Advertisement

Current Diabetes Reports

, 18:129 | Cite as

Gut Microbiome in Obesity, Metabolic Syndrome, and Diabetes

  • Xinpu Chen
  • Sridevi Devaraj
Therapies and New Technologies in the Treatment of Diabetes (M Pietropaolo, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Therapies and New Technologies in the Treatment of Diabetes

Abstract

Purpose of Review

Obesity and diabetes are worldwide epidemics. There is also a growing body of evidence relating the gut microbiome composition to insulin resistance. The purpose of this review is to delineate the studies linking gut microbiota to obesity, metabolic syndrome, and diabetes.

Recent findings

Animal studies as well as proof of concept studies using fecal transplantation demonstrate the pivotal role of the gut microbiota in regulating insulin resistance states and inflammation.

Summary

While we still need to standardize methodologies to study the microbiome, there is an abundance of evidence pointing to the link between gut microbiome, inflammation, and insulin resistance, and future studies should be aimed at identifying unifying mechanisms.

Keywords

Microbiome Obesity Metabolic syndrome Diabetes Inflammation Endotoxin 

Notes

Compliance with Ethical Standards

Conflict of Interest

Xinpu Chen and Sridevi Devaraj declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    American College of Cardiology/American Heart Association Task Force on Practice Guidelines, Obesity Expert Panel. Executive summary: guidelines (2013) for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the Obesity Society published by the Obesity Society and American College of Cardiology/American Heart Association task force on practice guidelines. Based on a systematic review from the obesity expert panel, 2013. Obesity (Silver Spring). 2013;2014(Suppl 2):S5–39.Google Scholar
  2. 2.
    Lam DW, LeRoith D. The worldwide diabetes epidemic. Curr Opin Endocrinol Diabetes Obes. 2012;2:93–6.CrossRefGoogle Scholar
  3. 3.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bäckhed F, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dethlefsen L, Eckburg PB, Bik EM, Relman DA. Assembly of the human intestinal microbiota. Trends Ecol Evol. 2006;21(9):517–23.CrossRefPubMedGoogle Scholar
  7. 7.
    Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev. 2000;6:776–88.Google Scholar
  8. 8.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95:6578–83.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rajilic-Stojanovic M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014;38(5):996–1047.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee YK, Mazmanian SK. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science. 2010;330(6012):1768–73.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gu S, Chen D, Zhang JN, Lv X, Wang K, Duan LP, et al. Bacterial community mapping of the mouse gastrointestinal tract. PLoS One. 2001;8(10):e74957.CrossRefGoogle Scholar
  12. 12.
    Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20–32.CrossRefPubMedGoogle Scholar
  13. 13.
    Swidsinski A, Loening-Baucke V, Lochs H, Hale LP. Spatial organization of bacterial flora in normal and inflamed intestine: a fluorescence in situ hybridization study in mice. World J Gastroenterol. 2005;11(8):1131–40.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5(9):759–70.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    •• Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31 This was one of the pioneering studies to demonstrate that the gut microbiota from obese can harvest increased energy from diet and thus contribute to the pathophysiology of obesity. CrossRefPubMedGoogle Scholar
  16. 16.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    •• Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341:1241214 Studies in this report emphasize the strong microbiota-by-diet interactions and illustrate how a poor diet (high saturated fat and low in fruits and vegetables) can select against human gut bacterial taxa associated with lean body mass. CrossRefPubMedGoogle Scholar
  18. 18.
    Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr. 2010;64(6):636–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.CrossRefPubMedGoogle Scholar
  22. 22.
    Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5:e10667.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hur KY, Lee M-S. Gut microbiota and metabolic disorders. Diabetes Metab J. 2015;39:198–203.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.CrossRefPubMedGoogle Scholar
  25. 25.
    Zand H, Morshedzadeh N, Naghashian F. Signaling pathways linking inflammation to insulin resistance. Diabetes Metab Syndr. 2017;Suppl 1:S307–9.CrossRefGoogle Scholar
  26. 26.
    Verma S, Hussain ME. Obesity and diabetes: an update. Diabetes Metab Syndr. 11(1):73–79.Google Scholar
  27. 27.
    Lontchi-Yimagou E, Sobngwi E, Matsha TE, Kengne AP. Diabetes mellitus and inflammation. Curr Diab Rep. 2013;13(3):435–4.CrossRefPubMedGoogle Scholar
  28. 28.
    Pirola L, Ferraz JC. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity. World J Biol Chem. 2017;8(2):120–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Keane KN, Calton EK, Carlessi R, Hart PH, Newsholme P. The bioenergetics of inflammation: insights into obesity and type 2 diabetes. Eur J Clin Nutr. 2017;71(7):904–12.CrossRefPubMedGoogle Scholar
  30. 30.
    •• Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72 One of the first studies that demonstrates that increased endotoxin results in increased inflammation, weight gain and diabetes. CrossRefPubMedGoogle Scholar
  31. 31.
    Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Pedersen C, Gallagher E, Horton F, Ellis RJ, Ijaz UZ, Wu H, et al. Host-microbiome interactions in human type 2 diabetes following prebiotic fibre (galacto-oligosaccharide) intake. Br J Nutr. 2016;116:1869–77.CrossRefPubMedGoogle Scholar
  33. 33.
    Amar J, Lange C, Payros G, Garret C, Chabo C, Lantieri O, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the DESIR study. PLoS One. 2013;8:e54461.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2009;26:5–11.CrossRefGoogle Scholar
  35. 35.
    Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity. 2001;20:738–47.CrossRefGoogle Scholar
  36. 36.
    Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2010;108(Suppl 1):4554–61.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jialal I, Kaur H, Devaraj S. Toll-like receptor status in obesity and metabolic syndrome: a translational perspective. J Clin Endocrinol Metab. 2014;99(1):39–48.CrossRefPubMedGoogle Scholar
  39. 39.
    Gupta S, Maratha A, Siednienko J, Natarajan A, Gajanayake T, Hoashi S, et al. Analysis of inflammatory cytokine and TLR expression levels in type 2 diabetes with complications. Sci Rep. 2017;7(1):7633.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rempel JD, Packiasamy J, Dean HJ, McGavock J, Janke A, Collister M, et al. Preliminary analysis of immune activation in early onset type 2 diabetes. Int J Circumpolar Health. 2013;5:72.Google Scholar
  41. 41.
    Carvalho BM, Guadagnini D, Tsukumo DM, Schenka AA, Latuf-Filho P, Vassallo J, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55:2823–34.CrossRefPubMedGoogle Scholar
  42. 42.
    Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol. 2011;9:e1001212.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dasu MR, Devaraj S, Park S, Jialal I. Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care. 2010;33:861–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Jialal I, Huet BA, Kaur H, Chien A, Devaraj S. Increased toll-like receptor activity in patients with metabolic syndrome. Diabetes Care. 2012;35:900–4.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Creely SJ, McTernan PG, Kusminski CM, Fisher fM, Da Silva NF, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Devaraj S, Tobias P, Kasinath BS, Ramsamooj R, Afify A, Jialal I. Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arterioscler Thromb Vasc Biol. 2011;31:1796–804.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Frazier TH, DiBaise JK, McClain CJ. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr. 2011;35:14S20S.CrossRefGoogle Scholar
  48. 48.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.CrossRefPubMedGoogle Scholar
  49. 49.
    Zupancic ML, Cantarel BL, Liu Z, Drabek EF, Ryan KA, Cirimotich S, et al. Analysis of the gut microbiota in the old order Amish and its relation to the metabolic syndrome. PLoS One. 2012;7:e43052.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pahwa R, Balderas M, Jialal I, Chen X, Luna RA, Devaraj S. Gut microbiome and inflammation: a study of diabetic Inflammasome-knockout mice. J Diabetes Res. 2017;2017:6519785.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut. 2014;63:727–35.CrossRefPubMedGoogle Scholar
  53. 53.
    De la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejía EP, Carmona JA, Abad JM, et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care. 2017;40:54–62.CrossRefPubMedGoogle Scholar
  54. 54.
    • Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528:262–6 Provides evidence of microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production. Overall, the study emphasizes the need to disentangle gut microbiota signatures of T2DM from those that receive metformin and other antidiabetic medication. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Devaraj S, Venkatachalam A, Chen X. Metformin and the gut microbiome in diabetes. Clin Chem. 2016;62(12):1554–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Aron-Wisnewsky J, Prifti E, Belda E, Ichou F, Kayser BD, Dao MC, Verger EO, Hedjazi L, Bouillot JL, Chevallier JM, Pons N, Le Chatelier E, Levenez F, Ehrlich, SD, Dore J, Zucker JD, Clément K. major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2018.Google Scholar
  57. 57.
    Duboc H, Nguyen CC, Cavin JB, Ribeiro-Parenti L, Jarry AC, Rainteau D, et al. Roux-en-Y gastric-bypass and sleeve, gastrectomy induces specific shifts of the gut microbiota without altering the metabolism of bile acids in the intestinal lumen. Int J Obes (Lond). 2018.  https://doi.org/10.1038/s41366-018-0015-3.
  58. 58.
    Ejtahed HS, Angoorani P, Hasani-Ranjbar S, Siadat SD, Ghasemi N, Larijani B, et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog. 2018;116:13–21.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhao L, Chen Y, Xia F, Abudukerimu B, Zhang W, Guo Y, et al. A glucagon-like peptide-1 receptor agonist lowers weight by modulating the structure of gut microbiota. Front Endocrinol (Lausanne). 2018;9:233.CrossRefGoogle Scholar
  60. 60.
    Claus SP. Will gut microbiota help design the next generation of GLP-1-based therapies for type 2 diabetes? Cell Metab. 2017;26(1):6–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Zietek T, Rath E. Inflammation meets metabolic disease: gut feeling mediated by GLP-1. Front Immunol. 2016;7:154.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Greenhill C. Gut microbiota: Firmicutes and Bacteroidetes involved in insulin resistance by mediating levels of glucagon-like peptide 1. Nat Rev Endocrinol. 2015;11(5):254.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology & ImmunologyBaylor College of Medicine and Texas Children’s HospitalHoustonUSA

Personalised recommendations