Advertisement

Current Diabetes Reports

, 18:143 | Cite as

Phenotypic and Genetic Characteristics of Lipodystrophy: Pathophysiology, Metabolic Abnormalities, and Comorbidities

  • Baris Akinci
  • Rasimcan Meral
  • Elif Arioglu Oral
Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)
  • 135 Downloads
Part of the following topical collections:
  1. Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Abstract

Purpose of review

This article focuses on recent progress in understanding the genetics of lipodystrophy syndromes, the pathophysiology of severe metabolic abnormalities caused by these syndromes, and causes of severe morbidity and a possible signal of increased mortality associated with lipodystrophy. An updated classification scheme is also presented.

Recent findings

Lipodystrophy encompasses a group of heterogeneous rare diseases characterized by generalized or partial lack of adipose tissue and associated metabolic abnormalities including altered lipid metabolism and insulin resistance. Recent advances in the field have led to the discovery of new genes associated with lipodystrophy and have also improved our understanding of adipose biology, including differentiation, lipid droplet assembly, and metabolism. Several registries have documented the natural history of the disease and the serious comorbidities that patients with lipodystrophy face. There is also evolving evidence for increased mortality rates associated with lipodystrophy.

Summary

Lipodystrophy syndromes represent a challenging cluster of diseases that lead to severe insulin resistance, a myriad of metabolic abnormalities, and serious morbidity. The understanding of these syndromes is evolving in parallel with the identification of novel disease-causing mechanisms.

Keywords

Diabetes Insulin resistance Leptin Lipodystrophy 

Notes

Acknowledgments

We thank our patients who have inspired us for the last two decades. In addition, the clinical research team at UM comprised of Nevin Ajluni, MD, Adam Neidert, MS, Rita Hench, BS, Diana Rus, BS, and Jelal Eldin Abdel Wahab, MD provided invaluable support for the studies.

Compliance with Ethical Standards

Conflict of Interest

Baris Akinci has attended Scientific Advisory Board Meetings organized by Aegerion Pharmaceuticals and has received honoraria as a speaker from AstraZeneca, Lilly, MSD, Novartis, Novo Nordisk, Boehringer-Ingelheim, Servier, and Sanofi-Aventis.

Rasimcan Meral declares that he has no conflict of interest.

Elif Arioglu Oral reports the following conflicts: Grant support: Aegerion Pharmaceuticals, Ionis Pharmaceuticals, Akcea Therapeutics, Gemphire Therapeutics (current), GI Dynamics, and AstraZeneca (the past 2 years). Consultant or advisor: AstraZeneca and BMS (Past), Thera Therapeutics, Regeneron, and Aegerion (current). Drug support: Aegerion Pharmaceuticals, Akcea Therapeutics, and Rhythm Pharmaceuticals. Other support: Boehringer Ingelheim (the past 2 years) and Aegerion Pharmaceuticals (current). She also has two patents: one patent is currently with Aegerion for the use of metreleptin for the treatment of lipodystrophy syndromes (issued and licensed, but she has not received any royalties, they go to the NIH), and the second patent is for the use of metreleptin in the treatment of NASH.

Human and Animal Rights and Informed Consent

This article does not contain any active studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Garg A. Clinical review#: lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96(11):3313–25.  https://doi.org/10.1210/jc.2011-1159.CrossRefGoogle Scholar
  2. 2.
    • Akinci B, Onay H, Demir T, Ozen S, Kayserili H, Akinci G, et al. Natural history of congenital generalized lipodystrophy: a nationwide study from Turkey. J Clin Endocrinol Metab. 2016;101(7):2759–67.  https://doi.org/10.1210/jc.2016-1005 Data on natural history and disease burden of various subtypes of CGL in a metreleptin naïve cohort. CrossRefPubMedGoogle Scholar
  3. 3.
    • Akinci B, Onay H, Demir T, Savas-Erdeve S, Gen R, Simsir IY, et al. Clinical presentations, metabolic abnormalities and end-organ complications in patients with familial partial lipodystrophy. Metabolism. 2017;72:109–19.  https://doi.org/10.1016/j.metabol.2017.04.010 A multicenter prospective observational study on clinical presentations, metabolic abnormalities, and end-organ complications in patients with FPLD. CrossRefPubMedGoogle Scholar
  4. 4.
    Ajluni N, Meral R, Neidert AH, Brady GF, Buras E, McKenna B, et al. Spectrum of disease associated with partial lipodystrophy: lessons from a trial cohort. Clin Endocrinol. 2017;86(5):698–707.  https://doi.org/10.1111/cen.13311.CrossRefGoogle Scholar
  5. 5.
    Garg A, Misra A. Lipodystrophies: rare disorders causing metabolic syndrome. Endocrinol Metab Clin N Am. 2004;33(2):305–31.  https://doi.org/10.1016/j.ecl.2004.03.003.CrossRefGoogle Scholar
  6. 6.
    Robertson DA, Wright R. Cirrhosis in partial lipodystrophy. Postgrad Med J. 1989;65(763):318–20.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Akinci B, Unlu SM, Celik A, Simsir IY, Sen S, Nur B, et al. Renal complications of lipodystrophy: a closer look at the natural history of kidney disease. Clin Endocrinol. 2018.  https://doi.org/10.1111/cen.13732.
  8. 8.
    Vantyghem MC, Pigny P, Maurage CA, Rouaix-Emery N, Stojkovic T, Cuisset JM, et al. Patients with familial partial lipodystrophy of the Dunnigan type due to a LMNA R482W mutation show muscular and cardiac abnormalities. J Clin Endocrinol Metab. 2004;89(11):5337–46.  https://doi.org/10.1210/jc.2003-031658.CrossRefPubMedGoogle Scholar
  9. 9.
    • Lima JG, Nobrega LHC, Lima NN, Dos Santos MCF, Silva PHD, Baracho MFP, et al. Causes of death in patients with Berardinelli-Seip congenital generalized lipodystrophy. PLoS One, This study evaluates the life expectancy and the causes of death of patients with CGL. 2018;13(6):e0199052.  https://doi.org/10.1371/journal.pone.0199052.
  10. 10.
    Chan JL, Oral EA. Clinical classification and treatment of congenital and acquired lipodystrophy. Endocr Pract. 2010;16(2):310–23.  https://doi.org/10.4158/EP09154.RA.CrossRefGoogle Scholar
  11. 11.
    • Brown RJ, Araujo-Vilar D, Cheung PT, Dunger D, Garg A, Jack M, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101(12):4500–11.  https://doi.org/10.1210/jc.2016-2466 A multisociety practice guideline summarizing the diagnosis and management of lipodystrophy syndromes. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Handelsman Y, Oral EA, Bloomgarden ZT, Brown RJ, Chan JL, Einhorn D, et al. The clinical approach to the detection of lipodystrophy—an AACE consensus statement. Endocr Pract. 2013;19(1):107–16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Garg A, Vinaitheerthan M, Weatherall PT, Bowcock AM. Phenotypic heterogeneity in patients with familial partial lipodystrophy (Dunnigan variety) related to the site of missense mutations in lamin a/c gene. J Clin Endocrinol Metab. 2001;86(1):59–65.  https://doi.org/10.1210/jcem.86.1.7121.CrossRefPubMedGoogle Scholar
  14. 14.
    Mory PB, Crispim F, Freire MB, Salles JE, Valerio CM, Godoy-Matos AF, et al. Phenotypic diversity in patients with lipodystrophy associated with LMNA mutations. Eur J Endocrinol. 2012;167(3):423–31.  https://doi.org/10.1530/EJE-12-0268.CrossRefPubMedGoogle Scholar
  15. 15.
    Patni N, Garg A. Congenital generalized lipodystrophies—new insights into metabolic dysfunction. Nat Rev Endocrinol. 2015;11(9):522–34.  https://doi.org/10.1038/nrendo.2015.123.CrossRefPubMedGoogle Scholar
  16. 16.
    Subauste AR, Das AK, Li X, Elliott BG, Evans C, El Azzouny M, et al. Alterations in lipid signaling underlie lipodystrophy secondary to AGPAT2 mutations. Diabetes. 2012;61(11):2922–31.  https://doi.org/10.2337/db12-0004.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    • Agarwal AK, Arioglu E, De Almeida S, Akkoc N, Taylor SI, Bowcock AM, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3.  https://doi.org/10.1038/ng880 The study shows that mutations in AGPAT2 cause congenital generalized lipodystrophy cause CGL by inhibiting triacylglycerol synthesis and storage in adipocytes. CrossRefPubMedGoogle Scholar
  18. 18.
    Simha V, Garg A. Phenotypic heterogeneity in body fat distribution in patients with congenital generalized lipodystrophy caused by mutations in the AGPAT2 or seipin genes. J Clin Endocrinol Metab. 2003;88(11):5433–7.  https://doi.org/10.1210/jc.2003-030835.CrossRefPubMedGoogle Scholar
  19. 19.
    Cartwright BR, Goodman JM. Seipin: from human disease to molecular mechanism. J Lipid Res. 2012;53(6):1042–55.  https://doi.org/10.1194/jlr.R023754.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Magre J, Delepine M, Khallouf E, Gedde-Dahl T Jr, Van Maldergem L, Sobel E, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70.  https://doi.org/10.1038/ng585.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim CA, Delepine M, Boutet E, El Mourabit H, Le Lay S, Meier M, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1129–34.  https://doi.org/10.1210/jc.2007-1328.CrossRefPubMedGoogle Scholar
  22. 22.
    Hayashi YK, Matsuda C, Ogawa M, Goto K, Tominaga K, Mitsuhashi S, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119(9):2623–33.  https://doi.org/10.1172/JCI38660.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shastry S, Delgado MR, Dirik E, Turkmen M, Agarwal AK, Garg A. Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet A. 2010;152A(9):2245–53.  https://doi.org/10.1002/ajmg.a.33578.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Akinci G, Topaloglu H, Akinci B, Onay H, Karadeniz C, Ergul Y, et al. Spectrum of clinical manifestations in two young Turkish patients with congenital generalized lipodystrophy type 4. Eur J Med Genet. 2016;59(6–7):320–4.  https://doi.org/10.1016/j.ejmg.2016.05.001.CrossRefGoogle Scholar
  25. 25.
    Hussain I, Patni N, Ueda M, Sorkina E, Valerio CM, Cochran E, et al. A novel generalized lipodystrophy-associated progeroid syndrome due to recurrent heterozygous LMNA p.T10I mutation. J Clin Endocrinol Metab. 2017.  https://doi.org/10.1210/jc.2017-02078.
  26. 26.
    Patni N, Xing C, Agarwal AK, Garg A. Juvenile-onset generalized lipodystrophy due to a novel heterozygous missense LMNA mutation affecting lamin C. Am J Med Genet A. 2017;173(9):2517–21.  https://doi.org/10.1002/ajmg.a.38341.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dyment DA, Gibson WT, Huang L, Bassyouni H, Hegele RA, Innes AM. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. Eur J Med Genet. 2014;57(9):524–6.  https://doi.org/10.1016/j.ejmg.2014.06.006.CrossRefPubMedGoogle Scholar
  28. 28.
    Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49(1):17–26.  https://doi.org/10.1038/ng.3714.CrossRefPubMedGoogle Scholar
  29. 29.
    Hegele RA, Joy TR, Al-Attar SA, Rutt BK. Thematic review series: adipocyte biology. Lipodystrophies: windows on adipose biology and metabolism. J Lipid Res. 2007;48(7):1433–44.  https://doi.org/10.1194/jlr.R700004-JLR200.CrossRefPubMedGoogle Scholar
  30. 30.
    • Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9(1):109–12 This study links lamin A/C R482Q mutation to FPLD. CrossRefPubMedGoogle Scholar
  31. 31.
    Peters JM, Barnes R, Bennett L, Gitomer WM, Bowcock AM, Garg A. Localization of the gene for familial partial lipodystrophy (Dunnigan variety) to chromosome 1q21-22. Nat Genet. 1998;18(3):292–5.  https://doi.org/10.1038/ng0398-292.CrossRefPubMedGoogle Scholar
  32. 32.
    Barroso I, Gurnell M, Crowley VE, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.  https://doi.org/10.1038/47254.CrossRefPubMedGoogle Scholar
  33. 33.
    Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002;87(1):408–11.  https://doi.org/10.1210/jcem.87.1.8290.CrossRefPubMedGoogle Scholar
  34. 34.
    Gandotra S, Lim K, Girousse A, Saudek V, O'Rahilly S, Savage DB. Human frame shift mutations affecting the carboxyl terminus of perilipin increase lipolysis by failing to sequester the adipose triglyceride lipase (ATGL) coactivator AB-hydrolase-containing 5 (ABHD5). J Biol Chem. 2011;286(40):34998–5006.  https://doi.org/10.1074/jbc.M111.278853.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rubio-Cabezas O, Puri V, Murano I, Saudek V, Semple RK, Dash S, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7.  https://doi.org/10.1002/emmm.200900037.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Farhan SM, Robinson JF, McIntyre AD, Marrosu MG, Ticca AF, Loddo S, et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can J Cardiol. 2014;30(12):1649–54.  https://doi.org/10.1016/j.cjca.2014.09.007.CrossRefPubMedGoogle Scholar
  37. 37.
    Rocha N, Bulger DA, Frontini A, Titheradge H, Gribsholt SB, Knox R, et al. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression. elife. 2017;6.  https://doi.org/10.7554/eLife.23813.
  38. 38.
    George S, Rochford JJ, Wolfrum C, Gray SL, Schinner S, Wilson JC, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304(5675):1325–8.  https://doi.org/10.1126/science.1096706.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Garg A, Sankella S, Xing C, Agarwal AK. Whole-exome sequencing identifies ADRA2A mutation in atypical familial partial lipodystrophy. JCI Insight. 2016;1(9).  https://doi.org/10.1172/jci.insight.86870.
  40. 40.
    Cao H, Alston L, Ruschman J, Hegele RA. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3.  https://doi.org/10.1186/1476-511X-7-3.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Payne F, Lim K, Girousse A, Brown RJ, Kory N, Robbins A, et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci U S A. 2014;111(24):8901–6.  https://doi.org/10.1073/pnas.1408523111.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Simha V, Garg A. Body fat distribution and metabolic derangements in patients with familial partial lipodystrophy associated with mandibuloacral dysplasia. J Clin Endocrinol Metab. 2002;87(2):776–85.  https://doi.org/10.1210/jcem.87.2.8258.CrossRefPubMedGoogle Scholar
  43. 43.
    Novelli G, Muchir A, Sangiuolo F, Helbling-Leclerc A, D'Apice MR, Massart C, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet. 2002;71(2):426–31.  https://doi.org/10.1086/341908.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Agarwal AK, Fryns JP, Auchus RJ, Garg A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12(16):1995–2001.CrossRefPubMedGoogle Scholar
  45. 45.
    Weedon MN, Ellard S, Prindle MJ, Caswell R, Lango Allen H, Oram R, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet. 2013;45(8):947–50.  https://doi.org/10.1038/ng.2670.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Pelosini C, Martinelli S, Ceccarini G, Magno S, Barone I, Basolo A, et al. Identification of a novel mutation in the polymerase delta 1 (POLD1) gene in a lipodystrophic patient affected by mandibular hypoplasia, deafness, progeroid features (MDPL) syndrome. Metabolism. 2014;63(11):1385–9.  https://doi.org/10.1016/j.metabol.2014.07.010.CrossRefPubMedGoogle Scholar
  47. 47.
    Donadille B, D'Anella P, Auclair M, Uhrhammer N, Sorel M, Grigorescu R, et al. Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet J Rare Dis. 2013;8:106.  https://doi.org/10.1186/1750-1172-8-106.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Graul-Neumann LM, Kienitz T, Robinson PN, Baasanjav S, Karow B, Gillessen-Kaesbach G, et al. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3′ terminus of the FBN1-gene. Am J Med Genet A. 2010;152A(11):2749–55.  https://doi.org/10.1002/ajmg.a.33690.CrossRefPubMedGoogle Scholar
  49. 49.
    Takenouchi T, Hida M, Sakamoto Y, Torii C, Kosaki R, Takahashi T et al. Severe congenital lipodystrophy and a progeroid appearance: mutation in the penultimate exon of FBN1 causing a recognizable phenotype. Am J Med Genet A 2013;161A(12):3057–3062. doi: https://doi.org/10.1002/ajmg.a.36157.
  50. 50.
    Cabanillas R, Cadinanos J, Villameytide JA, Perez M, Longo J, Richard JM, et al. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A. 2011;155A(11):2617–25.  https://doi.org/10.1002/ajmg.a.34249.CrossRefPubMedGoogle Scholar
  51. 51.
    Masotti A, Uva P, Davis-Keppen L, Basel-Vanagaite L, Cohen L, Pisaneschi E, et al. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Am J Hum Genet. 2015;96(2):295–300.  https://doi.org/10.1016/j.ajhg.2014.12.011.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lessel D, Vaz B, Halder S, Lockhart PJ, Marinovic-Terzic I, Lopez-Mosqueda J, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–44.  https://doi.org/10.1038/ng.3103.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chudasama KK, Winnay J, Johansson S, Claudi T, Konig R, Haldorsen I, et al. SHORT syndrome with partial lipodystrophy due to impaired phosphatidylinositol 3 kinase signaling. Am J Hum Genet. 2013;93(1):150–7.  https://doi.org/10.1016/j.ajhg.2013.05.023.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Thauvin-Robinet C, Auclair M, Duplomb L, Caron-Debarle M, Avila M, St-Onge J, et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet. 2013;93(1):141–9.  https://doi.org/10.1016/j.ajhg.2013.05.019.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Agarwal AK, Xing C, DeMartino GN, Mizrachi D, Hernandez MD, Sousa AB, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87(6):866–72.  https://doi.org/10.1016/j.ajhg.2010.10.031.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kitamura A, Maekawa Y, Uehara H, Izumi K, Kawachi I, Nishizawa M, et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest. 2011;121(10):4150–60.  https://doi.org/10.1172/JCI58414.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liu Y, Ramot Y, Torrelo A, Paller AS, Si N, Babay S, et al. Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 2012;64(3):895–907.  https://doi.org/10.1002/art.33368.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kluk J, Rustin M, Brogan PA, Omoyinmi E, Rowczenio DM, Willcocks LC, et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome: a report of a novel mutation and review of the literature. Br J Dermatol. 2014;170(1):215–7.  https://doi.org/10.1111/bjd.12600.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bourne SC, Townsend KN, Shyr C, Matthews A, Lear SA, Attariwala R, et al. Optic atrophy, cataracts, lipodystrophy/lipoatrophy, and peripheral neuropathy caused by a de novo OPA3 mutation. Cold Spring Harb Mol Case Stud. 2017;3(1):a001156.  https://doi.org/10.1101/mcs.a001156.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pinheiro M, Freire-Maia N, Chautard-Freire-Maia EA, Araujo LM, Liberman B. AREDYLD: a syndrome combining an acrorenal field defect, ectodermal dysplasia, lipoatrophic diabetes, and other manifestations. Am J Med Genet. 1983;16(1):29–33.  https://doi.org/10.1002/ajmg.1320160106.CrossRefPubMedGoogle Scholar
  61. 61.
    Misra A, Garg A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore). 2003;82(2):129–46.CrossRefGoogle Scholar
  62. 62.
    Sorkina E, Frolova E, Rusinova D, Polyakova S, Roslavtseva E, Vasilyev E, et al. Progressive generalized lipodystrophy as a manifestation of autoimmune Polyglandular syndrome type 1. J Clin Endocrinol Metab. 2016;101(4):1344–7.  https://doi.org/10.1210/jc.2015-3722.CrossRefPubMedGoogle Scholar
  63. 63.
    Lockemer HE, Sumpter KM, Cope-Yokoyama S, Garg A. A novel paraneoplastic syndrome with acquired lipodystrophy and chronic inflammatory demyelinating polyneuropathy in an adolescent male with craniopharyngioma. J Pediatr Endocrinol Metab. 2018;31(4):479–83.  https://doi.org/10.1515/jpem-2017-0222.CrossRefPubMedGoogle Scholar
  64. 64.
    Patni N, Alves C, von Schnurbein J, Wabitsch M, Tannin G, Rakheja D, et al. A novel syndrome of generalized lipodystrophy associated with pilocytic astrocytoma. J Clin Endocrinol Metab. 2015;100(10):3603–6.  https://doi.org/10.1210/jc.2015-2476.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83(1):18–34.  https://doi.org/10.1097/01.md.0000111061.69212.59.CrossRefGoogle Scholar
  66. 66.
    Akinci B, Koseoglu FD, Onay H, Yavuz S, Altay C, Simsir IY, et al. Acquired partial lipodystrophy is associated with increased risk for developing metabolic abnormalities. Metabolism. 2015;64(9):1086–95.  https://doi.org/10.1016/j.metabol.2015.06.004.CrossRefPubMedGoogle Scholar
  67. 67.
    Adachi M, Asakura Y, Muroya K, Goto H, Kigasawa H. Abnormal adipose tissue distribution with unfavorable metabolic profile in five children following hematopoietic stem cell transplantation: a new etiology for acquired partial lipodystrophy. Clin Pediatr Endocrinol. 2013;22(4):53–64.  https://doi.org/10.1292/cpe.22.53.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ceccarini G, Ferrari F, Santini F. Acquired partial lipodystrophy after bone marrow transplant during childhood: a novel syndrome to be added to the disease classification list. J Endocrinol Investig. 2017;40(11):1273–4.  https://doi.org/10.1007/s40618-017-0731-x.CrossRefGoogle Scholar
  69. 69.
    Garg A, Wilson R, Barnes R, Arioglu E, Zaidi Z, Gurakan F, et al. A gene for congenital generalized lipodystrophy maps to human chromosome 9q34. J Clin Endocrinol Metab. 1999;84(9):3390–4.  https://doi.org/10.1210/jcem.84.9.6103.CrossRefPubMedGoogle Scholar
  70. 70.
    Cartwright BR, Binns DD, Hilton CL, Han S, Gao Q, Goodman JM. Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology. Mol Biol Cell. 2015;26(4):726–39.  https://doi.org/10.1091/mbc.E14-08-1303.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Yurekli B, Ozdemir Kutbay N, Altay C, Unlu SM, Sen S, Onay H et al. A new type of familial partial lipodystrophy: distinctive fat distribution and proteinuria. Endocr Res. 2018:1–6.  https://doi.org/10.1080/07435800.2018.1470188.
  72. 72.
    Iwanishi M, Ito-Kobayashi J, Washiyama M, Kusakabe T, Ebihara K. Clinical characteristics, phenotype of lipodystrophy and a genetic analysis of six diabetic Japanese women with familial partial lipodystrophy in a diabetic outpatient clinic. Intern Med. 2018.  https://doi.org/10.2169/internalmedicine.0225-17.
  73. 73.
    Sleilati GG, Leff T, Bonnett JW, Hegele RA. Efficacy and safety of pioglitazone in treatment of a patient with an atypical partial lipodystrophy syndrome. Endocr Pract. 2007;13(6):656–61.  https://doi.org/10.4158/EP.13.6.656.CrossRefGoogle Scholar
  74. 74.
    Iwanishi M, Ebihara K, Kusakabe T, Harada S, Ito-Kobayashi J, Tsuji A, et al. Premature atherosclerosis in a Japanese diabetic patient with atypical familial partial lipodystrophy and hypertriglyceridemia. Intern Med. 2012;51(18):2573–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Iwanishi M, Ebihara K, Kusakabe T, Washiyama M, Ito-Kobayashi J, Nakamura F, et al. Primary intestinal follicular lymphoma and premature atherosclerosis in a Japanese diabetic patient with atypical familial partial lipodystrophy. Intern Med. 2014;53(8):851–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Rocha N, Payne F, Huang-Doran I, Sleigh A, Fawcett K, Adams C, et al. The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion. Sci Rep. 2017;7(1):17593.  https://doi.org/10.1038/s41598-017-17746-8.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Haque WA, Oral EA, Dietz K, Bowcock AM, Agarwal AK, Garg A. Risk factors for diabetes in familial partial lipodystrophy, Dunnigan variety. Diabetes Care. 2003;26(5):1350–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Jeru I, Vatier C, Araujo-Vilar D, Vigouroux C, Lascols O. Clinical utility gene card for: familial partial lipodystrophy. Eur J Hum Genet. 2017;25(2).  https://doi.org/10.1038/ejhg.2016.102.
  79. 79.
    Joy T, Kennedy BA, Al-Attar S, Rutt BK, Hegele RA. Predicting abdominal adipose tissue among women with familial partial lipodystrophy. Metabolism. 2009;58(6):828–34.  https://doi.org/10.1016/j.metabol.2009.03.001.CrossRefPubMedGoogle Scholar
  80. 80.
    Chan D, McIntyre AD, Hegele RA, Don-Wauchope AC. Familial partial lipodystrophy presenting as metabolic syndrome. J Clin Lipidol. 2016;10(6):1488–91.  https://doi.org/10.1016/j.jacl.2016.08.012.CrossRefPubMedGoogle Scholar
  81. 81.
    Sasaki H, Yanagi K, Ugi S, Kobayashi K, Ohkubo K, Tajiri Y, et al. Definitive diagnosis of mandibular hypoplasia, deafness, progeroid features and lipodystrophy (MDPL) syndrome caused by a recurrent de novo mutation in the POLD1 gene. Endocr J. 2018;65(2):227–38.  https://doi.org/10.1507/endocrj.EJ17-0287.CrossRefPubMedGoogle Scholar
  82. 82.
    Akinci B, Sahinoz, M, Oral EA. Lipodystrophy syndromes: presentation and treatment. In: De Groot LJ CG, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.;2018.
  83. 83.
    Sorkina E, Frolova E, Rusinova D, Polyakova S, Roslavtseva E, Vasilyev E, et al. Progressive generalized lipodystrophy as a manifestation of autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab. 2016;101(4):1344–7.  https://doi.org/10.1210/jc.2015-3722.CrossRefPubMedGoogle Scholar
  84. 84.
    Pope E, Janson A, Khambalia A, Feldman B. Childhood acquired lipodystrophy: a retrospective study. J Am Acad Dermatol. 2006;55(6):947–50.  https://doi.org/10.1016/j.jaad.2006.05.005.CrossRefPubMedGoogle Scholar
  85. 85.
    Adachi M, Oto Y, Muroya K, Hanakawa J, Asakura Y, Goto H. Partial lipodystrophy in patients who have undergone hematopoietic stem cell transplantation during childhood: an institutional cross-sectional survey. Clin Pediatr Endocrinol. 2017;26(2):99–108.  https://doi.org/10.1297/cpe.26.99.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kimura L, Alvarez G, Li N, Pawlikowska-Haddal A, Moore TB, Casillas J, et al. Temporary resolution of insulin requirement in acquired partial lipodystrophy associated with chronic graft-versus-host disease. Pediatr Blood Cancer. 2017;64(7).  https://doi.org/10.1002/pbc.26427.
  87. 87.
    Halpern B, Nery M, PMAA. First case report of acquired generalized lipodystrophy associated with common variable immunodeficiency. J Clin Endocrinol Metab. 2018.  https://doi.org/10.1210/jc.2018-00494.
  88. 88.
    Savage DB, Semple RK, Clatworthy MR, Lyons PA, Morgan BP, Cochran EK, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6.  https://doi.org/10.1210/jc.2008-1703.CrossRefPubMedGoogle Scholar
  89. 89.
    Wong EK, Anderson HE, Herbert AP, Challis RC, Brown P, Reis GS, et al. Characterization of a factor H mutation that perturbs the alternative pathway of complement in a family with membranoproliferative GN. J Am Soc Nephrol. 2014;25(11):2425–33.  https://doi.org/10.1681/ASN.2013070732.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wu X, Hutson I, Akk AM, Mascharak S, Pham CTN, Hourcade DE, et al. Contribution of adipose-derived factor D/adipsin to complement alternative pathway activation: lessons from lipodystrophy. J Immunol. 2018;200(8):2786–97.  https://doi.org/10.4049/jimmunol.1701668.CrossRefPubMedGoogle Scholar
  91. 91.
    Eren E, Ozkan TB, Cakir ED, Saglam H, Tarim O. Acquired generalized lipodystrophy associated with autoimmune hepatitis and low serum C4 level. J Clin Res Pediatr Endocrinol. 2010;2(1):39–42.  https://doi.org/10.4274/jcrpe.v2i1.39.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Chiquette E, Oral EA, Garg A, Araujo-Vilar D, Dhankhar P. Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges. Diabetes Metab Syndr Obes. 2017;10:375–83.  https://doi.org/10.2147/DMSO.S130810.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    de Azevedo Medeiros LB, Candido Dantas VK, Craveiro Sarmento AS, Agnez-Lima LF, Meireles AL, Xavier Nobre TT, et al. High prevalence of Berardinelli-Seip congenital lipodystrophy in Rio Grande do Norte State, Northeast Brazil. Diabetol Metab Syndr. 2017;9:80.  https://doi.org/10.1186/s13098-017-0280-7.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Haque WA, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395.  https://doi.org/10.1210/jcem.87.5.8624.CrossRefPubMedGoogle Scholar
  95. 95.
    Girousse A, Virtue S, Hart D, Vidal-Puig A, Murgatroyd PR, Mouisel E, et al. Surplus fat rapidly increases fat oxidation and insulin resistance in lipodystrophic mice. Mol Metab. 2018;13:24–9.  https://doi.org/10.1016/j.molmet.2018.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Poitout V. Glucolipotoxicity of the pancreatic beta-cell: myth or reality? Biochem Soc Trans. 2008;36(Pt 5):901–4.  https://doi.org/10.1042/BST0360901.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Joy TR, Hegele RA. Prevalence of reproductive abnormalities among women with familial partial lipodystrophy. Endocr Pract. 2008;14(9):1126–32.  https://doi.org/10.4158/EP.14.9.1126.CrossRefPubMedGoogle Scholar
  98. 98.
    Oral EA, Ruiz E, Andewelt A, Sebring N, Wagner AJ, Depaoli AM, et al. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J Clin Endocrinol Metab. 2002;87(7):3110–7.  https://doi.org/10.1210/jcem.87.7.8591.CrossRefGoogle Scholar
  99. 99.
    Ajluni N, Dar M, Xu J, Neidert AH, Oral EA. Efficacy and safety of metreleptin in patients with partial lipodystrophy: lessons from an expanded access program. J Diabetes Metab. 2016;7(3).  https://doi.org/10.4172/2155-6156.1000659.
  100. 100.
    Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab. 2005;90(5):2537–44.  https://doi.org/10.1210/jc.2004-2232.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Caron A, Lee S, Elmquist JK, Gautron L. Leptin and brain-adipose crosstalks. Nat Rev Neurosci. 2018;19(3):153–65.  https://doi.org/10.1038/nrn.2018.7.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Vaisse C, Halaas JL, Horvath CM, Darnell JE Jr, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet. 1996;14(1):95–7.  https://doi.org/10.1038/ng0996-95.CrossRefPubMedGoogle Scholar
  103. 103.
    Ghilardi N, Ziegler S, Wiestner A, Stoffel R, Heim MH, Skoda RC. Defective STAT signaling by the leptin receptor in diabetic mice. Proc Natl Acad Sci U S A. 1996;93(13):6231–5.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Muoio DM, Lynis DG. Peripheral metabolic actions of leptin. Best Pract Res Clin Endocrinol Metab. 2002;16(4):653–66.CrossRefPubMedGoogle Scholar
  105. 105.
    Cawthorne MA, Morton NM, Pallett AL, Liu YL, Emilsson V. Peripheral metabolic actions of leptin. Proc Nutr Soc. 1998;57(3):449–53.CrossRefPubMedGoogle Scholar
  106. 106.
    D'Souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052–65.  https://doi.org/10.1016/j.molmet.2017.04.011.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Triantafyllou GA, Paschou SA, Mantzoros CS. Leptin and hormones: energy homeostasis. Endocrinol Metab Clin N Am. 2016;45(3):633–45.  https://doi.org/10.1016/j.ecl.2016.04.012.CrossRefGoogle Scholar
  108. 108.
    Meek TH, Morton GJ. The role of leptin in diabetes: metabolic effects. Diabetologia. 2016;59(5):928–32.  https://doi.org/10.1007/s00125-016-3898-3.CrossRefPubMedGoogle Scholar
  109. 109.
    Lee Y, Ravazzola M, Park BH, Bashmakov YK, Orci L, Unger RH. Metabolic mechanisms of failure of intraportally transplanted pancreatic beta-cells in rats: role of lipotoxicity and prevention by leptin. Diabetes. 2007;56(9):2295–301.  https://doi.org/10.2337/db07-0460.CrossRefPubMedGoogle Scholar
  110. 110.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.  https://doi.org/10.1056/NEJM199602013340503.CrossRefPubMedGoogle Scholar
  111. 111.
    Herbst KL, Tannock LR, Deeb SS, Purnell JQ, Brunzell JD, Chait A. Kobberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care. 2003;26(6):1819–24.CrossRefPubMedGoogle Scholar
  112. 112.
    Musso C, Cochran E, Moran SA, Skarulis MC, Oral EA, Taylor S, et al. Clinical course of genetic diseases of the insulin receptor (type A and Rabson-Mendenhall syndromes): a 30-year prospective. Medicine (Baltimore). 2004;83(4):209–22.CrossRefGoogle Scholar
  113. 113.
    Oral EA, Chan JL. Rationale for leptin-replacement therapy for severe lipodystrophy. Endocr Pract. 2010;16(2):324–33.  https://doi.org/10.4158/EP09155.RA.CrossRefPubMedGoogle Scholar
  114. 114.
    Melvin A, O'Rahilly S, Savage DB. Genetic syndromes of severe insulin resistance. Curr Opin Genet Dev. 2018;50:60–7.  https://doi.org/10.1016/j.gde.2018.02.002.CrossRefPubMedGoogle Scholar
  115. 115.
    McDuffie JR, Riggs PA, Calis KA, Freedman RJ, Oral EA, DePaoli AM, et al. Effects of exogenous leptin on satiety and satiation in patients with lipodystrophy and leptin insufficiency. J Clin Endocrinol Metab. 2004;89(9):4258–63.  https://doi.org/10.1210/jc.2003-031868.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Bluher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism. 2015;64(1):131–45.  https://doi.org/10.1016/j.metabol.2014.10.016.CrossRefPubMedGoogle Scholar
  117. 117.
    Savage DB. Mouse models of inherited lipodystrophy. Dis Model Mech. 2009;2(11–12):554–62.  https://doi.org/10.1242/dmm.002907.CrossRefPubMedGoogle Scholar
  118. 118.
    Moitra J, Mason MM, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, et al. Life without white fat: a transgenic mouse. Genes Dev. 1998;12(20):3168–81.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Reitman ML, Gavrilova O. A-ZIP/F-1 mice lacking white fat: a model for understanding lipoatrophic diabetes. Int J Obes Relat Metab Disord. 2000;24(Suppl 4):S11–4.CrossRefPubMedGoogle Scholar
  120. 120.
    •• Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8.  https://doi.org/10.1172/JCI7901 The study shows that metabolic aspects of lipodystrophic mice can be reversed by adipose tissue implantation. CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Zhang Z, Turer E, Li X, Zhan X, Choi M, Tang M, et al. Insulin resistance and diabetes caused by genetic or diet-induced KBTBD2 deficiency in mice. Proc Natl Acad Sci U S A. 2016;113(42):E6418–E26.  https://doi.org/10.1073/pnas.1614467113.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Rodeheffer MS, Birsoy K, Friedman JM. Identification of white adipocyte progenitor cells in vivo. Cell. 2008;135(2):240–9.  https://doi.org/10.1016/j.cell.2008.09.036.CrossRefPubMedGoogle Scholar
  123. 123.
    Colombo C, Cutson JJ, Yamauchi T, Vinson C, Kadowaki T, Gavrilova O, et al. Transplantation of adipose tissue lacking leptin is unable to reverse the metabolic abnormalities associated with lipoatrophy. Diabetes. 2002;51(9):2727–33.CrossRefPubMedGoogle Scholar
  124. 124.
    •• Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature. 1999;401(6748):73–6.  https://doi.org/10.1038/43448 This study demonstrates that insulin resistance can be overcome by the administration of recombinant leptin in lipodystrophic mice. CrossRefGoogle Scholar
  125. 125.
    Fernandez-Galilea M, Tapia P, Cautivo K, Morselli E, Cortes VA. AGPAT2 deficiency impairs adipogenic differentiation in primary cultured preadipocytes in a non-autophagy or apoptosis dependent mechanism. Biochem Biophys Res Commun. 2015;467(1):39–45.  https://doi.org/10.1016/j.bbrc.2015.09.128.CrossRefPubMedGoogle Scholar
  126. 126.
    Pelosi M, Testet E, Le Lay S, Dugail I, Tang X, Mabilleau G, et al. Normal human adipose tissue functions and differentiation in patients with biallelic LPIN1 inactivating mutations. J Lipid Res. 2017;58(12):2348–64.  https://doi.org/10.1194/jlr.P075440.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Alexaki A, Clarke BA, Gavrilova O, Ma Y, Zhu H, Ma X, et al. De novo sphingolipid biosynthesis is required for adipocyte survival and metabolic homeostasis. J Biol Chem. 2017;292(9):3929–39.  https://doi.org/10.1074/jbc.M116.756460.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Perepelina K, Dmitrieva R, Ignatieva E, Borodkina A, Kostareva A, Malashicheva A. Lamin A/C mutation associated with lipodystrophy influences adipogenic differentiation of stem cells through interaction with Notch signaling. Biochem Cell Biol. 2018;96(3):342–8.  https://doi.org/10.1139/bcb-2017-0210.CrossRefPubMedGoogle Scholar
  129. 129.
    Oldenburg A, Briand N, Sorensen AL, Cahyani I, Shah A, Moskaug JO, et al. A lipodystrophy-causing lamin A mutant alters conformation and epigenetic regulation of the anti-adipogenic MIR335 locus. J Cell Biol. 2017;216(9):2731–43.  https://doi.org/10.1083/jcb.201701043.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Elzeneini E, Wickstrom SA. Lipodystrophic laminopathy: lamin A mutation relaxes chromatin architecture to impair adipogenesis. J Cell Biol. 2017;216(9):2607–10.  https://doi.org/10.1083/jcb.201707090.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Friesen M, Cowan CA. FPLD2 LMNA mutation R482W dysregulates iPSC-derived adipocyte function and lipid metabolism. Biochem Biophys Res Commun. 2018;495(1):254–60.  https://doi.org/10.1016/j.bbrc.2017.11.008.CrossRefPubMedGoogle Scholar
  132. 132.
    Captur G, Arbustini E, Bonne G, Syrris P, Mills K, Wahbi K, et al. Lamin and the heart. Heart. 2018;104(6):468–79.  https://doi.org/10.1136/heartjnl-2017-312338.CrossRefPubMedGoogle Scholar
  133. 133.
    Mestroni L, Taylor MR. Lamin A/C gene and the heart: how genetics may impact clinical care. J Am Coll Cardiol. 2008;52(15):1261–2.  https://doi.org/10.1016/j.jacc.2008.07.021.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Carboni N, Mateddu A, Marrosu G, Cocco E, Marrosu MG. Genetic and clinical characteristics of skeletal and cardiac muscle in patients with lamin A/C gene mutations. Muscle Nerve. 2013;48(2):161–70.  https://doi.org/10.1002/mus.23827.CrossRefPubMedGoogle Scholar
  135. 135.
    Mercuri E, Brown SC, Nihoyannopoulos P, Poulton J, Kinali M, Richard P, et al. Extreme variability of skeletal and cardiac muscle involvement in patients with mutations in exon 11 of the lamin A/C gene. Muscle Nerve. 2005;31(5):602–9.  https://doi.org/10.1002/mus.20293.CrossRefPubMedGoogle Scholar
  136. 136.
    Frock RL, Kudlow BA, Evans AM, Jameson SA, Hauschka SD, Kennedy BK. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 2006;20(4):486–500.  https://doi.org/10.1101/gad.1364906.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Hoorntje ET, Bollen IA, Barge-Schaapveld DQ, van Tienen FH, Te Meerman GJ, Jansweijer JA, et al. Lamin A/C-related cardiac disease: late onset with a variable and mild phenotype in a large cohort of patients with the lamin A/C p.(Arg331Gln) founder mutation. Circ Cardiovasc Genet. 2017;10(4).  https://doi.org/10.1161/CIRCGENETICS.116.001631.
  138. 138.
    Guillin-Amarelle C, Fernandez-Pombo A, Sanchez-Iglesias S, Araujo-Vilar D. Lipodystrophic laminopathies: diagnostic clues. Nucleus. 2018;9(1):249–60.  https://doi.org/10.1080/19491034.2018.1454167.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Akinci B, Unlu SM, Celik A, Simsir IY, Sen S, Nur B, et al. Renal complications of lipodystrophy: a closer look at the natural history of kidney disease. Clin Endocrinol. 2018;89(1):65–75.  https://doi.org/10.1111/cen.13732.CrossRefGoogle Scholar
  140. 140.
    Pongsakul N, Vinaiphat A, Chanchaem P, Fong-Ngern K, Thongboonkerd V. Lamin A/C in renal tubular cells is important for tissue repair, cell proliferation, and calcium oxalate crystal adhesion, and is associated with potential crystal receptors. FASEB J. 2016;30(10):3368–77.  https://doi.org/10.1096/fj.201600426R.CrossRefPubMedGoogle Scholar
  141. 141.
    Thong KM, Xu Y, Cook J, Takou A, Wagner B, Kawar B, et al. Cosegregation of focal segmental glomerulosclerosis in a family with familial partial lipodystrophy due to a mutation in LMNA. Nephron Clin Pract. 2013;124(1–2):31–7.  https://doi.org/10.1159/000354716.CrossRefPubMedGoogle Scholar
  142. 142.
    Ito D, Suzuki N. Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Ann Neurol. 2007;61(3):237–50.  https://doi.org/10.1002/ana.21070.CrossRefPubMedGoogle Scholar
  143. 143.
    Guillen-Navarro E, Sanchez-Iglesias S, Domingo-Jimenez R, Victoria B, Ruiz-Riquelme A, Rabano A, et al. A new seipin-associated neurodegenerative syndrome. J Med Genet. 2013;50(6):401–9.  https://doi.org/10.1136/jmedgenet-2013-101525.CrossRefPubMedGoogle Scholar
  144. 144.
    Lima JG, Nobrega LHC, Lima NN, Dos Santos MCF, Baracho MFP, Winzenrieth R, et al. Normal bone density and trabecular bone score, but high serum sclerostin in congenital generalized lipodystrophy. Bone. 2017;101:21–5.  https://doi.org/10.1016/j.bone.2017.03.053.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Fernandez-Pombo A, Ossandon-Otero JA, Guillin-Amarelle C, Sanchez-Iglesias S, Castro AI, Gonzalez-Mendez B, et al. Bone mineral density in familial partial lipodystrophy. Clin Endocrinol. 2018;88(1):44–50.  https://doi.org/10.1111/cen.13504.CrossRefGoogle Scholar
  146. 146.
    Fleckenstein JL, Garg A, Bonte FJ, Vuitch MF, Peshock RM. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.CrossRefGoogle Scholar
  147. 147.
    Vouillarmet J, Laville M. A case of familial partial lipodystrophy: from clinical phenotype to genetics. Can J Diabetes. 2016;40(5):376–8.  https://doi.org/10.1016/j.jcjd.2015.12.007.CrossRefPubMedGoogle Scholar
  148. 148.
    Simha V, Agarwal AK, Oral EA, Fryns JP, Garg A. Genetic and phenotypic heterogeneity in patients with mandibuloacral dysplasia-associated lipodystrophy. J Clin Endocrinol Metab. 2003;88(6):2821–4.  https://doi.org/10.1210/jc.2002-021575.CrossRefPubMedGoogle Scholar
  149. 149.
    Young SG, Jung HJ, Lee JM, Fong LG. Nuclear lamins and neurobiology. Mol Cell Biol. 2014;34(15):2776–85.  https://doi.org/10.1128/MCB.00486-14.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Miehle K, Ebert T, Kralisch S, Hoffmann A, Kratzsch J, Schlogl H, et al. Progranulin is increased in human and murine lipodystrophy. Diabetes Res Clin Pract. 2016;120:1–7.  https://doi.org/10.1016/j.diabres.2016.07.017.CrossRefPubMedGoogle Scholar
  151. 151.
    Hegele RA, Kraw ME, Ban MR, Miskie BA, Huff MW, Cao H. Elevated serum C-reactive protein and free fatty acids among nondiabetic carriers of missense mutations in the gene encoding lamin A/C (LMNA) with partial lipodystrophy. Arterioscler Thromb Vasc Biol. 2003;23(1):111–6.CrossRefPubMedGoogle Scholar
  152. 152.
    Akinci G, Topaloglu H, Demir T, Danyeli AE, Talim B, Keskin FE, et al. Clinical spectra of neuromuscular manifestations in patients with lipodystrophy: a multicenter study. Neuromuscul Disord. 2017;27(10):923–30.  https://doi.org/10.1016/j.nmd.2017.05.015.CrossRefPubMedGoogle Scholar
  153. 153.
    Miehle K, Ebert T, Kralisch S, Hoffmann A, Kratzsch J, Schlogl H, et al. Serum concentrations of fetuin B in lipodystrophic patients. Cytokine. 2018;106:165–8.  https://doi.org/10.1016/j.cyto.2017.10.028.CrossRefPubMedGoogle Scholar
  154. 154.
    Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest. 2002;110(8):1093–103.  https://doi.org/10.1172/JCI15693.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Oral EA, Javor ED, Ding L, Uzel G, Cochran EK, Young JR, et al. Leptin replacement therapy modulates circulating lymphocyte subsets and cytokine responsiveness in severe lipodystrophy. J Clin Endocrinol Metab. 2006;91(2):621–8.  https://doi.org/10.1210/jc.2005-1220.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Baris Akinci
    • 1
    • 2
  • Rasimcan Meral
    • 1
  • Elif Arioglu Oral
    • 1
  1. 1.Brehm Center for Diabetes Research, Division of Metabolism, Endocrinology & Diabetes, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Division of Endocrinology, Department of Internal MedicineDokuz Eylul UniversityIzmirTurkey

Personalised recommendations