer M. Morphologic features of declining renal function in type 1 diabetes. Semin Nephrol. 2012;32(5):415–22.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2014;429(6990):457–63.CrossRefGoogle Scholar
  8. 8.
    Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science. 2010;330(6004):612–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rosen ED, Kaestner KH, Natarajan R, Patti ME, Sallari R, Sander M, et al. Epigenetics and epigenomics: implications for diabetes and obesity. Diabetes. 2018;67(10):1923–31.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: the “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab. 2009;94(2):410–5.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Control D, Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.CrossRefGoogle Scholar
  12. 12.
    The Writing team for DCCT/EDIC Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA. 2003;290(16):2159–67.CrossRefGoogle Scholar
  13. 13.
    Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR, UKPDS Study Group. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. 2006;55(6):1832–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.CrossRefGoogle Scholar
  15. 15.
    Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, Cleary PA, Davis MD, Nathan DM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9.CrossRefGoogle Scholar
  16. 16.
    DCCT/EDIC Research Group, de Boer IH, Sun W, Cleary PA, Lachin JM, Molitch ME, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011;365(25):2366–76.CrossRefGoogle Scholar
  17. 17.
    UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837–53.CrossRefGoogle Scholar
  18. 18.
    Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ceriello A. Hypothesis: the “metabolic memory”, the new challenge of diabetes. Diabetes Res Clin Pract. 2009;86(Suppl):S2–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bianchi C, Miccoli R, Del Prato S. Hyperglycemia and vascular metabolic memory: truth or fiction? Curr Diab Rep. 2013;13(3):403–10.PubMedCrossRefGoogle Scholar
  21. 21.
    Chamers J, Cooper ME. UKPDS and the legacy effect. N Engl J Med. 2008;359(15):1618–20.CrossRefGoogle Scholar
  22. 22.
    Kuzhively J, Tahsin B, Hart P, Fogelfeld L. Legacy effect in combined diabetic-renal multifactorial intervention in patients with advanced diabetic nephropathy. J Diabetes Complicat. 2018;32(5):474–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Miao F, Chen Z, Genuth S, Paterson A, Zhang L, Wu X, et al. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes. 2014;63(5):1748–62.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    •• Chen Z, Miao F, Paterson AD, Lachin JM, Zhang L, Schones DE, et al. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci USA. 2016;113(21):E3002–11. This study reports that the DNA-methylation differences during the DCCT persist at certain loci associated with glycemia for years during the EDIC Study and highlights an epigenetic explanation for metabolic memory.PubMedCrossRefGoogle Scholar
  25. 25.
    Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378(14):1323–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19(10):654–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Li X, Egervari G, Wang Y, Berger SL, Lu Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol. 2018;19:563–78.  https://doi.org/10.1038/s41580-018-0029-7.CrossRefPubMedGoogle Scholar
  28. 28.
    Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature. 2016;534(7609):652–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature. 2009;462(7271):315–22.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 2010;6(9):e1001134.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010;463(7284):1101–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lindstrom VM Jr, Flynn J, Reich NO. Reconciling structure and function in HhaI DNA cytosine-C-5 methyltransferase. J Biol Chem. 2000;275(7):4912–9.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bestor TH, Ingram VM. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci U S A. 1983;80(18):5559–63.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32(1):42–56.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Falkenberg KJ, Johnstone RW. Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov. 2014;13(9):673–91.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119(7):941–53.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kozub MM, Carr RM, Lomberk GL, Fernandez-Zapico ME. LSD1, a double-edged sword, confers dynamic chromatin regulation but commonly promotes aberrant cell growth. F1000 Res. 2017;6:2016.CrossRefGoogle Scholar
  38. 38.
    Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–6.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595):1039–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Avvakumov N, Cote J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene. 2007;26(37):5395–407.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Li Y, Li X, He K, Li B, Liu K, Qi J, et al. C-peptide prevents NF-κB from recruiting p300 and binding to the inos promoter in diabetic nephropathy. FASEB J. 2018;32(4):2269–79.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, et al. Involvement of p300/CBP and epigenetic histone acetylation in TGF-β1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol. 2012;304(5):F601–13.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014;6(4):a018713.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sun J, Wang Y, Cui W, Lou Y, Sun G, Zhang D, et al. Role of epigenetic histone modifications in diabetic kidney disease involving renal fibrosis. J Diabetes Res. 2017;2017:7242384.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wanner N, Bechtel-Walz W. Epigenetics of kidney disease. Cell Tissue Res. 2017;369(1):75–92.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Assmann TS, Recamonde-Mendoza M, de Souza BM, Bauer AC, Crispim D. MicroRNAs and diabetic kidney disease: systematic review and bioinformatic analysis. Mol Cell Endocrinol. 2018;477:90–102.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol. 2018;31(1):23–34.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Dewanjee S, Bhattachearjee N. MicroRNA: a new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol. 2018;155:32–47.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Leicamwasam A, Sexton-Oates A, Carmody J, Ekinci EI, Dwyer KM, Saffery R. DNA methylation profiling of genomic DNA isolated from urine in diabetic chronic kidney disease: a pilot study. PLoS One. 2018;13(2):e0190280.CrossRefGoogle Scholar
  52. 52.
    El Bali L, Diman A, Bernard A, Roosens NH, De Keersmaecker SC. Comparative study of seven commercial kits for human DNA extraction from urine samples suitable for DNA biomarker-based public health studies. J Biomol Tech. 2014;25(4):96–110.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Yokota M, Tatsumi N, Tsuda I, Takubo T, Hiyoshi M. DNA extraction from human urinary sediment. J Clin Lab Anal. 1998;12(2):88–91.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Sapienza C, Lee J, Powell J, Erinle O, Yafai F, Reichert J, et al. DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics. 2011;6(1):20–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Gautier JF, Porcher R, Abi Khalil C, Bellili-Munoz N, Fetita LS, Travert F, et al. Kidney dysfunction in adult offspring exposed in utero to type 1 diabetes is associated with alterations in genome-wide DNA methylation. PLoS One. 2015;10(8):e0134654.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wing MR, Devaney JM, Joffe MM, Xie D, Feldman HI, Dominic EA, et al. DNA methylation profile associated with rapid decline in kidney function: findings from the CRIC study. Nephrol Dial Transplant. 2014;29(4):864–72.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    • Chu AY, Tin A, Schlosser P, Ko YA, Qiu C, Yao C, et al. Epigenome-wide association studies identify DNA methylation associated with kidney function. Nat Commun. 2017;8(1):1286. This well-powered EWAS identified differential DNA methylation associated with kidney function and CKD. It further demonstrated methylation at PTPN6 / PHB2 in kidney cortex was associated with lower renal PTPN6 expression, higher eGFR, and less renal fibrosis.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Yan N, Wen L, Peng R, Li H, Liu H, Peng H, et al. Naringenin ameliorated kidney injury through Let-7a/TGFBR1 signaling in diabetic nephropathy. J Diabetes Res. 2016;2016:8738760.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Bashtrykov P, Jankevicius G, Jurkowska RZ, Ragnozin S, Jeltsch A. The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism. J Biol Chem. 2014;289(7):4106–15.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Peng R, Liu H, Peng H, Zhou J, Zha H, Chen X, et al. Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1. Gene. 2015;570(1):57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Maghbooli Z, Larijani B, Emamgholipour S, Amini M, Keshtkar A, Pasalar P. Aberrant DNA methylation patterns in diabetic nephropathy. J Diabetes Metab Disord. 2014;13:69.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Aldemir O, Turgut F, Gokce C. The association between methylation levels of targeted genes and albuminuria in patients with early diabetic kidney disease. Ren Fail. 2017;39(1):597–601.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Zhang H, Cail X, Yi B, Huang J, Wang J, Sun J. Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy. Mol Med Rep. 2014;9(6):2138–44.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Swan EJ, Maxwell AP, McKnight AJ. Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in blood-derived DNA from individuals with type 1 diabetes. Diabet Med. 2015;32(8):1110–5.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Gao J, Wang W, Wang F, Guo C. LncRNA-NR_033515 promotes proliferation, fibrogenesis and epithelial-to-mesenchymal transition by targeting miR-743b-5p in diabetic nephropathy. Biomed Pharmacother. 2018;106:543–52.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Hadson RL, Craig DW, Millis MP, Yeatts KA, Kobes S, Pearson JV, et al. Identification of PVT1 as a candidate gene for end-stage renal disease in type 2 diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes. 2007;56(4):975–83.CrossRefGoogle Scholar
  67. 67.
    Milles MP, Bowen D, Kingsley C, Watanabe RM, Wolford JK. Variants in the plasmacytoma variant translocation gene (PVT1) are associated with end-stage renal disease attributed to type 1 diabetes. Diabetes. 2007;56(12):3027–32.CrossRefGoogle Scholar
  68. 68.
    Wang YZ, Xu WW, Zhu DY, Zhang N, Wang YL, Ding M, et al. Specific expression network analysis of diabetic nephropathy kidney tissue revealed key methylated sites. J Cell Physiol. 2018;233(10):7139–47.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest. 2014;124(6):2523–37.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z, et al. Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun. 2017;8(1):413.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sayyed SG, Gaikwad AB, Lichtnekert J, Kulkarni O, Eulberg D, Klussmann S, et al. Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant. 2010;25(6):1811–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    De Marinis Y, Cai M, Bompada P, Atac D, Kotoa O, Johansson ME, et al. Epigenetic regulation of the thioredoxin-interacting protein (TXNIP) gene by hyperglycemia in kidney. Kidney Int. 2016;89(2):342–53.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Xu H, Wu X, Qin H, Tian W, Chen J, Sun L, et al. Myocardin-related transcription factor A epigenetically regulates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2015;26(7):1648–60.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Yuan H, Reddy MA, Deshpande S, Jia Y, Park JT, Lanting LL, et al. Profibrotic gene regulation by 12/15-lipoxygenase and its oxidized lipid products in diabetic nephropathy. Antioxid Redox Signal. 2016;24(7):361–75.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulated fibrotic gene expression. J Am Soc Nephrol. 2010;21(12):2069–80.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Noh H, Oh EY, Seo JY, Yu MR, Kinm YO, Ha H, et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am J Physiol Renal Physiol. 2009;297(3):F729–39.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lin CL, Lee PH, Hsu YC, Lei CC, Ko JY, Chuang PC, et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J Am Soc Nephrol. 2014;25(8):1698–709.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu G, et al. Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int. 2014;86(4):712–25.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Liu F, Zong M, Wen X, Li X, Wang J, Wang Y, et al. Silencing of histone deacetylase 9 expression in podocytes attenuates kidney injury in diabetic nephropathy. Sci Rep. 2016;6:33676.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Brijmohan AS, Batchu SN, Majumder S, Alghamdi TA, Thieme K, McGaugh S, et al. HDAC6 inhibition promotes transcription factor EB activation and is protective in experimental kidney disease. Front Pharmacol. 2018;9:34.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    • Kato M, Wang M, Chen Z, Bhatt K, Oh HJ, Lanting L, et al. An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun. 2016;7:12864. This study provides a thorough description of Lnc-MGC, a lncRNA megacluster regulated by endothplasmic reticulum stress and its relevance to human DKD.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    • Long J, Badal SS, Ye Z, Wang Y, Ayanga BA, Galvan DL, et al. Long noncoding RNA Tug1 regulates mitochondrial bioenergetics in diabetic nephropathy. J Clin Invest. 2016;126(11):4205–18. This study provides extensive evidence for an important regulatory crosstalk between lncRNAs and mitochondria mitochondrial bioenergetics in podocytes in the diabetic milieu.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sun SF, Tang PMK, Feng M, Xiao J, Huang XR, Li P, et al. Novel lncRNA Erbb4-IR promotes diabetic kidney injury in db/db mice by targeting miR-29b. Diabetes. 2018;67(4):731–44.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Feng M, Tang PM, Huang XR, Sun SF, You YK, Xiao J, et al. TGF-β mediates renal fibrosis via the Smad3-Erbb4-IR Long noncoding RNA Axis. Mol Ther. 2018;26(1):148–61.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Bai X, Geng J, Li X, Wan J, Liu J, Zhou Z, et al. Long noncoding RNA LINC01619 regulates microRNA-27a/Forkhead box protein O1 and endoplasmic reticulum stress-mediated podocyte injury in diabetic nephropathy. Antioxid Redox Signal. 2018;29(4):355–76.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wang M, Wang S, Yao D, Yan Q, Lu W. A novel long non-coding RNA CYP4B1-PS1-001 regulates proliferation and fibrosis in diabetic nephropathy. Mol Cell Endocrinol. 2016;426:136–45.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Wang M, Yao D, Wang S, Yan Q, Lu W. Long non-coding RNA ENSMUST00000147869 protects mesangial cells from proliferation and fibrosis induced by diabetic nephropathy. Endocrine. 2016;54(1):81–92.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Yi H, Peng R, Zhang LY, Sun Y, Peng HM, Liu HD, et al. LincRNA-Gm4419 knockdown ameliorates NFκB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy. Cell Death Dis. 2017;8(2):e2583.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Li A, Peng R, Sun Y, Liu H, Peng H, Zhang Z. LincRNA 1700020I14Rik alleviates cell proliferation and fibrosis in diabetic nephropathy via miR-34a-5p/Sirt1/HIF-1α signaling. Cell Death Dis. 2018;9(5):461.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gao Y, Chen ZY, Wang Y, Liu Y, Ma JX, Li YK. Long non-coding RNA ASncmtRNA-2 is upregulated in diabetic kidneys and high glucose-treated mesangial cells. Exp Ther Med. 2017;13(2):581–7.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Alvarez ML, DiStefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One. 2011;6(4):e18671.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ling L, Tan Z, Zhang C, Gui S, Hu Y, Chen L. Long noncoding RNA ENSRNOG00000037522 is involved in the podocyte epithelial-mesenchymal transition in diabetic rats. Int J Mol Med. 2018;41(5):2704–14.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Hu M, Wang R, Li X, Fan M, Lin J, Zhen J, et al. LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin. J Cell Mol Med. 2017;21(11):2732–47.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wu D, Cheng YG, Huang X, Zhong MW, Liu SZ, Hu SY. Downregulation of lncRNA MALAT1 contributes to renal functional improvement after duodenal-jejunal bypass in a diabetic rat model. J Physiol Biochem. 2018;74(3):431–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Li X, Zeng L, Cao C, Lu C, Lian W, Han J, et al. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res. 2017;350(2):327–35.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X. Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury. Biochem Biophys Res Commun. 2015;468(4):726–32.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Wang J, Pang J, Li H, Long J, Fang F, Chen J, et al. lncRNA ZEB1-AS1 was suppressed by p53 for renal fibrosis in diabetic nephropathy. Mol Ther Nucleic Acids. 2018;12:741–50.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Feng Y, Chen S, Xu J, Zhu Q, Ye X, Ding D, et al. Dysregulation of lncRNAs GM5524 and GM15645 involved in high-glucose induced podocyte apoptosis and autophagy in diabetic nephropathy. Mol Med Rep. 2018;18(4):3657–64.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Diabetes Complications and MetabolismBeckman Research InstituteDuarteUSA
  2. 2.Division of NephrologyGuangdong Academy of Medical Science and Guangdong General HospitalGuangzhouChina

Personalised recommendations