Advertisement

Current Diabetes Reports

, 18:72 | Cite as

Medicinal Plants with Multiple Effects on Diabetes Mellitus and Its Complications: a Systematic Review

  • Zeinab Nazarian-Samani
  • Robert D. E. Sewell
  • Zahra Lorigooini
  • Mahmoud Rafieian-Kopaei
Pharmacologic Treatment of Type 2 Diabetes (HE Lebovitz and G Bahtiyar, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pharmacologic Treatment of Type 2 Diabetes

Abstract

Purpose of Review

This systematic review describes evidence concerning medicinal plants that, in addition to exerting hypoglycemic effects, decrease accompanying complications such as nephropathy, neuropathy, retinopathy, hypertension, and/or hyperlipidemia among individuals with diabetes mellitus (DM).

Recent Findings

Studies on the antidiabetic mechanisms of medicinal plants have shown that most of them produce hypoglycemic activity by stimulating insulin secretion, augmenting peroxisome proliferator-activated receptors (PPARs), inhibiting α-amylase or α-glucosidase, glucagon-like peptide-1 (GLP-1) secretion, advanced glycation end product (AGE) formation, free radical scavenging plus antioxidant activity (against reactive oxygen or nitrogen species (ROS/RNS)), up-regulating or elevating translocation of glucose transporter type 4 (GLUT-4), and preventing development of insulin resistance.

Summary

Not only are medicinal plants effective in DM, but many of them also possess a variety of effects on other disease states, including the complications of DM. Such plants may be appropriate alternatives or adjuncts to available antidiabetic medications.

Keywords

Diabetes mellitus Medicinal plants Nephropathy Neuropathy 

Notes

Compliance with Ethical Standards

Conflict of Interest

Zeinab Nazarian-Samani, Robert D. E. Sewell, Zahra Lorigooini, and Mahmoud Mahmoud Rafieian-Kopaei declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    World Health Organization. Global report on diabetes. ISBN 978 92 4 156525 7 (NLM classification: WK 810). 2016.Google Scholar
  2. 2.
    Mahmoudian-Sani MR, Luther T, Asadi-Samani M, et al. A new approach for treatment of type 1 diabetes: phytotherapy and phytopharmacology of regulatory T cells. J Renal Inj Prev. 2017;6(3):158–63.CrossRefGoogle Scholar
  3. 3.
    Norhammar A, Tenerz A, Nilsson G, et al. Glucose metabolism in patients with acute myocardial infarction and no previous diagnosis of diabetes mellitus: a prospective study. Lancet. 2002;359(9324):2140–4.PubMedCrossRefGoogle Scholar
  4. 4.
    American Diabetic Association. 2018. http://www.diabetes.org/diabetes-basics/statistics/. Accessed 29 June 2018..
  5. 5.
    WHO. WHO fact sheet detail. 2017. http://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed 29 June 2018.
  6. 6.
    Herman WH. The global burden of diabetes: an overview. In: Dagogo-Jack S, editor. Diabetes mellitus in developing countries and underserved communities. Cham: Springer; 2017. p. 1–5. ISBN 978-3-319-41557-4.Google Scholar
  7. 7.
    Amiri M. Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. J Nephropathol. 2018;7(3):127–31.CrossRefGoogle Scholar
  8. 8.
    Rahimpour S, Dehkordi AD. Antioxidant defense system versus 8-hydroxy-2′-deoxyguanosine; a short look to recent findings. J Renal Inj Prev. 2018;7(3):121–3.CrossRefGoogle Scholar
  9. 9.
    Li WL, Zheng HC, Bukuru J, et al. Natural medicines used in traditional Chinese medical system for therapy of diabetic mellitus. J Ethnopharmacol. 2004;92:1–21.PubMedCrossRefGoogle Scholar
  10. 10.
    Gourgari E, Wilhem EE, Hassanzadeh H, et al. A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data. J Diabetes Comp. 2017;31:1719–27.CrossRefGoogle Scholar
  11. 11.
    Gardner DG, Shoback D. Greenspan’s basic & clinical endocrinology. 9th ed. New York: McGraw-Hill Medical; 2013. p. 7–14.Google Scholar
  12. 12.
    Amiri M. Type 2 diabetes mellitus; an international challenge. Ann Res Dial. 2016;1(1):e04.Google Scholar
  13. 13.
    Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol. 2013;2(1):20–7.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Baradaran A. The role of biomarkers to detect progression of diseases. J Negat Results Clin Exp Stud. 2018;1(1):e05.Google Scholar
  15. 15.
    Hajian S. Positive effect of antioxidants on immune system. Immunopathol Persa. 2015;1(1):e02.Google Scholar
  16. 16.
    Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109(1):69–75.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    World Health Organisation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia [Internet]. 2006. Available from: http://www.who.int/diabetes/publications/diagnosis_diabetes2006/en/.
  18. 18.
    Aghadavoud E, Nasri H, Amiri M. Molecular signaling pathways of diabetic kidney disease; new concepts. J Prev Epidemiol. 2017;2(2):e03.Google Scholar
  19. 19.
    Nasri H, Shirzad H. Toxicity and safety of medicinal plants. J Herbmed Plarmacol. 2013;2(2):21–2.Google Scholar
  20. 20.
    Governa, P, Baini, G, Borgonetti, V, Cettolin, G, Giachetti, D, Magnano, AR, Miraldi, E, Biagi, M. Phytotherapy in the management of diabetes: a review. Molecules. 2018;23(1).Google Scholar
  21. 21.
    Ota A, Ulrih NP. An overview of herbal products and secondary metabolites used for management of type two diabetes. Front. Pharmacol. 2017;8:1–14.CrossRefGoogle Scholar
  22. 22.
    Zhou J, Chan L, Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem. 2012;19:3523–31.PubMedCrossRefGoogle Scholar
  23. 23.
    Kalailingam P, Kannaian B, Tamilmani E, Kaliaperumal R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine. 2014;21:1154–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Broca C, Manteghetti M, Gross R, Baissac Y, Jacob M, Petit P, et al. 4-Hydroxyisoleucine: Effects of synthetic and natural analogues on insulin secretion. Eur. J. Pharmacol. 2000;390:339–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Uemura T, Hirai S, Mizoguchi N, Goto T, Lee JY, Taketani K, et al. Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues. Mol Nutr Food Res. 2010;54:1596–608.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumari K, Augusti KT. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J Exp Biol. 2002;40:1005–9.PubMedGoogle Scholar
  27. 27.
    Chuang C-Y, Hsu C, Chao C-Y, Wein Y-S, Kuo Y-H, Huang C. Fractionation and identification of 9c, 11t, 13t-conjugated linolenic acid as an activator of PPARalpha in bitter gourd (Momordica charantia L.). J Biomed Sci. 2006;13:763–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Sasa M, Inoue I, Shinoda Y, Takahashi S, Seo M, Komoda T, et al. Activating effect of momordin, extract of bitter melon (Momordica Charantia L.), on the promoter of human PPARdelta. J Atheroscler Thromb. 2009;16:888–92.PubMedCrossRefGoogle Scholar
  29. 29.
    Kumar DB, Mitra A, Manjunatha M. Azadirachtolide. Pharmacogn Commun. 2011;1:78–84.CrossRefGoogle Scholar
  30. 30.
    Ponnusamy S, Haldar S, Mulani F, Zinjarde S, Thulasiram H, RaviKumar A. Gedunin and Azadiradione: human pancreatic alpha-amylase inhibiting limonoids from Neem (Azadirachta indica) as anti-diabetic agents. PLoS ONE. 2015;10:e0140113.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Perez-Gutierrez RM, Damian-Guzman M. Meliacinolin: a potent alpha-glucosidase and alpha-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull. 2012;35:1516–24.PubMedCrossRefGoogle Scholar
  32. 32.
    Adisakwattana S, Lerdsuwankij O, Poputtachai U, Minipun A, Suparpprom C. Inhibitory activity of cinnamon bark species and their combination effect with acarbose against intestinal alpha-glucosidase and pancreatic alpha-amylase. Plant Foods Hum Nutr. 2011;66:143–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim SH, Hyun SH, Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. J Ethnopharmacol. 2006;104:119–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Kim S-H, Jo S-H, Kwon Y-I, Hwang J-K. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Int J Mol Sci. 2011;12:3757–69.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Liu C, Zhang M, Hu M-Y, Guo H-F, Li J, Yu Y-L, et al. Increased glucagon-like peptide-1 secretion may be involved in antidiabetic effects of ginsenosides. J Endocrinol. 2013;217:185–96.PubMedCrossRefGoogle Scholar
  36. 36.
    Kim KS, Jang HJ. Medicinal plants qua glucagon-like peptide-1 secretagogue via intestinal nutrient sensors. Evid Based Complement Alternat Med. 2015;2015:171742.  https://doi.org/10.1155/2015/171742.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Choi H-J, Jang H-J, Chung T-W, Jeong S-I, Cha J, Choi J-Y, et al. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia. 2013;86:19–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Perez Gutierrez RM, de Jesus Martinez Ortiz M. Beneficial effect of Azadirachta indica on advanced glycation end-product in streptozotocin-diabetic rat. Pharm Biol. 2014;52(11):1435–44.  https://doi.org/10.3109/13880209.2014.895389.PubMedCrossRefGoogle Scholar
  39. 39.
    Dzib-Guerra WD, Escalante-Erosa F, García-Sosa K, Derbré S, Blanchard P, Richomme P, et al. Anti-advanced glycation end-product and free radical scavenging activity of plants from the Yucatecan flora. Pharmacognosy Res. 2016;8(4):276–80.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Baek G-H, Jang Y-S, Jeong S-I, Cha J, Joo M, Shin S-W, et al. Rehmannia glutinosa suppresses inflammatory responses elicited by advanced glycation end products. Inflammation. 2012;35:1232–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Ravikumar P, Anuradha CV. Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. Phytother Res. 1999;13:197–201.PubMedCrossRefGoogle Scholar
  42. 42.
    Son IS, Kim JH, Sohn HY, Son KH, Kim J-S, Kwon C-S. Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci. Biotechnol. Biochem. 2007;71:3063–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Yang N, Chen P, Tao Z, Zhou N, Gong X, Xu Z, et al. Beneficial effects of ginsenoside-Rg1 on ischemia-induced angiogenesis in diabetic mice. Acta Biochim Biophys Sin. 2012;44:999–1005.PubMedCrossRefGoogle Scholar
  44. 44.
    Kang KS, Yamabe N, Kim HY, Park JH, Yokozawa T. Therapeutic potential of 20(S)-ginsenoside Rg(3) against streptozotocin-induced diabetic renal damage in rats. Eur J Pharmacol. 2008;591:266–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Ma J, Whittaker P, Keller AC, Mazzola EP, Pawar RS, White KD, et al. Cucurbitane-type triterpenoids from. Planta Med. 2010;76:1758–61.PubMedCrossRefGoogle Scholar
  46. 46.
    Tan M-J, Ye J-M, Turner N, Hohnen-Behrens C, Ke C-Q, Tang C-P, et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem Biol. 2008;15:263–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Cheng H-L, Huang H-K, Chang C-I, Tsai C-P, Chou C-H. A cell-based screening identifies compounds from the stem of Momordica charantia that overcome insulin resistance and activate AMP-activated protein kinase. J Agric Food Chem. 2008;56:6835–43.PubMedCrossRefGoogle Scholar
  48. 48.
    Chang C-I, Tseng H-I, Liao Y-W, Yen C-H, Chen T-M, Lin C-C, et al. In vivo and in vitro studies to identify the hypoglycaemic constituents of wild variant WB24. Food Chem. 2011;125:521–8.CrossRefGoogle Scholar
  49. 49.
    Gautam S, Pal S, Maurya R, Srivastava AK. Ethanolic extract of stimulates glucose transporter type 4-mediated glucose uptake by the activation of insulin signaling. Planta Med. 2015;81:208–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Cao H, Polansky MM, Anderson RA. Cinnamon extract and polyphenols affect the expression of tristetraprolin, insulin receptor, and glucose transporter 4 in mouse 3T3-L1 adipocytes. Arch Biochem Biophys. 2007;459:214–22.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Anand P, Murali KY, Tandon V, Murthy PS, Chandra R. Insulinotropic effect of cinnamaldehyde on transcriptional regulation of pyruvate kinase, phosphoenolpyruvate carboxykinase, and GLUT4 translocation in experimental diabetic rats. Chem. Biol. Interact. 2010;186:72–81.PubMedCrossRefGoogle Scholar
  52. 52.
    Lai D-M, Tu Y-K, Liu I-M, Chen P-F, Cheng J-T. Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med. 2006;72:9–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Chattopadhyay RR. Hypoglycemic effect of Ocimum sanctum leaf extract in normal and streptozotocin diabetic rats. Indian J. Exp. Biol. 1993;31:891–3.PubMedGoogle Scholar
  54. 54.
    Shih C-C, Lin C-H, Lin W-L. Effects of Momordica charantia on insulin resistance and visceral obesity in mice on high-fat diet. Diabetes Res Clin Pract. 2008;81:134–43.PubMedCrossRefGoogle Scholar
  55. 55.
    Asadi-Samani MA, Moradi MT, Mahmoodnia L, et al. Traditional uses of medicinal plants to prevent and treat diabetes; an updated review of ethnobotanical studies in Iran. J Nephropathol. 2017;6(3):118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    • Pakkir Maideen NM, Balasubramaniam R. Pharmacologically relevant drug interactions of sulfonylurea antidiabetics with common herbs. J Herbmed Pharmacol. 2018;7(3):200–10.  https://doi.org/10.15171/jhp.2018.32. This article presents a list of herbal drugs having interacting potentials with sulfonylurea anti-diabetics. This subject has high level of clinical and investigational implications. CrossRefGoogle Scholar
  57. 57.
    Akbari R, Javaniyan M, Fahimi A, et al. Renal function in patients with diabetic foot infection; does antibiotherapy affect it? J Renal Inj Prev. 2017;6(2):117–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Tedong L, Dimo T, Dzeufiet PDD, Asongalem AE, Sokeng DS, Callard P, et al. Antihyperglycemic and renal protective activities of Anacardium occidentale (Anacardiaceae) leaves in streptozotocin induced diabetic rats. Afr J Trad CAM. 2006;3(1):23–35.Google Scholar
  59. 59.
    Schempp C, Schöpf E, Simon J. Plant-induced toxic and allergic dermatitis (phytodermatitis). Hautarzt. 2002;53(2):93–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Boswell-Ruys CL, Ritchie HE, Brown-Woodman PD. Preliminary screening study of reproductive outcomes after exposure to yarrow in the pregnant rat. Birth Defects Res B Dev Reprod Toxicol. 2003;68(5):416–20.PubMedCrossRefGoogle Scholar
  61. 61.
    Elmastas M, Ozturk L, Gokce I, et al. Determination of antioxidant activity of marshmallow flower (Althaea officinalis L.). Anal Lett. 2004;37(9):1859–69.CrossRefGoogle Scholar
  62. 62.
    •• Rouhi-Boroujeni H, Heidarian E, Rouhi-Boroujeni H, et al. Medicinal plants with multiple effects on cardiovascular diseases: a systematic review. Current Pharmaceutical Design. 2017;23:1–17. This article introduces medicinal plants that other than cardiovascular disease are effective on its risk factors such as hyperlipidemia, obesity, hypertension, and diabetes mellitus. CrossRefGoogle Scholar
  63. 63.
    Arnault I, Auger J. Seleno-compounds in garlic and onion. J Chromatogr A. 2006;1112(1–2):23–30.PubMedCrossRefGoogle Scholar
  64. 64.
    Matsga S, Azuma K, Watnabe M, et al. Onion peel tea ameliorates obesity and affects blood parameters in a mouse model of high-fat-diet-induced obesity. Exp Ther Med. 2014;7(2):379–82.CrossRefGoogle Scholar
  65. 65.
    Heidarian E, Jafari-Dehkordi E, Seidkhani-Nahal A. Effect of garlic on liver phosphatidate phosphohydrolase and plasma lipid levels in hyperlipidemic rats. Food Chem Toxicol. 2011;49(5):1110–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Durak I, Kavutcu M, Aytac B, et al. Effects of garlic extract consumption on blood lipid and oxidant/antioxidant parameters in humans with high blood cholesterol. J Nutr Biochem. 2004;15(6):373–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Prabjone R, Thong-Ngam D, Wisedopas N, et al. Anti-inflammatory effects of Aloe vera on leukocyteendothelium interaction in the gastric microcirculation of Helicobacter pylori-infected rats. Clin Hemorheol Microcirc. 2006;35(3):359–66.PubMedGoogle Scholar
  68. 68.
    Im SA, Lee YR, Lee YH, et al. In vivo evidence of the immunomodulatory activity of orally administered Aloe vera gel. Arch Pharm Res. 2010;33(3):451–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Rajasekaran S, Sivagnanam K, Subramanian S. Antioxidant effect of Aloe vera gel extract in streptozotocin-induced diabetes in rats. Pharmacol Rep. 2005;57(1):90–6.PubMedGoogle Scholar
  70. 70.
    Rajasekaran S, Sivagnanam K, Subramanian S. Modulatory effects of Aloe vera leaf gel extract on oxidative stress in rats treated with streptozotocin. J Pharm Pharmacol. 2005;57(2):241–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Bolkent S, Akev N, Ozsoy N, et al. Effect of Aloe vera (L.) Burm. fil. leaf gel and pulp extracts on kidney in type-II diabetic rat models. Indian J Exp Biol. 2004;42(1):48–52.PubMedGoogle Scholar
  72. 72.
    Chithra P, Sajithlal GB, Chandrakasan G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J Ethnopharmacol. 1998;59(3):205–1.Google Scholar
  73. 73.
    Budzinski J, Trudeau V, Drouin C, et al. Modulation of human cytochrome P450 3A4 (CYP3A4) and pglycoprotein (P-gp) in Caco-2 cell monolayers by selected commercial-source milk thistle and goldenseal products. Can J Physiol Pharmacol. 2007;85(9):966–78.PubMedCrossRefGoogle Scholar
  74. 74.
    Bahramikia S, Yazdanparast R. Efficacy of different fractions of leaves on serum lipoproteins and serum and liver oxidative status in experimentally induced hypercholesterolaemic rat models. Am J Chin Med. 2009;37(4):685–99.PubMedCrossRefGoogle Scholar
  75. 75.
    Li R, Zhang J, Zhang L, Cui Q, Liu H. Angelica injection promotes peripheral nerve structure and function recovery with increased expressions of nerve growth factor and brain derived neurotrophic factor in diabetic rats. Curr Neurovasc Res. 2010;7(3):213–22.PubMedCrossRefGoogle Scholar
  76. 76.
    Watt G. Periodical experts: a dictionary of the economical products of India. Delhi: Cosmo Publications; 1972. p. 260.Google Scholar
  77. 77.
    Gupta RK, Kesari AN, Murthy PS, et al. Hypoglycemic and antidiabetic effect of ethanolic extract of leaves of Annona squamosa L. in experimental animals. J Ethnopharmacol. 2005;99(1):75–81.PubMedCrossRefGoogle Scholar
  78. 78.
    Adewole SO, Caxton-Martins EA. Morphological changes and hypoglycemic effects of Annona muricata Linn (Annonaceae) leaf aqueous extract on pancreatic B-cells of streptozotocin-treated diabetic rats. Afr J Biomed Res. 2006;9:173–87.Google Scholar
  79. 79.
    Liu ZQ, Li QZ, Qin GJ. Effect of Astragalus injection on platelet function and plasma endothelin in patients with early stage diabetic nephropathy. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2001;21(4):274–6.PubMedGoogle Scholar
  80. 80.
    Liu KZ, Li JB, Lu HL, et al. Effects of Astragalus and saponins of Panax notoginseng on MMP-9 in patients with type 2 diabetic macroangiopathy. Zhongguo Zhong Yao Za Zhi. 2004;29(3):264–6.PubMedGoogle Scholar
  81. 81.
    Chen W, Li YM, Yu MH. Astragalus polysaccharides: an effective treatment for diabetes prevention in NOD mice. Exp Clin Endocrinol Diabetes. 2008;116(8):468–74.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhang J, Xie X, Li C, Fu P. Systematic review of the renal protective effect of Astragalus membranaceus (root) on diabetic nephropathy in animal models. J Ethnopharmacol. 2009;126(2):189–96.PubMedCrossRefGoogle Scholar
  83. 83.
    Rouhi-Boroujeni H, Rouhi-Boroujeni HA, Heidarian E, et al. Herbs with antilipid effects and their interactions with statins as a chemical anti- hyperlipidemia group drugs: a systematic review. ARYA Atheroscler. 2015;11(4):252–8.Google Scholar
  84. 84.
    Mirhosseini M, Baradaran A, Rafieian-Kopaei M. Anethum graveolens and hyperlipidemia: a randomized clinical trial. J Res Med Sci. 2014;19(8):758–61.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sujatha G, Ranjitha Kumari BD. Effect of phytohormones on micropropagation of Artemisia vulgaris L. Acta Physiologiae Plantarum. 2007;29(3):189–95.CrossRefGoogle Scholar
  86. 86.
    Singh R, Subrata DE, Belkheir A. Avena sativa (oat), a potential neutraceutical and therapeutic agent: an overview. Crit Rev Food Sci Nutr. 2013;53:126–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Heidarian E, Rafieian-Kopaei M, Khoshdel A, et al. Metabolic effects of berberine on liver phosphatidate phosphohydrolase in rats fed on high lipogenic diet: an additional mechanism for the hypolipidemic effects of berberine. Asian Pacific J Trop Biomed. 2014;31(4):S429–35.CrossRefGoogle Scholar
  88. 88.
    Ebrahimi-Mamaghani M, Arefhosseini SR, Golzar M, et al. Longterm effects of processed berberis vulgaris on some metabolic syndrome components. Canadian J Forest Res. 2009;39(11):2109–18.CrossRefGoogle Scholar
  89. 89.
    Nadkarni KM. Indian Materia Medica. 3rd ed. Mumbai: Popular Book Depot; 1954. p. 202–7.Google Scholar
  90. 90.
    Rao KN, Krishna MB, Srinivas N. Effect of chronic administration of Boerhaavia diff usa Linn. leaf extract on experimental diabetes in rats. Trop J Pharma Res. 2004;3:305–9.Google Scholar
  91. 91.
    Upaganlawar H, Ghule B. Pharmacological activities of Boswellia serrata Roxb.—mini review. Ethnobotanical Leaflets. 2009;13:766–74.Google Scholar
  92. 92.
    Purohit A, Sharma A. Blood glucose lowering potential of Bougainvillea spectabilis leaf extract in streptozotocin induced type-I diabetic albino rats. Indian Drugs. 2006;43:538.Google Scholar
  93. 93.
    Addae MI, Achenbach H. Terpenoids and flavonoids of Bridelia ferruginea. Phytochemistry. 1985;24(8):1817–9.CrossRefGoogle Scholar
  94. 94.
    Ribaldo PDB, Souza DS, Biswas SK, et al. Green tea (Camellia sinensis) attenuates nephropathy by downregulating nox4 NADPH oxidase in diabetic spontaneously hypertensive rats. J Nutr. 2009;139(1):96–100.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Yamabe N, Kang KS, Hur JM, et al. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats. J Med Food. 2009;12(4):714–21.PubMedCrossRefGoogle Scholar
  96. 96.
    Babu PV, Sabitha KE, Shyamaladevi CS. Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem Biol Interact. 2006;162(2):114–20.PubMedCrossRefGoogle Scholar
  97. 97.
    Mustata GT, Rosca M, Biemel KM, et al. Paradoxical effects of green tea (Camellia sinensis) and antioxidant vitamins in diabetic rats: improved retinopathy and renal mitochondrial defects but deterioration of collagen matrix glycoxidation and cross-linking. Diabetes. 2005;54(2):517–26.PubMedCrossRefGoogle Scholar
  98. 98.
    Renno WM, Abdeen S, Alkhalaf M, Asfar S. Effect of green tea on kidney tubules of diabetic rats. Br J Nutr. 2008;100(3):652–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Marfo EK, Wallace P, Timpo G, et al. Cholesterol lowering effect of jackbean (Canavalia ensiformis) seed protein. Pharmacology. 1990;21(5):753–7.Google Scholar
  100. 100.
    Enyikwola O, Addy EO, Adoga GI. Hypoglycaemic effect of Canavalia ensiformis (Leguminosae) in albino rats. Discov Innov. 1991;3(3):61–3.Google Scholar
  101. 101.
    Asolkar LV, Kakkar KK, Chatre OJ. Glossary of Indian medicinal plants with active principles (Part I) A-K series. New Delhi: Publication and Information Directorate, CSIR; 1992. p. 176.Google Scholar
  102. 102.
    Yoganarasimhan SN. Medical plants of India. 2nd ed. Bangalor: International Book Publishers, Print Cyber Media; 2000. p. 109–10.Google Scholar
  103. 103.
    Chandramohan G, Al-Numair KS, Pugalendi KV. Effect of 3-hydroxymethyl xylitol on hepatic and renal functional markers and protein levels in streptozotocin-diabetic rats. Afr J Biochem Res. 2009;3(5):198–204.Google Scholar
  104. 104.
    Babu V, Gangadevi T, Subramoniam A. Anti-hyperglycaemic activity of cassia Kleinii leaf extract in glucose fed normal rats and alloxan-induced diabetic rats. Indian J Pharmacol. 2002;34(6):409–15.Google Scholar
  105. 105.
    Abu-Zeyad R, Khan AG, Khoo C. Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza. 1999;9:111–7.Google Scholar
  106. 106.
    Zhang WY, Li Wan Po A. The effectiveness of topically applied capsaicin. A meta-analysis. Eur J Clin Pharmacol. 1994;46(6):517–22.PubMedCrossRefGoogle Scholar
  107. 107.
    Forst T, Pohlmann T, Kunt T, et al. The influence of local capsaicin treatment on small nerve fibre function and neurovascular control in symptomatic diabetic neuropathy. Acta Diabetol. 2002;39(1):1–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Capsaicin Study Group. Effect of treatment with capsaicin on daily activities of patients with painful diabetic neuropathy. Diabetes Care. 1992;15(2):159–65.CrossRefGoogle Scholar
  109. 109.
    Biesbroeck R, Bril V, Hollander P, et al. A double-blind comparison of topical capsaicin and oral amitriptyline in painful diabetic neuropathy. Adv Ther. 1995;12(2):111–20.PubMedGoogle Scholar
  110. 110.
    Capsaicin Study Group. Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. Arch Intern Med. 1991;151(11):2225–9.CrossRefGoogle Scholar
  111. 111.
    Don G. In: Ross IA, editor. Medicinal plants of the world. Totowa: Humana Press; 1999. p. 109–18.Google Scholar
  112. 112.
    Abd El-Ghany MA, Nagib RM, Mamdouh SM. Anti-diabetic effect of some herbs and fruit against Streptozotocin induced diabetic rats. Global Veterinaria. 2014;12(4):541–9.Google Scholar
  113. 113.
    González-Molina E, Moreno DA, García-Viguera C. Genotype and harvest time influence the phytochemical quality of Fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J Agric Food Chem. 2008;56(5):1669–75.PubMedCrossRefGoogle Scholar
  114. 114.
    Khan A, Safdar M, Ali Khan MM. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care. 2003;26(12):3215–8.PubMedCrossRefGoogle Scholar
  115. 115.
    Kim SH, Hyun SH, Choung SY. Antioxidative effects of Cinnamomi cassiae and Rhodiola rosea extracts in liver of diabetic mice. Biofactors. 2006;26(3):209–19.PubMedCrossRefGoogle Scholar
  116. 116.
    Mishra A, Bhatti R, Singh A, et al. Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med. 2010;76(5):412–7.PubMedCrossRefGoogle Scholar
  117. 117.
    Jalili J, Askeroglu U, Alleyne B, et al. Herbal products that may contribute to hypertension. Plast Reconstr Surg. 2013;131(1):168–73.PubMedCrossRefGoogle Scholar
  118. 118.
    Rasmussen C, Glisson J. Dietary supplements and hypertension: potential benefits and precautions. J Clin Hypertens. 2012;14(7):467–71.CrossRefGoogle Scholar
  119. 119.
    Cerda JJ, Robbins FL, Burgin CW, Baumgartner TG, et al. The effects of grapefruit pectin on patients at risk for coronary heart disease without altering diet or lifestyle. Clin Cardiol. 1988;11(9):589–94.PubMedCrossRefGoogle Scholar
  120. 120.
    Bailey DG, Dresser GK. Interactions between grapefruit juice and cardiovascular drugs. Am J Cardiovasc Drugs. 2004;4(5):281–97.PubMedCrossRefGoogle Scholar
  121. 121.
    Prasannakumar G, Sudeesh S, Vijayalakshmi NR, et al. Hypoglycemic effect of Coccinia indica: Mechanism of action. Planta Med. 1993;59:330–2.CrossRefGoogle Scholar
  122. 122.
    Grindley PB, Omoruyi FO, Asemota HN, et al. Effect of yam (Dioscorea cayenensis) and dasheen (Colocassia esculenta) extracts on the kidney of streptozotocin-induced diabetic rats. Int J Food Sci Nutr. 2001;52(5):429–33.PubMedCrossRefGoogle Scholar
  123. 123.
    Badole S, Patel N, Bodhankar S, et al. Antihyperglycemic activity of aqueous extract of leaves of Cocculus hirsutus (L.) Diels in alloxan-induced diabetic mice. Indian J Pharmacol. 2006;38(1):49–53.CrossRefGoogle Scholar
  124. 124.
    Punitha ISR, Rajendran K, Shirwaikar A, et al. Alcoholic stem extract of Coscinium fenestratum regulates carbohydrate metabolism and improves antioxidant status in streptozotocin–nicotinamide induced diabetic rats. Evid Based Complement Alternat Med. 2005;2(3):375–81.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Ruel G, Pomerleau S, Couture P, et al. Favourable impact of low-calorie cranberry juice consumption on plasma HDL-cholesterol concentrations in men. Br J Nutr. 2006;96(2):357–64.PubMedCrossRefGoogle Scholar
  126. 126.
    Rafieian-Kopaei M, Asgary S, Adelnia A, et al. The effects of Cornelian cherry on atherosclerosis and atherogenic factors in hypercholesterolemic rabbits. J Med Plants Res. 2011;5(13):2670–6.Google Scholar
  127. 127.
    Wang J, Xiong X, Feng B. Effect of Crataegus usage in cardiovascular disease prevention: an evidence-based approach. Evid Based Complement Alternat Med. 2013;14:93–9.Google Scholar
  128. 128.
    Priya S. Phytochemical screening and trace element analysis of Cryptomeria japonica. RRJBT. 2014;4:17–20.Google Scholar
  129. 129.
    Abdalbasit M, Bertrand M, Bertrand M. Fatty acids, tocopherols,sterols, phenolic profiles and oxidative stability of Cucumis melo var. Agrestis oil. J Food Lipids. 2008;15:56–67.CrossRefGoogle Scholar
  130. 130.
    Fleshman M, Lester G, Riedl K, et al. Carotene and novel apocarotenoid concentrations in orange-fleshed cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. J Agric Food Chem. 2011;59(9):4448–54.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Abuelgassim O, Showayman AL. The effect of pumpkin (Cucurbita Pepo L) seeds and L-arginine supplementation on serum lipid concentrations in atherogenic rats. Afr J Tradit Complement Altern Med. 2012;9(1):131–7.PubMedGoogle Scholar
  132. 132.
    Valentão P, Fernandes E, Carvalho F. Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J Agric Food Chem. 2002;50:4989–99.PubMedCrossRefGoogle Scholar
  133. 133.
    Suryanarayana P, Satyanarayana A, Balakrishna N, et al. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med Sci Monit. 2007;13(12):BR286–92.PubMedGoogle Scholar
  134. 134.
    Mrudula T, Suryanarayana P, Srinivas PN, et al. Effect of curcumin on hyperglycemia-induced vascular endothelial growth factor expression in streptozotocin-induced diabetic rat retina. Bio-Chem Biophys Res Commun. 2007;361(2):528–32.CrossRefGoogle Scholar
  135. 135.
    Surles R, Weng N, Simon PW. Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J Agric Food Chem. 2004;52:3417–21.PubMedCrossRefGoogle Scholar
  136. 136.
    Tavili A, Pouzesh H, Farajolahi A. The effect of different treatments on improving seed germination characteristics in medicinal species of Descurainia sophia and Plantago ovata. Afr J Biotechnol. 2010;9(39):6588–93.Google Scholar
  137. 137.
    Englian C, Shilling W, Honghua X. Analysis of the volatile oil from Desmodium styracifolium (Osbeck) Merr. by gas chromatography–mass spectrometry. Guangzhou University of Chinese Medicine. 2005;22:302–3.Google Scholar
  138. 138.
    Iwu MM, Okunji CO, Akah P, et al. Hypoglycaemic activity of dioscoretine from tubers of Dioscorea dumetorum in normal and alloxan diabetic rabbits. Planta Med. 1990;56(3):264–7.PubMedCrossRefGoogle Scholar
  139. 139.
    Rachel NU. Control of hyperlipidaemia, hypercholesterolaemia and hyperketonaemia by aqueous extract of Dioscorea dumetorum tuber. Trop J Pharm Res. 2003;2(1):183–7.Google Scholar
  140. 140.
    Geetha BS, Mathew BC, Augusti K. Hypoglycemic effects of leucodelphinidin derivative isolated from Ficus bengalensis (Linn). Indian J Physiol Pharmacol. 1994;38(3):220–2.PubMedGoogle Scholar
  141. 141.
    Ghosh R, Sharachandra KH, Rita S, et al. Hypoglycemic activity of Ficus hispida (bark) in normal and diabetic albino rats. Indian J Pharmacol. 2004;36:222–5.Google Scholar
  142. 142.
    Kesavulu MM, Kameswararao B, Apparao C, et al. Effect of omega-3 fatty acids on lipid peroxidation and antioxidant enzyme status in type 2 diabetic patients. Diabetes Metab. 2002;28(1):20–6.PubMedGoogle Scholar
  143. 143.
    Chiu WC, Hou YC, Yeh CL, et al. Effect of dietary fish oil supplementation on cellular adhesion molecule expression and tissue myeloperoxidase activity in diabetic mice with sepsis. Br J Nutr. 2007;97(4):685–91.PubMedCrossRefGoogle Scholar
  144. 144.
    Rizza S, Tesauro M, Cardillo C, et al. Fish oil supplementation improves endothelial function in normoglycemic offspring of patients with type 2 diabetes. Atherosclerosis. 2009;206(2):569–74.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    He CY, Li WD, Guo SX, et al. Effect of polysaccharides from Ganoderma lucidum on streptozotocin-induced diabetic nephropathy in mice. J Asian Nat Prod Res. 2006;8(8):705–11.PubMedCrossRefGoogle Scholar
  146. 146.
    Meng WL, Wang RJ, Yu J. Clinical observation on treatment of diabetic peripheral neuphropathy by ginkgo leaf extract combined with active vitamin B12. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2004;24(7):645–6.PubMedGoogle Scholar
  147. 147.
    Zhu HW, Shi ZF, Chen YY. Effect of extract of ginkgo bilboa leaf on early diabetic nephropathy. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2005;25(10):889–91.PubMedGoogle Scholar
  148. 148.
    Li XS, Zheng WY, Lou SX, et al. Effect of Ginkgo leaf extract on vascular endothelial function in patients with early stage diabetic nephropathy. Chin J Integr Med. 2009;15(1):26–9.PubMedCrossRefGoogle Scholar
  149. 149.
    Lu Q, Yin XX, Wang JY, et al. Effects of Ginkgo biloba on prevention of development of experimental diabetic nephropathy in rats. Acta Pharmacol Sin. 2007;28(6):818–28.PubMedCrossRefGoogle Scholar
  150. 150.
    Ramkumar KM, Latha M, Venkateswaran S, et al. Modulatory effect of Gymnema montanum leaf extract on brain antioxidant status and lipid peroxidation in diabetic rats. J Med Food. 2004;7(3):366–71.PubMedCrossRefGoogle Scholar
  151. 151.
    Azadbakht L, Atabak S, Esmaillzadeh A. Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care. 2008;31(4):648–54.PubMedCrossRefGoogle Scholar
  152. 152.
    Van Wyk BE, Van O, Gericke N. Medical plants of South Africa. 1st ed. Pretoria: Briza Publications; 1997. p. 156.Google Scholar
  153. 153.
    S'Bahle MX, John AO. Hypoglycaemic effects of Hypoxis hemerocallidea (Fisch and C.A. Mey.) corm ‘African potato’ methanolic extract in rats. Med J Islam Acad Sci. 2000;13(2):75–8.Google Scholar
  154. 154.
    McKay DL, Chen CY, Yeum KJ, et al. Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: a randomized, cross-over pilot study. Nutr J. 2010;9(1):21.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Pan A, Demark-Wahnefried W, Ye X, et al. Effects of a flaxseedderived lignan supplement on C-reactive protein, IL-6 and retinolbinding protein 4 in type 2 diabetic patients. Br J Nutr. 2009;101(8):1145–9.PubMedCrossRefGoogle Scholar
  156. 156.
    Haliga R, Mocanu V, Paduraru I, et al. Effects of dietary flaxseed supplementation on renal oxidative stress in experimental diabetes. Rev Med Chir Soc Med Nat Iasi. 2009;113(4):1200–4.PubMedGoogle Scholar
  157. 157.
    Li XM. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol. 2007;40(5):461–5.PubMedCrossRefGoogle Scholar
  158. 158.
    Teoh SL, Latiff AA, Das S. The effect of topical extract of Momordica charantia (bitter gourd) on wound healing in nondiabetic rats and in rats with diabetes induced by streptozotocin. Clin Exp Dermatol. 2009;34(7):815–2.PubMedCrossRefGoogle Scholar
  159. 159.
    Chandra A, Mahdi AA, Singh RK, et al. Effect of Indian herbal hypoglycemic agents on antioxidant capacity and trace elements content in diabetic rats. J Med Food. 2008;11(3):506–12.PubMedCrossRefGoogle Scholar
  160. 160.
    Narayan K, KNV S. The hypoglycemic effect of Murra koengii on normal and diabetic dog. Mysore J Agric Sci. 1975;9:132.Google Scholar
  161. 161.
    Ford I, Cotter MA, Cameron NE, et al. The effects of treatment with alpha-lipoic acid or evening primrose oil on vascular hemostatic and lipid risk factors, blood flow, and peripheral nerve conduction in the streptozotocin-diabetic rat. Metab Clin Exp. 2001;50(8):868–75.PubMedCrossRefGoogle Scholar
  162. 162.
    Hamden K, Allouche N, Damak M, et al. Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chem Biol Interact. 2009;180(3):421–32.PubMedCrossRefGoogle Scholar
  163. 163.
    Medeiros FJ, Aguila MB, Mandarim-de-Lacerda CA. Renal cortex remodeling in streptozotocin-induced diabetic spontaneously hypertensive rats treated with olive oil, palm oil and fish oil from Menhaden. Prostaglandins Leukot Essent Fatty Acids. 2006;75(6):357–65.PubMedCrossRefGoogle Scholar
  164. 164.
    Zhao GH, Shen YS, Ma JB, et al. Protection of polysaccharides-2b from mudan cortex of Paeonia suffruticosa on diabetic cataract in rats. Zhongguo Zhong Yao Za Zhi. 2007;3(19):2036–9.Google Scholar
  165. 165.
    John LS, John TA, Lawrence AL, et al. Antidiabetic plants. J Am Coll Nutr. 2003;22:524.CrossRefGoogle Scholar
  166. 166.
    Zhao L, Lan LG, Min XL, et al. Integrated treatment of traditional Chinese medicine and western medicine for early- and intermediate-stage diabetic nephropathy. Nan Fang Yi Ke Da Xue Xue Bao. 2007;27(7):1052–5.PubMedGoogle Scholar
  167. 167.
    Ryu JK, Lee T, Kim DJ, et al. Free radical-scavenging activity of Korean red ginseng for erectile dysfunction in noninsulin- dependent diabetes mellitus rats. Urology. 2005;65(3):611–5.PubMedCrossRefGoogle Scholar
  168. 168.
    Cesarone MR, Belcaro G, Rohdewald P, et al. Improvement of diabetic microangiopathy with pycnogenol: a prospective, controlled study. Angiology. 2006;57(4):431–6.PubMedCrossRefGoogle Scholar
  169. 169.
    Belcaro G, Cesarone MR, Errichi BM, et al. Diabetic ulcers: microcirculatory improvement and faster healing with pycnogenol. Clin Appl Thromb Hemost. 2006;12(3):318–23.PubMedCrossRefGoogle Scholar
  170. 170.
    Dong W, Shi HB, Ma H, et al. Homoisoflavanones from Polygonatum odoratum rhizomes inhibit advanced glycation end product formation. Arch Pharm Res. 2010;33(5):669–74.PubMedCrossRefGoogle Scholar
  171. 171.
    McLennan SV, Bonner J, Milne S, et al. The anti-inflammatory agent Propolis improves wound healing in a rodent model of experimental diabetes. Wound Repair Regen. 2008;16(5):706–13.PubMedCrossRefGoogle Scholar
  172. 172.
    Lotfy M, Badra G, Burham W, et al. Combined use of honey, bee propolis and myrrh in healing a deep, infected wound in a patient with diabetes mellitus. Br J Biomed Sci. 2006;63(4):171–3.PubMedCrossRefGoogle Scholar
  173. 173.
    Bebrevska L, Foubert K, Hermans N, et al. In vivo antioxidative activity of a quantified Pueraria lobata root extract. J Ethnopharmacol. 2010;127(1):112–7.PubMedCrossRefGoogle Scholar
  174. 174.
    Rosenblat M, Hayek T, Aviram M. Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis. 2006;187(2):363–71.PubMedCrossRefGoogle Scholar
  175. 175.
    Fenercioglu AK, Saler T, Genc E, Sabuncu H, Altuntas Y. The effects of polyphenol-containing antioxidants on oxidative stress and lipid peroxidation in type 2 diabetes mellitus without complications. J Endocrinol Invest. 2010;33(2):118–24.PubMedCrossRefGoogle Scholar
  176. 176.
    Lau TW, Lam FF, Lau KM, et al. Pharmacological investigation on the wound healing effects of Radix Rehmanniae in an animal model of diabetic foot ulcer. J Ethnopharmacol. 2009;123(1):155–62.PubMedCrossRefGoogle Scholar
  177. 177.
    Waisundara VY, Huang M, Hsu A, et al. Characterization of the anti-diabetic and antioxidant effects of rehmannia glutinosa in streptozotocin-induced diabetic Wistar rats. Am J Chin Med. 2008;36(6):1083–4.PubMedCrossRefGoogle Scholar
  178. 178.
    Takako Y, Li-Qun H, Yasuko M, et al. Effects of rhubarb extract in rats with diabetic nephropathy. Phytother Res. 2097;11(1):73–5.Google Scholar
  179. 179.
    Vuksan V, Whitham D, Sievenpiper JL, et al. Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care. 2007;30(11):2804–10.PubMedCrossRefGoogle Scholar
  180. 180.
    Yue KK, Lee KW, Chan KK, et al. Danshen prevents the occurrence of oxidative stress in the eye andaorta of diabetic rats without affecting the hyperglycemic state. J Ethnopharmacol. 2006;106(1):136–41.PubMedCrossRefGoogle Scholar
  181. 181.
    Liu G, Guan GJ, Qi TG, et al. Protective effects of Salvia miltiorrhiza on rats with streptozotocin diabetes and its mechanism. Zhong Xi Yi Jie He Xue Bao. 2005;3(6):459–62.PubMedCrossRefGoogle Scholar
  182. 182.
    Wu HN, Sun H. Study on clinical therapeutic effect of composite Salvia injection matched with Western medicine in treating diabetic foot. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2003;23(10):727–9.PubMedGoogle Scholar
  183. 183.
    Vessal G, Akmali M, Najafi P, et al. Silymarin and milk thistle extract may prevent the progression of diabetic nephropathy in streptozotocin-induced diabetic rats. Ren Fail. 2010;32(6):733–9.PubMedCrossRefGoogle Scholar
  184. 184.
    Rahman AU, Zaman K. Medicinal plants with hypoglycemic activity. J Ethnopharmacal. 1989;26:1–55.CrossRefGoogle Scholar
  185. 185.
    Teixeira CC, Fuchs FD, Weinert LS, et al. The efficacy of folk medicines in the management of type 2 diabetes mellitus: results of a randomized controlled trial of Syzygium cumini (L.) Skeels. J Clin Pharmacol Ther. 2006;31(1):1–5.CrossRefGoogle Scholar
  186. 186.
    Nalamolu KR, Nammi S. Antidiabetic and renoprotective effects of the chloroform extract of Terminalia chebula Retz. seeds in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2006;7(6):17.Google Scholar
  187. 187.
    Nagappa AN, Thakurdesai PA, Venkat Rao N, et al. Antidiabetic activity of Terminalia catappa Linn fruits. J Ethnopharmacol. 2003;88(1):45–50.PubMedCrossRefGoogle Scholar
  188. 188.
    Purandare H, Supe A. Immunomodulatory role of Tinospora cordifolia as an adjuvant in surgical treatment of diabetic foot ulcers: a prospective randomized controlled study. Indian J Med Sci. 2007;61(6):347–55.PubMedCrossRefGoogle Scholar
  189. 189.
    Bordia A, Verma SK, Srivastava KC. Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins Leukot Essent Fatty Acids. 1997;56(5):379–84.PubMedCrossRefGoogle Scholar
  190. 190.
    Kaviarasan S, Viswanathan P, Anuradha CV. Fenugreek seed (Trigonella foenum graecum) polyphenols inhibit ethanol-induced collagen and lipid accumulation in rat liver. Cell Biol Toxicol. 2007;23(6):373–83.PubMedCrossRefGoogle Scholar
  191. 191.
    Matsunaga N, Imai S, Inokuchi Y, et al. Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro and in vivo. Mol Nutr Food Res. 2009;53(7):869–77.PubMedCrossRefGoogle Scholar
  192. 192.
    Liu YN, Shen XN, Yao GY. Effects of grape seed proanthocyanidins extracts on experimental diabetic nephropathy in rats. Wei Sheng Yan Jiu. 2006;35(6):703–5.PubMedGoogle Scholar
  193. 193.
    Udayakumar R, Kasthurirengan S, Vasudevan A, et al. Antioxidant effect of dietary supplement Withania somnifera L. reduce blood glucose levels in alloxan-induced diabetic rats. Plant Foods Hum Nutr. 2010;65(2):91–8.PubMedCrossRefGoogle Scholar
  194. 194.
    Parihar MS, Chaudhary M, Shetty R, et al. Susceptibility of hippocampus and cerebral cortex to oxidative damage in streptozotocin treated mice: prevention by extracts of Withania somnifera and Aloe vera. J Clin Neurosci. 2004;11(4):397–402.PubMedCrossRefGoogle Scholar
  195. 195.
    Rafieian-Kopaei M, Nasri H. The ameliorative effect of Zingiber officinale in diabetic nephropathy. Iran Red Crescent Med J. 2014;16(5):145–53.CrossRefGoogle Scholar
  196. 196.
    Sokeng SD, Rokeya B, Mostafa M, et al. Antihyperglycemic effect of Bridelia ndellensis ethanol extract and fractions in streptozotocin-induced diabetic rats. Afr J Tradit Complement Altern Med. 2005;2(2):94–102.202.Google Scholar
  197. 197.
    Nimenibo-Uadia R. Effect of aqueous extract of Canavalia ensiformis seeds on hyperlipidaemia and hyperketonaemia in alloxan-induced diabetic rats. Biokemistri. 2003;15(1):7–15.Google Scholar
  198. 198.
    Singh SN, Vats P, Suri S, et al. Effect of an antidiabetic extract of Catharanthus roseus on enzymic activities in streptozotocin induced diabetic rats. J Ethnopharmacol. 2001;76(3):269–77.PubMedCrossRefGoogle Scholar
  199. 199.
    Dhanabal SP, Koata CK, Ramnathan M, et al. The hypoglycemic activity of Coccinia indica Wight & Arn and its influence on certain biochemical parameters. Indian J Pharmacol. 2004;36(4):249–50.Google Scholar
  200. 200.
    Kesari AN, Gupta RK, Watal G. Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits. J Ethnopharmacol. 2005;97(2):247–51.PubMedCrossRefGoogle Scholar
  201. 201.
    Ha H, Kim KH. Pathogenesis of diabetic nephropathy: the role of oxidative stress and protein kinase C. Diabetes Res Clin Pract. 1999;45(2):147–51.PubMedCrossRefGoogle Scholar
  202. 202.
    Park KS, Kim JH, Kim MS, et al. Effects of insulin and antioxidant on plasma 8-hydroxyguanine and tissue 8-hydroxydeoxyguanosine in streptozotocin-induced diabetic rats. Diabetes. 2001;50(12):2837–41.PubMedCrossRefGoogle Scholar
  203. 203.
    Vincent AM, Russell JW, Low P, et al. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr Rev. 2004;25(4):612–28.111.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zeinab Nazarian-Samani
    • 1
  • Robert D. E. Sewell
    • 2
  • Zahra Lorigooini
    • 3
  • Mahmoud Rafieian-Kopaei
    • 3
  1. 1.Basic Science Department, Veterinary Medicine FacultyShahrekord UniversityShahrekordIran
  2. 2.Cardiff School of Pharmacy and Pharmaceutical SciencesCardiff UniversityCardiffUK
  3. 3.Medical Plants Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran

Personalised recommendations