Current Diabetes Reports

, 18:127 | Cite as

Pathogenesis of Lipid Disorders in Insulin Resistance: a Brief Review

  • Petter Bjornstad
  • Robert H. Eckel
Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance


Purpose of review

Insulin resistance (IR) is recognized to play an important role in the pathogenesis of dyslipidemia. This review summarizes the complex interplay between IR and dyslipidemia in people with and without diabetes.

Recent findings

IR impacts the metabolism of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and very low-density lipoprotein cholesterol (VLDL-C) by several mechanisms. Trials with insulin sensitizing therapies, including biguanides and thiazolidinediones, have provided inconsistent results on lipid lowering in people with and without diabetes. In this review, we focus on the pathophysiological interplay between IR and dyslipidemia and recapitulate lipid and lipoprotein data from insulin-sensitizing trials.


Further research elucidating the reciprocal relationship between IR and dyslipidemia is needed to better target these important risk factors for cardiovascular disease.


Insulin resistance Dyslipidemia Hypertriglyceridemia 


Authors’ Contributions

PB and RHE wrote, contributed to discussion, and reviewed/edited the manuscript.

Funding information

P.B. receives salary support by NIH (K23 DK116720-01), in addition to research support from Thrasher Research Fund, Juvenile Diabetes Research Foundation (JDRF), International Society of Pediatric and Adolescent Diabetes (ISPAD), Colorado Clinical and Translational Sciences Institute and Center for Women’s Health Research at University of Colorado. R.H.E. is supported by NIH (R21NS102506; P30DK48520; P50HD073063) a grant from ENDECE LLC. The authors were fully responsible for all content and editorial decisions, were involved at all stages of manuscript development, and have approved the final version.

Compliance with Ethical Standards

Conflict of Interest

P.B. has received speaking honoraria and research operating funding from Horizon Pharmaceuticals, and travel support from Boehringer Ingelheim.

R.H.E. serves on advisory boards for Regeneron/Sanofi, Kowa, Merck, and Novo Nordisk.

Human and Animal Rights and Informed Consent

This is a review paper and summarizes existing data. It does not contain any unpublished data in human or animal subjects performed by either of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    West KM, Ahuja MM, Bennett PH, Czyzyk A, De Acosta OM, Fuller JH, et al. The role of circulating glucose and triglyceride concentrations and their interactions with other "risk factors" as determinants of arterial disease in nine diabetic population samples from the WHO multinational study. Diabetes Care. 1983;6(4):361–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Howard BV, Robbins DC, Sievers ML, Lee ET, Rhoades D, Devereux RB, et al. LDL cholesterol as a strong predictor of coronary heart disease in diabetic individuals with insulin resistance and low LDL: the strong heart study. Arterioscler Thromb Vasc Biol. 2000;20(3):830–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Chapman MJ, Ginsberg HN, Amarenco P, Andreotti F, Boren J, Catapano AL, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32(11):1345–61.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grundy SM. Small LDL, atherogenic dyslipidemia, and the metabolic syndrome. Circulation. 1997;95(1):1–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Festa A, Williams K, Hanley AJ, Otvos JD, Goff DC, Wagenknecht LE, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the insulin resistance atherosclerosis study. Circulation. 2005;111(25):3465–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Grundy SM, Mok HY, Zech L, Steinberg D, Berman M. Transport of very low density lipoprotein triglycerides in varying degrees of obesity and hypertriglyceridemia. J Clin Invest. 1979;63(6):1274–83.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kissebah AH, Alfarsi S, Adams PW. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metabolism. 1981;30(9):856–68.CrossRefPubMedGoogle Scholar
  8. 8.
    Labadzhyan A, Cui J, Peterfy M, Guo X, Chen YI, Hsueh WA, et al. Insulin clearance is associated with hepatic lipase activity and lipid and adiposity traits in Mexican Americans. PLoS One. 2016;11(11):e0166263.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boden G. Fatty acids and insulin resistance. Diabetes Care. 1996;19(4):394–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Eckel RH, Prasad JE, Kern PA, Marshall S. Insulin regulation of lipoprotein lipase in cultured isolated rat adipocytes. Endocrinology. 1984;114(5):1665–71.CrossRefPubMedGoogle Scholar
  11. 11.
    •• Sadur CN, Eckel RH. Insulin stimulation of adipose tissue lipoprotein lipase. Use of the euglycemic clamp technique. J Clin Invest. 1982;69(5):1119–25 One of the first studies using a hyperinsulinemic-euglycemic clamp to study metabolism of lipids and lipoproteins. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002;51(7):2005–11.CrossRefPubMedGoogle Scholar
  13. 13.
    Haas ME, Attie AD, Biddinger SB. The regulation of ApoB metabolism by insulin. Trends Endocrinol Metab. 2013;24(8):391–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldberg IJ, Eckel RH, Abumrad NA. Regulation of fatty acid uptake into tissues: lipoprotein lipase- and CD36-mediated pathways. J Lipid Res. 2009;50(Suppl):S86–90.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brown CM, Layman DK. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet. J Nutr. 1988;118(11):1294–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Medh JD, Fry GL, Bowen SL, Ruben S, Wong H, Chappell DA. Lipoprotein lipase- and hepatic triglyceride lipase- promoted very low density lipoprotein degradation proceeds via an apolipoprotein E-dependent mechanism. J Lipid Res. 2000;41(11):1858–71.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Garg A. Insulin resistance in the pathogenesis of dyslipidemia. Diabetes Care. 1996;19(4):387–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Annuzzi G, Giacco R, Patti L, Di Marino L, De Natale C, Costabile G, et al. Postprandial chylomicrons and adipose tissue lipoprotein lipase are altered in type 2 diabetes independently of obesity and whole-body insulin resistance. Nutr Metab Cardiovasc Dis. 2008;18(8):531–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Xiao C, Dash S, Morgantini C, Adeli K, Lewis GF. Gut peptides are novel regulators of intestinal lipoprotein secretion: experimental and pharmacological manipulation of lipoprotein metabolism. Diabetes. 2015;64(7):2310–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Garg A, Haffner SM. Insulin resistance and atherosclerosis. Diabetes Care. 1996;19(3):274.CrossRefPubMedGoogle Scholar
  21. 21.
    de Vries R, Borggreve SE, Dullaart RP. Role of lipases, lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in abnormal high density lipoprotein metabolism in insulin resistance and type 2 diabetes mellitus. Clin Lab. 2003;49(11–12):601–13.PubMedGoogle Scholar
  22. 22.
    Brinton EA, Eisenberg S, Breslow JL, Human HDL. Cholesterol levels are determined by apoA-I fractional catabolic rate, which correlates inversely with estimates of HDL particle size. Effects of gender, hepatic and lipoprotein lipases, triglyceride and insulin levels, and body fat distribution. Arterioscler Thromb. 1994;14(5):707–20.CrossRefPubMedGoogle Scholar
  23. 23.
    Wade DP, Knight BL, Soutar AK. Hormonal regulation of low-density lipoprotein (LDL) receptor activity in human hepatoma Hep G2 cells. Insulin increases LDL receptor activity and diminishes its suppression by exogenous LDL. Eur J Biochem. 1988;174(1):213–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58(5):886–99.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gerber PA, Thalhammer C, Schmied C, Spring S, Amann-Vesti B, Spinas GA, et al. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes--a prospective cohort study. PLoS One. 2013;8(8):e72763.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sparks JD, Sparks CE, Adeli K. Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. Arterioscler Thromb Vasc Biol. 2012;32(9):2104–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Baynes C, Henderson AD, Anyaoku V, Richmond W, Hughes CL, Johnston DG, et al. The role of insulin insensitivity and hepatic lipase in the dyslipidaemia of type 2 diabetes. Diabet Med. 1991;8(6):560–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Eckel RH, Yost TJ, Jensen DR. Alterations in lipoprotein lipase in insulin resistance. Int J Obes Relat Metab Disord. 1995;19(Suppl 1):S16–21.PubMedGoogle Scholar
  29. 29.
    Yost TJ, Froyd KK, Jensen DR, Eckel RH. Change in skeletal muscle lipoprotein lipase activity in response to insulin/glucose in non-insulin-dependent diabetes mellitus. Metabolism. 1995;44(6):786–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Goodarzi MO, Guo X, Taylor KD, Quinones MJ, Saad MF, Yang H, et al. Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes. 2004;53(1):214–20.CrossRefPubMedGoogle Scholar
  31. 31.
    Panarotto D, Remillard P, Bouffard L, Maheux P. Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur J Clin Investig. 2002;32(2):84–92.CrossRefGoogle Scholar
  32. 32.
    Verges B, Petit JM, Duvillard L, Dautin G, Florentin E, Galland F, et al. Adiponectin is an important determinant of apoA-I catabolism. Arterioscler Thromb Vasc Biol. 2006;26(6):1364–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Ng TW, Watts GF, Farvid MS, Chan DC, Barrett PH. Adipocytokines and VLDL metabolism: independent regulatory effects of adiponectin, insulin resistance, and fat compartments on VLDL apolipoprotein B-100 kinetics? Diabetes. 2005;54(3):795–802.CrossRefPubMedGoogle Scholar
  34. 34.
    Qiao L, Zou C, van der Westhuyzen DR, Shao J. Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes. 2008;57(7):1824–33.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Medina-Santillan R, Lopez-Velazquez JA, Chavez-Tapia N, Torres-Villalobos G, Uribe M. Mendez-Sanchez N. Diabetes Metab Res Rev: Hepatic manifestations of metabolic syndrome; 2013.Google Scholar
  36. 36.
    Boden G, Chen X. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. J Clin Invest. 1995;96(3):1261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, et al. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest. 1991;88(3):960–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    • Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes. 2001;50(7):1612–7 Thorough mini-review on IR and dyslipidemia. CrossRefPubMedGoogle Scholar
  39. 39.
    Petersen MC, Shulman GI. Roles of diacylglycerols and ceramides in hepatic insulin resistance. Trends Pharmacol Sci. 2017;38(7):649–65.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Petersen MC, Madiraju AK, Gassaway BM, Marcel M, Nasiri AR, Butrico G, et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J Clin Invest. 2016;126(11):4361–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117(3):739–45.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Takayama S, White MF, Kahn CR. Phorbol ester-induced serine phosphorylation of the insulin receptor decreases its tyrosine kinase activity. J Biol Chem. 1988;263(7):3440–7.PubMedGoogle Scholar
  43. 43.
    Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, et al. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes. 2005;54(12):3458–65.CrossRefPubMedGoogle Scholar
  44. 44.
    Musunuru K, Orho-Melander M, Caulfield MP, Li S, Salameh WA, Reitz RE, et al. Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk. Arterioscler Thromb Vasc Biol. 2009;29(11):1975–80.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Baldeweg SE, Golay A, Natali A, Balkau B, Del Prato S, Coppack SW. Insulin resistance, lipid and fatty acid concentrations in 867 healthy Europeans. European Group for the Study of insulin resistance (EGIR). Eur J Clin Investig. 2000;30(1):45–52.CrossRefGoogle Scholar
  46. 46.
    Iwani NA, Jalaludin MY, Zin RM, Fuziah MZ, Hong JY, Abqariyah Y, et al. Triglyceride to HDL-C ratio is associated with insulin resistance in overweight and obese children. Sci Rep. 2017;7:40055.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Giannini C, Santoro N, Caprio S, Kim G, Lartaud D, Shaw M, et al. The triglyceride-to-HDL cholesterol ratio: association with insulin resistance in obese youths of different ethnic backgrounds. Diabetes Care. 2011;34(8):1869–74.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008;294(1):E15–26.CrossRefPubMedGoogle Scholar
  49. 49.
    Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and nutrition examination survey. JAMA. 2002;287(3):356–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Rivellese AA, De Natale C, Di Marino L, Patti L, Iovine C, Coppola S, et al. Exogenous and endogenous postprandial lipid abnormalities in type 2 diabetic patients with optimal blood glucose control and optimal fasting triglyceride levels. J Clin Endocrinol Metab. 2004;89(5):2153–9.CrossRefPubMedGoogle Scholar
  51. 51.
    • Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N Engl J Med. 2017;376(15):1419–29 Registry data reporting dyslipidemia in youth with T1DM. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, et al. Insulin sensitivity and diabetic kidney disease in children and adolescents with type 2 diabetes: an observational analysis of data from the TODAY clinical trial. Am J Kidney Dis. 2018;71(1):65–74.CrossRefPubMedGoogle Scholar
  53. 53.
    Group TS. Rapid rise in hypertension and nephropathy in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care. 2013;36(6):1735–41.CrossRefGoogle Scholar
  54. 54.
    Consortium R. Metabolic contrasts between youth and adults with impaired glucose tolerance or recently diagnosed type 2 diabetes: I. observations using the hyperglycemic clamp. Diabetes Care. 2018;41(8):1696–706.CrossRefGoogle Scholar
  55. 55.
    Amutha A, Pradeepa R, Chella KS, Anjana RM, Unnikrishnan R, Mohan V. Lipid profile in childhood-and youth-onset type 2 diabetes and their association with microvascular complications. J Assoc Physicians India. 2017;65(6):42–7.PubMedGoogle Scholar
  56. 56.
    Paramsothy P, Knopp R, Bertoni AG, Tsai MY, Rue T, Heckbert SR. Combined hyperlipidemia in relation to race/ethnicity, obesity, and insulin resistance in the multi-ethnic study of atherosclerosis. Metabolism. 2009;58(2):212–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    de Knijff P, van den Maagdenberg AM, Stalenhoef AF, Leuven JA, Demacker PN, Kuyt LP, et al. Familial dysbetalipoproteinemia associated with apolipoprotein E3-Leiden in an extended multigeneration pedigree. J Clin Invest. 1991;88(2):643–55.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    •• Nadeau KJ, Regensteiner JG, Bauer TA, Brown MS, Dorosz JL, Hull A, et al. Insulin resistance in adolescents with type 1 diabetes and its relationship to cardiovascular function. J Clin Endocrinol Metab. 2010;95(2):513–21 Translational studies demonstrating reduced insulin sensitivity in youth and adults with T1DM by hyperinsulinemic-euglycemic clamp technique. CrossRefPubMedGoogle Scholar
  59. 59.
    Cree-Green M, Newcomer BR, Brown MS, Baumgartner AD, Bergman B, Drew B, et al. Delayed skeletal muscle mitochondrial ADP recovery in youth with type 1 diabetes relates to muscle insulin resistance. Diabetes. 2015;64(2):383–92.CrossRefPubMedGoogle Scholar
  60. 60.
    •• Schauer IE, Snell-Bergeon JK, Bergman BC, Maahs DM, Kretowski A, Eckel RH, et al. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: The CACTI study. Diabetes. 2011;60(1):306–14 Translational studies demonstrating reduced insulin sensitivity in youth and adults with T1DM by hyperinsulinemic-euglycemic clamp technique. CrossRefPubMedGoogle Scholar
  61. 61.
    Cree-Green M, Stuppy JJ, Thurston J, Bergman BC, Coe GV, Baumgartner AD, et al. Youth with type 1 diabetes have adipose, hepatic and peripheral insulin resistance. J Clin Endocrinol Metab. 2018.Google Scholar
  62. 62.
    Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, et al. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004;109(14):1750–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Bjornstad P, Truong U, Pyle L, Dorosz JL, Cree-Green M, Baumgartner A, et al. Youth with type 1 diabetes have worse strain and less pronounced sex differences in early echocardiographic markers of diabetic cardiomyopathy compared to their normoglycemic peers: a RESistance to InSulin in type 1 ANd type 2 diabetes (RESISTANT) study. J Diabetes Complicat. 2016;30(6):1103–10.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cree-Green M, Maahs DM, Ferland A, Hokanson JE, Wang H, Pyle L, et al. Lipoprotein subfraction cholesterol distribution is more atherogenic in insulin resistant adolescents with type 1 diabetes. Pediatr Diabetes. 2016;17(4):257–65.CrossRefPubMedGoogle Scholar
  65. 65.
    Maahs DM, Hokanson JE, Wang H, Kinney GL, Snell-Bergeon JK, East A, et al. Lipoprotein subfraction cholesterol distribution is proatherogenic in women with type 1 diabetes and insulin resistance. Diabetes. 2010;59(7):1771–9.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Specht BJ, Wadwa RP, Snell-Bergeon JK, Nadeau KJ, Bishop FK, Maahs DM. Estimated insulin sensitivity and cardiovascular disease risk factors in adolescents with and without type 1 diabetes. J Pediatr. 2013;162(2):297–301.CrossRefPubMedGoogle Scholar
  67. 67.
    Bjornstad P, Maahs DM, Duca LM, Pyle L, Rewers M, Johnson RJ, et al. Estimated insulin sensitivity predicts incident micro- and macrovascular complications in adults with type 1 diabetes over 6 years: the coronary artery calcification in type 1 diabetes study. J Diabetes Complicat. 2016;30(4):586–90.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Orchard TJ, Olson JC, Erbey JR, Williams K, Forrest KY, Smithline Kinder L, et al. Insulin resistance-related factors, but not glycemia, predict coronary artery disease in type 1 diabetes: 10-year follow-up data from the Pittsburgh epidemiology of diabetes complications study. Diabetes Care. 2003;26(5):1374–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Fredrickson DS. A physician's guide to hyperlipidemia. Mod Concepts Cardiovasc Dis. 1972;41(7):31–6.PubMedGoogle Scholar
  70. 70.
    Wadwa RP, Kinney GL, Maahs DM, Snell-Bergeon J, Hokanson JE, Garg SK, et al. Awareness and treatment of dyslipidemia in young adults with type 1 diabetes. Diabetes Care. 2005;28(5):1051–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Guy J, Ogden L, Wadwa RP, Hamman RF, Mayer-Davis EJ, Liese AD, et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for diabetes in youth case-control study. Diabetes Care. 2009;32(3):416–20.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schwab KO, Doerfer J, Marg W, Schober E, Holl RW, Initiative DPVS, et al. Characterization of 33 488 children and adolescents with type 1 diabetes based on the gender-specific increase of cardiovascular risk factors. Pediatr Diabetes. 2010;11(5):357–63.CrossRefPubMedGoogle Scholar
  73. 73.
    Schwab KO, Doerfer J, Hecker W, Grulich-Henn J, Wiemann D, Kordonouri O, et al. Spectrum and prevalence of atherogenic risk factors in 27,358 children, adolescents, and young adults with type 1 diabetes: cross-sectional data from the German diabetes documentation and quality management system (DPV). Diabetes Care. 2006;29(2):218–25.CrossRefPubMedGoogle Scholar
  74. 74.
    Wood JR, Miller KM, Maahs DM, Beck RW, Dimeglio LA, Libman IM, et al. Most youth with type 1 diabetes in the T1D exchange clinic registry do not meet American Diabetes Association or International Society for Pediatric and Adolescent Diabetes Clinical Guidelines. Diabetes Care. 2013;36(7):2035–7.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    DuBose SN, Hermann JM, Tamborlane WV, Beck RW, Dost A, DiMeglio LA, et al. Obesity in Youth with Type 1 Diabetes in Germany, Austria, and the United States. J Pediatr. 2015;167(3):627–32 e1–4.CrossRefPubMedGoogle Scholar
  76. 76.
    Maahs DM, Nadeau K, Snell-Bergeon JK, Schauer I, Bergman B, West NA, et al. Association of insulin sensitivity to lipids across the lifespan in people with type 1 diabetes. Diabet Med. 2011;28(2):148–55.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Maahs DM, Ogden LG, Dabelea D, Snell-Bergeon JK, Daniels SR, Hamman RF, et al. Association of glycaemia with lipids in adults with type 1 diabetes: modification by dyslipidaemia medication. Diabetologia. 2010;53(12):2518–25.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Krolewski AS, Kosinski EJ, Warram JH, Leland OS, Busick EJ, Asmal AC, et al. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am J Cardiol. 1987;59(8):750–5.CrossRefPubMedGoogle Scholar
  79. 79.
    Dabelea D, Kinney G, Snell-Bergeon JK, Hokanson JE, Eckel RH, Ehrlich J, et al. Effect of type 1 diabetes on the gender difference in coronary artery calcification: a role for insulin resistance? The coronary artery calcification in type 1 diabetes (CACTI) study. Diabetes. 2003;52(11):2833–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Lind M, Svensson AM, Kosiborod M, Gudbjornsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–82.CrossRefPubMedGoogle Scholar
  81. 81.
    Steineck I, Cederholm J, Eliasson B, Rawshani A, Eeg-Olofsson K, Svensson AM, et al. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ. 2015;350:h3234.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Collins AJ, Foley RN, Herzog C, Chavers B, Gilbertson D, Ishani A, et al. US Renal Data System 2010 Annual Data Report. Am J Kidney Dis. 2011;57(1 Suppl 1):A8 e1-526.CrossRefPubMedGoogle Scholar
  83. 83.
    Libby P, Nathan DM, Abraham K, Brunzell JD, Fradkin JE, Haffner SM, et al. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases working group on cardiovascular complications of type 1 diabetes mellitus. Circulation. 2005;111(25):3489–93.CrossRefPubMedGoogle Scholar
  84. 84.
    Vistisen D, Andersen GS, Hansen CS, Hulman A, Henriksen JE, Bech-Nielsen H, et al. Prediction of first cardiovascular disease event in type 1 diabetes mellitus: the Steno type 1 risk engine. Circulation. 2016;133(11):1058–66.CrossRefPubMedGoogle Scholar
  85. 85.
    Soliman EZ, Backlund JC, Bebu I, Orchard TJ, Zinman B, Lachin JM, et al. Electrocardiographic abnormalities and cardiovascular disease risk in type 1 diabetes: the epidemiology of diabetes interventions and complications (EDIC) study. Diabetes Care. 2017;40(6):793–9.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Feitosa AC, Feitosa-Filho GS, Freitas FR, Wajchenberg BL, Maranhao RC. Lipoprotein metabolism in patients with type 1 diabetes under intensive insulin treatment. Lipids Health Dis. 2013;12:15.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Bjornstad P, Eckel RH, Pyle L, Rewers M, Maahs DM, Snell-Bergeon JK. Relation of combined non-high-density lipoprotein cholesterol and apolipoprotein B with atherosclerosis in adults with type 1 diabetes mellitus. Am J Cardiol. 2015;116(7):1057–62.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bruckert E, Davidoff P, Grimaldi A, Truffert J, Giral P, Doumith R, et al. Increased serum levels of lipoprotein(a) in diabetes mellitus and their reduction with glycemic control. JAMA. 1990;263(1):35–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Kollerits B, Auinger M, Reisig V, Kastenbauer T, Lingenhel A, Irsigler K, et al. Lipoprotein(a) as a predictor of cardiovascular disease in a prospectively followed cohort of patients with type 1 diabetes. Diabetes Care. 2006;29(7):1661–3.CrossRefPubMedGoogle Scholar
  90. 90.
    Burke AP, Kolodgie FD, Zieske A, Fowler DR, Weber DK, Varghese PJ, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol. 2004;24(7):1266–71.CrossRefPubMedGoogle Scholar
  91. 91.
    Mautner SL, Lin F, Roberts WC. Composition of atherosclerotic plaques in the epicardial coronary arteries in juvenile (type I) diabetes mellitus. Am J Cardiol. 1992;70(15):1264–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V, et al. Coronary composition and macrophage infiltration in atherectomy specimens from patients with diabetes mellitus. Circulation. 2000;102(18):2180–4.CrossRefPubMedGoogle Scholar
  93. 93.
    Djaberi R, Schuijf JD, Boersma E, Kroft LJ, Pereira AM, Romijn JA, et al. Differences in atherosclerotic plaque burden and morphology between type 1 and 2 diabetes as assessed by multislice computed tomography. Diabetes Care. 2009;32(8):1507–12.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Spagnoli LG, Mauriello A, Palmieri G, Santeusanio G, Amante A, Taurino M. Relationships between risk factors and morphological patterns of human carotid atherosclerotic plaques. A multivariate discriminant analysis. Atherosclerosis. 1994;108(1):39–60.CrossRefPubMedGoogle Scholar
  95. 95.
    •• Orchard TJ, Costacou T, Kretowski A, Nesto RW. Type 1 diabetes and coronary artery disease. Diabetes Care. 2006;29(11):2528–38 Randomized control trial with metformin in adults with T1DM demonstrating no effect on dyslipidemia. CrossRefPubMedGoogle Scholar
  96. 96.
    van Stee MF, de Graaf AA, Groen AK. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol. 2018;17(1):94.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Srivastava RA, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS. AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res. 2012;53(12):2490–514.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med. 2008;21(4):507–11.PubMedGoogle Scholar
  99. 99.
    Field FJ, Born E, Murthy S, Mathur SN. Gene expression of sterol regulatory element-binding proteins in hamster small intestine. J Lipid Res. 2001;42(1):1–8.PubMedGoogle Scholar
  100. 100.
    Kim SY, Kim HI, Kim TH, Im SS, Park SK, Lee IK, et al. SREBP-1c mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem. 2004;279(29):30823–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Manneras-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.CrossRefPubMedGoogle Scholar
  102. 102.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Sonne DP, Knop FK, Comment on Xu, et al. Effects of Metformin on Metabolite Profiles and LDL Cholesterol in Patients With Type 2 Diabetes. Diabetes Care. 2015;38:1858–67 Diabetes Care. 2015;38(12):e215.CrossRefGoogle Scholar
  104. 104.
    Hofmann AF, Hagey LR. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res. 2014;55(8):1553–95.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Madsen A, Bozickovic O, Bjune JI, Mellgren G, Sagen JV. Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Sci Rep. 2015;5:16430.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Viollet B, Guigas B, Leclerc J, Hebrard S, Lantier L, Mounier R, et al. AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives. Acta Physiol (Oxf). 2009;196(1):81–98.CrossRefGoogle Scholar
  107. 107.
    Petrie JR, Chaturvedi N, Ford I, Brouwers M, Greenlaw N, Tillin T, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597–609.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Anderson JJA, Couper JJ, Giles LC, Leggett CE, Gent R, Coppin B, et al. Effect of metformin on vascular function in children with type 1 diabetes: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 2017;102(12):4448–56.CrossRefPubMedGoogle Scholar
  109. 109.
    • Libman IM, Miller KM, DiMeglio LA, Bethin KE, Katz ML, Shah A, et al. Effect of Metformin Added to Insulin on Glycemic Control Among Overweight/Obese Adolescents With Type 1 Diabetes: A Randomized Clinical Trial. JAMA. 2015;314(21):2241–50 Randomized control trial with metformin in youth with T1DM demonstrating no effect on dyslipidemia. CrossRefPubMedGoogle Scholar
  110. 110.
    Nadeau KJ, Chow K, Alam S, Lindquist K, Campbell S, McFann K, et al. Effects of low dose metformin in adolescents with type I diabetes mellitus: a randomized, double-blinded placebo-controlled study. Pediatr Diabetes. 2015;16(3):196–203.CrossRefPubMedGoogle Scholar
  111. 111.
    Bjornstad P, Schafer M, Truong U, Cree-Green M, Pyle L, Baumgarten A, et al. Metformin improves insulin sensitivity and vascular health in youth with type 1 diabetes: a randomized control trial. Circulation 2018 (in press).Google Scholar
  112. 112.
    •• Group TS, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366(24):2247–56 Randomized control trial with metformin, rosiglitazone, and lifestyle changes in youth with T2DM demonstrating no effect on dyslipidemia. CrossRefGoogle Scholar
  113. 113.
    Kashi Z, Mahrooz A, Kianmehr A, Alizadeh A. The role of metformin response in lipid metabolism in patients with recent-onset type 2 diabetes: HbA1c level as a criterion for designating patients as responders or nonresponders to metformin. PLoS One. 2016;11(3):e0151543.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Xu T, Brandmaier S, Messias AC, Herder C, Draisma HH, Demirkan A, et al. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38(10):1858–67.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatrics, Division of EndocrinologyUniversity of Colorado School of MedicineAuroraUSA
  2. 2.Department of Medicine, Division of Renal Diseases and HypertensionUniversity of Colorado School of MedicineAuroraUSA
  3. 3.Department of Medicine, Division of Endocrinology and Division of CardiologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations