Advertisement

Current Diabetes Reports

, 18:62 | Cite as

Neighborhood Environments and Diabetes Risk and Control

  • Usama Bilal
  • Amy H. Auchincloss
  • Ana V. Diez-Roux
Diabetes Epidemiology (E Selvin and K Foti, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Diabetes Epidemiology

Abstract

Purpose of Review

The objective of this review is to highlight the evidence on the association between contextual characteristics of residential environments and type 2 diabetes, to provide an overview of the methodological challenges and to outline potential topics for future research in this field.

Recent Findings

The link between neighborhood socioeconomic status or deprivation and diabetes prevalence, incidence, and control is robust and has been replicated in numerous settings, including in experimental and quasi-experimental studies. The association between characteristics of the built environment that affect physical activity, other aspects of the built environment, and diabetes risk is robust. There is also evidence for an association between food environments and diabetes risk, but some conflicting results have emerged in this area.

Summary

While the evidence base on the association of neighborhood socioeconomic status and built and physical environments and diabetes is large and robust, challenges remain related to confounding due to neighborhood selection. Moreover, we also outline five paths forward for future research on the role of neighborhood environments on diabetes.

Keywords

Diabetes Residential environments Neighborhoods Social epidemiology 

Notes

Compliance with Ethical Standards

Conflict of Interest

Usama Bilal, Amy H. Auchincloss, and Ana V. Diez-Roux declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Selvin E, Parrinello CM, Sacks DB, Coresh J. TRends in prevalence and control of diabetes in the United States, 1988–1994 and 1999–2010. Ann Intern Med. 2014;160(8):517–25.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Menke A, Rust KF, Fradkin J, Cheng YJ, Cowie CC. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States: a series of cross-sectional studies. Ann Intern Med. 2014;161(5):328–35.CrossRefPubMedGoogle Scholar
  3. 3.
    Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA. 2015;314(10):1021–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Selvin E, Wang D, Lee AK, Bergenstal RM, Coresh J. Identifying trends in undiagnosed diabetes in US. adults by using a confirmatory definition: a cross-sectional study. Ann Intern Med. 2017;167(11):769–76.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    NCD-RisC. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.CrossRefGoogle Scholar
  6. 6.
    Gary-Webb TL, Suglia SF, Tehranifar P. Social epidemiology of diabetes and associated conditions. Curr Diab Rep. 2013;13(6):850–9.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Espelt A, Borrell C, Roskam AJ, Rodríguez-Sanz M, Stirbu I, Dalmau-Bueno A, et al. Socioeconomic inequalities in diabetes mellitus across Europe at the beginning of the 21st century. Diabetologia. 2008;51(11):1971–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Agardh E, Allebeck P, Hallqvist J, Moradi T, Sidorchuk A. Type 2 diabetes incidence and socio-economic position: a systematic review and meta-analysis. Int J Epidemiol. 2011;40(3):804–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Dandona L, Dandona R, Kumar GA, Shukla D, Paul VK, Balakrishnan K, et al. Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the global burden of disease study. Lancet. 2017;390(10111):2437–60.CrossRefGoogle Scholar
  10. 10.
    Franco M, Bilal U, Diez-Roux AV. Preventing non-communicable diseases through structural changes in urban environments. J Epidemiol Community Health. 2015;69(6):509–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Oakes JM, Andrade KE, Biyoow IM, Cowan LT. Twenty years of neighborhood effect research: an assessment. Curr Epide Rep. 2015;2(1):80–7.CrossRefGoogle Scholar
  12. 12.
    Diez-Roux AV. Neighborhoods and health: where are we and were do we go from here?: environnement résidentiel et santé: état de la question et perspectives pour le futur. Rev Epidemiol Sante Publique. 2007;55(1):13–21.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chaikiat Å, Li X, Bennet L, Sundquist K. Neighborhood deprivation and inequities in coronary heart disease among patients with diabetes mellitus: a multilevel study of 334,000 patients. Health Place. 2012;18(4):877–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Booth GL, Bishara P, Lipscombe LL, Shah BR, Feig DS, Bhattacharyya O, et al. Universal drug coverage and socioeconomic disparities in major diabetes outcomes. Diabetes Care. 2012;35(11):2257–64.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hamano T, Li X, Tanito M, Nabika T, Shiwaku K, Sundquist J, et al. Neighborhood deprivation and risk of age-related eye diseases: a follow-up study in Sweden. Ophthalmic Epidemiol. 2015;22(5):308–20.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Leese GP, Feng Z, Leese RM, Dibben C, Emslie-Smith A. Impact of health-care accessibility and social deprivation on diabetes related foot disease. Diabet Med. 2013;30(4):484–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Wilf-Miron R, Peled R, Yaari E, Shem-Tov O, Weinner VA, Porath A, et al. Disparities in diabetes care: role of the patient's socio-demographic characteristics. BMC Public Health. 2010;10:729.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    James GD, Baker P, Badrick E, Mathur R, Hull S, Robson J. Ethnic and social disparity in glycaemic control in type 2 diabetes; cohort study in general practice 2004-9. J R Soc Med. 2012;105(7):300–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Mezuk B, Chaikiat Å, Li X, Sundquist J, Kendler KS, Sundquist K. Depression, neighborhood deprivation and risk of type 2 diabetes. Health Place. 2013;23:63–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sundquist K, Eriksson U, Mezuk B, Ohlsson H. Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place. 2015;31:24–30.CrossRefPubMedGoogle Scholar
  21. 21.
    White JS, Hamad R, Li X, Basu S, Ohlsson H, Sundquist J, et al. Long-term effects of neighbourhood deprivation on diabetes risk: quasi-experimental evidence from a refugee dispersal policy in Sweden. Lancet Diabetes Endocrinol. 2016;4(6):517–24.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Müller G, Wellmann J, Hartwig S, Greiser KH, Moebus S, Jöckel KH, et al. Association of neighbourhood unemployment rate with incident type 2 diabetes mellitus in five German regions. Diabet Med. 2015;32(8):1017–22.CrossRefPubMedGoogle Scholar
  23. 23.
    Gaskin DJ, Thorpe RJ, McGinty EE, Bower K, Rohde C, Young JH, et al. Disparities in diabetes: the nexus of race, poverty, and place. Am J Public Health. 2014;104(11):2147–55.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ludwig J, Sanbonmatsu L, Gennetian L, Adam E, Duncan GJ, Katz LF, et al. Neighborhoods, obesity, and diabetes—a randomized social experiment. N Engl J Med. 2011;365(16):1509–19.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mirowsky JE, Devlin RB, Diaz-Sanchez D, Cascio W, Grabich SC, Haynes C, et al. A novel approach for measuring residential socioeconomic factors associated with cardiovascular and metabolic health. J Expo Sci Environ Epidemiol. 2017;27(3):281–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Rachele JN, Giles-Corti B, Turrell G. Neighbourhood disadvantage and self-reported type 2 diabetes, heart disease and comorbidity: a cross-sectional multilevel study. Ann Epidemiol. 2016;26(2):146–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Garcia L, Lee A, Zeki Al Hazzouri A, Neuhaus J, Epstein M, Haan M. The impact of neighborhood socioeconomic position on prevalence of diabetes and prediabetes in older Latinos: the Sacramento area Latino study on aging. Hisp Health Care Int. 2015;13(2):77–85.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Müller G, Kluttig A, Greiser KH, Moebus S, Slomiany U, Schipf S, et al. Regional and neighborhood disparities in the odds of type 2 diabetes: results from 5 population-based studies in Germany (DIAB-CORE consortium). Am J Epidemiol. 2013;178(2):221–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Mueller G, Berger K. The influence of neighbourhood deprivation on the prevalence of diabetes in 25- to 74-year-old individuals: first results from the Dortmund health study. Diabet Med. 2012;29(6):831–3.CrossRefPubMedGoogle Scholar
  30. 30.
    Corriere MD, Yao W, Xue QL, Cappola AR, Fried LP, Thorpe RJ, et al. The association of neighborhood characteristics with obesity and metabolic conditions in older women. J Nutr Health Aging. 2014;18(9):792–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang YT, Mujahid MS, Laraia BA, Warton EM, Blanchard SD, Moffet HH, et al. Association between neighborhood supermarket presence and glycated hemoglobin levels among patients with type 2 diabetes mellitus. Am J Epidemiol. 2017;185(12):1297–303.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Richardson AS, Ghosh-Dastidar M, Beckman R, Flórez KR, DeSantis A, Collins RL, et al. Can the introduction of a full-service supermarket in a food desert improve residents' economic status and health? Ann Epidemiol. 2017;27(12):771–6.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Polsky JY, Moineddin R, Glazier RH, Dunn JR, Booth GL. Relative and absolute availability of fast-food restaurants in relation to the development of diabetes: a population-based cohort study. Can J Public Health. 2016;107(Suppl 1):5312.PubMedGoogle Scholar
  34. 34.
    Bodicoat DH, Carter P, Comber A, Edwardson C, Gray LJ, Hill S, et al. Is the number of fast-food outlets in the neighbourhood related to screen-detected type 2 diabetes mellitus and associated risk factors? Public Health Nutr. 2015;18(9):1698–705.CrossRefPubMedGoogle Scholar
  35. 35.
    Mezuk B, Li X, Cederin K, Rice K, Sundquist J, Sundquist K. Beyond access: characteristics of the food environment and risk of diabetes. Am J Epidemiol. 2016;183(12):1129–37.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gebreab SY, Hickson DA, Sims M, Wyatt SB, Davis SK, Correa A, et al. Neighborhood social and physical environments and type 2 diabetes mellitus in African Americans: the Jackson heart study. Health Place. 2017;43:128–37.CrossRefPubMedGoogle Scholar
  37. 37.
    Christine PJ, Auchincloss AH, Bertoni AG, Carnethon MR, Sanchez BN, Moore K, et al. Longitudinal associations between neighborhood physical and social environments and incident type 2 diabetes mellitus: the multi-ethnic study of atherosclerosis (MESA). JAMA Intern Med. 2015;175(8):1311–20.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tabaei BP, Rundle AG, Wu WY, Horowitz CR, Mayer V, Sheehan DM, et al. Associations of residential socioeconomic, food, and built environments with glycemic control in persons with diabetes in new York City from 2007–2013. Am J Epidemiol. 2018;187(4):736–45.CrossRefPubMedGoogle Scholar
  39. 39.
    Creatore MI, Glazier RH, Moineddin R, Fazli GS, Johns A, Gozdyra P, et al. Association of neighborhood walkability with change in overweight, obesity, and diabetes. JAMA. 2016;315(20):2211–20.CrossRefPubMedGoogle Scholar
  40. 40.
    Booth GL, Creatore MI, Moineddin R, Gozdyra P, Weyman JT, Matheson FI, et al. Unwalkable neighborhoods, poverty, and the risk of diabetes among recent immigrants to Canada compared with long-term residents. Diabetes Care. 2013;36(2):302–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sundquist K, Eriksson U, Mezuk B, Ohlsson H. Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place. 2015;31:24–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Loo CK, Greiver M, Aliarzadeh B, Lewis D. Association between neighbourhood walkability and metabolic risk factors influenced by physical activity: a cross-sectional study of adults in Toronto, Canada. BMJ Open. 2017;7(4):e013889.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Müller-Riemenschneider F, Pereira G, Villanueva K, Christian H, Knuiman M, Giles-Corti B, et al. Neighborhood walkability and cardiometabolic risk factors in Australian adults: an observational study. BMC Public Health. 2013;13(1):755.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Paquet C, Coffee NT, Haren MT, Howard NJ, Adams RJ, Taylor AW, et al. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort. Health & Place. 2014;28:173–6.CrossRefGoogle Scholar
  45. 45.
    Astell-Burt T, Feng X, Kolt GS. Is neighborhood green space associated with a lower risk of type 2 diabetes? Evidence from 267,072 Australians. Diabetes Care. 2014;37(1):197–201.CrossRefPubMedGoogle Scholar
  46. 46.
    Bodicoat DH, O'Donovan G, Dalton AM, Gray LJ, Yates T, Edwardson C, et al. The association between neighbourhood greenspace and type 2 diabetes in a large cross-sectional study. BMJ Open. 2014;4(12):e006076.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dalton AM, Jones AP, Sharp SJ, Cooper AJ, Griffin S, Wareham NJ. Residential neighbourhood greenspace is associated with reduced risk of incident diabetes in older people: a prospective cohort study. BMC Public Health. 2016;16(1):1171.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Weinmayr G, Hennig F, Fuks K, Nonnemacher M, Jakobs H, Mohlenkamp S, et al. Long-term exposure to fine particulate matter and incidence of type 2 diabetes mellitus in a cohort study: effects of total and traffic-specific air pollution. Environ Health. 2015;14:53.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Brook RD, Cakmak S, Turner MC, Brook JR, Crouse DL, Peters PA, et al. Long-term fine particulate matter exposure and mortality from diabetes in Canada. Diabetes Care. 2013;36(10):3313–20.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Strak M, Janssen N, Beelen R, Schmitz O, Vaartjes I, Karssenberg D, et al. Long-term exposure to particulate matter, NO2 and the oxidative potential of particulates and diabetes prevalence in a large national health survey. Environ Int. 2017;108:228–36.CrossRefPubMedGoogle Scholar
  51. 51.
    Honda T, Pun VC, Manjourides J, Suh H. Associations between long-term exposure to air pollution, glycosylated hemoglobin and diabetes. Int J Hyg Environ Health. 2017;220(7):1124–32.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Qiu H, Schooling CM, Sun S, Tsang H, Yang Y, Lee RS, et al. Long-term exposure to fine particulate matter air pollution and type 2 diabetes mellitus in elderly: a cohort study in Hong Kong. Environ Int. 2018;113:350–6.CrossRefPubMedGoogle Scholar
  53. 53.
    Raaschou-Nielsen O, Sorensen M, Ketzel M, Hertel O, Loft S, Tjonneland A, et al. Long-term exposure to traffic-related air pollution and diabetes-associated mortality: a cohort study. Diabetologia. 2013;56(1):36–46.PubMedGoogle Scholar
  54. 54.
    Heidemann C, Niemann H, Paprott R, Du Y, Rathmann W, Scheidt-Nave C. Residential traffic and incidence of type 2 diabetes: the German health interview and examination surveys. Diabet Med. 2014;31(10):1269–76.CrossRefPubMedGoogle Scholar
  55. 55.
    Clark C, Sbihi H, Tamburic L, Brauer M, Frank LD, Davies HW. Association of long-term exposure to transportation noise and traffic-related air pollution with the incidence of diabetes: a prospective cohort study. Environ Health Perspect. 2017;125(8):087025.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sorensen M, Andersen ZJ, Nordsborg RB, Becker T, Tjonneland A, Overvad K, et al. Long-term exposure to road traffic noise and incident diabetes: a cohort study. Environ Health Perspect. 2013;121(2):217–22.PubMedCrossRefGoogle Scholar
  57. 57.
    Fujiwara T, Takamoto I, Amemiya A, Hanazato M, Suzuki N, Nagamine Y, et al. Is a hilly neighborhood environment associated with diabetes mellitus among older people? Results from the JAGES 2010 study. Soc Sci Med. 2017;182:45–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Liu AY, Curriero FC, Glass TA, Stewart WF, Schwartz BS. The contextual influence of coal abandoned mine lands in communities and type 2 diabetes in Pennsylvania. Health Place. 2013;22:115–22.CrossRefPubMedGoogle Scholar
  59. 59.
    den Braver NR, Lakerveld J, Rutters F, Schoonmade LJ, Brug J, Beulens JWJ. Built environmental characteristics and diabetes: a systematic review and meta-analysis. BMC Med. 2018;16(1):12.CrossRefGoogle Scholar
  60. 60.
    Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease. An update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.CrossRefPubMedGoogle Scholar
  61. 61.
    Glass TA, Bilal U. Are neighborhoods causal? Complications arising from the 'stickiness' of ZNA. Soc Sci Med. 2016;166:244–53.CrossRefPubMedGoogle Scholar
  62. 62.
    Braun LM, Rodriguez DA, Song Y, Meyer KA, Lewis CE, Reis JP, et al. Changes in walking, body mass index, and cardiometabolic risk factors following residential relocation: longitudinal results from the CARDIA study. J Transp Health. 2016;3(4):426–39.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Braun LM, Rodríguez DA, Evenson KR, Hirsch JA, Moore KA, Diez Roux AV. Walkability and cardiometabolic risk factors: cross-sectional and longitudinal associations from the multi-ethnic study of atherosclerosis. Health Place. 2016;39:9–17.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cummins S, Macintyre S. Food environments and obesity - neighborhood or nation? Int J Epidemiol. 2006;25.Google Scholar
  65. 65.
    van Ham M, Manley D, Bailey N, Simpson L, Maclennan D. Understanding neighbourhood dynamics: new insights for neighbourhood effects research. Netherlands: Springer; 2012.Google Scholar
  66. 66.
    Osypuk TL, Tchetgen E, Acevedo-Garcia D, et al. Differential mental health effects of neighborhood relocation among youth in vulnerable families: results from a randomized trial. Arch Gen Psychiatry. 2012;69(12):1284–94.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Chetty R, Hendren N, Katz LF. The effects of exposure to better neighborhoods on children: new evidence from the moving to opportunity experiment. Am Econ Rev. 2016;106(4):855–902.CrossRefPubMedGoogle Scholar
  68. 68.
    Christine PJ, Young R, Adar SD, Bertoni AG, Heisler M, Carnethon MR, et al. Individual- and area-level SES in diabetes risk prediction: the multi-ethnic study of atherosclerosis. Am J Prev Med. 2017;53(2):201–9.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gabert R, Thomson B, Gakidou E, Roth G. Identifying high-risk neighborhoods using electronic medical records: a population-based approach for targeting diabetes prevention and treatment interventions. PLoS One. 2016;11(7):e0159227.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Perlman SE, McVeigh KH, Thorpe LE, Jacobson L, Greene CM, Gwynn RC. Innovations in population health surveillance: using electronic health records for chronic disease surveillance. Am J Public Health. 2017;107(6):853–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Cebul RD, Love TE, Jain AK, Hebert CJ. Electronic health records and quality of diabetes care. N Engl J Med. 2011;365(9):825–33.CrossRefPubMedGoogle Scholar
  72. 72.
    Io M. Capturing social and behavioral domains and measures in electronic health records: phase 2. Washington, DC: The National Academies Press; 2014.Google Scholar
  73. 73.
    Florian J, Roy NM, Quintiliani LM, Truong V, Feng Y, Bloch PP, et al. Using Photovoice and asset mapping to inform a community-based diabetes intervention, Boston, Massachusetts, 2015. Prev Chronic Dis. 2016;13:E107.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hussein M, Diez Roux AV, Mujahid MS, Hastert TA, Kershaw KN, Bertoni AG, Baylin A Unequal exposure or unequal vulnerability? Contributions of neighborhood conditions and cardiovascular risk factors to socioeconomic inequality in incident cardiovascular disease in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2017.Google Scholar
  75. 75.
    Stringhini S, Batty GD, Bovet P, Shipley MJ, Marmot MG, Kumari M, et al. Association of lifecourse socioeconomic status with chronic inflammation and type 2 diabetes risk: the Whitehall II prospective cohort study. PLoS Med. 2013;10(7):e1001479.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Franco M, Bilal U, Ordunez P, Benet M, Morejon A, Caballero B, et al. Population-wide weight loss and regain in relation to diabetes burden and cardiovascular mortality in Cuba 1980-2010: repeated cross sectional surveys and ecological comparison of secular trends. BMJ. 2013;346:f1515.CrossRefPubMedGoogle Scholar
  77. 77.
    Lumey LH, Khalangot MD, Vaiserman AM. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932-33: a retrospective cohort study. Lancet Diabetes Endocrinol. 2015;3(10):787–94.CrossRefPubMedGoogle Scholar
  78. 78.
    de Rooij SR, Roseboom TJ, Painter RC. Famines in the last 100 years: implications for diabetes. Curr Diab Rep. 2014;14(10):536.CrossRefPubMedGoogle Scholar
  79. 79.
    Arcaya M, James P, Rhodes JE, Waters MC, Subramanian SV. Urban sprawl and body mass index among displaced hurricane Katrina survivors. Prev Med. 2014;65:40–6.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Basu S, Meghani A, Siddiqi A. Evaluating the health impact of large-scale public policy changes: classical and novel approaches. Annu Rev Public Health. 2017;38:351–70.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Craig P, Katikireddi SV, Leyland A, Popham F. Natural experiments: an overview of methods, approaches, and contributions to public health intervention research. Annu Rev Public Health. 2017;38:39–56.CrossRefPubMedGoogle Scholar
  82. 82.
    Mayne S, Auchincloss A, Michael Y. Impact of policy and built environment changes on obesity-related outcomes: a systematic review of naturally occurring experiments. Obes Rev. 2015;16(5):362–75.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Steve SL, Tung EL, Schlichtman JJ, Peek ME. Social disorder in adults with type 2 diabetes: building on race, place, and poverty. Curr Diab Rep. 2016;16(8):72.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kershaw KN, Pender AE. Racial/ethnic residential segregation, obesity, and diabetes mellitus. Curr Diab Rep. 2016;16(11):108.CrossRefPubMedGoogle Scholar
  85. 85.
    Flor CR, Baldoni NR, Aquino JA, Baldoni AO, Fabbro ALD, Figueiredo RC et al. What is the association between social capital and diabetes mellitus? A systematic review. Diabetes Metab Syndr. 2018.Google Scholar
  86. 86.
    Downing J, Laraia B, Rodriguez H, Dow WH, Adler N, Schillinger D, et al. Beyond the great recession: was the foreclosure crisis harmful to the health of individuals with diabetes? Am J Epidemiol. 2017;185(6):429–35.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Christine PJ, Moore K, Crawford ND, Barrientos-Gutierrez T, Sánchez BN, Seeman T, et al. Exposure to neighborhood foreclosures and changes in cardiometabolic health: results from MESA. Am J Epidemiol. 2017;185(2):106–14.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Noriea AH, Patel FN, Werner DA, Peek ME. A narrative review of physician perspectives regarding the social and environmental determinants of obesity. Curr Diab Rep. 2018;18(5):24.CrossRefPubMedGoogle Scholar
  89. 89.
    Krueger PM, Reither EN. Mind the gap: race/ethnic and socioeconomic disparities in obesity. Curr Diab Rep. 2015;15(11):95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Usama Bilal
    • 1
    • 2
  • Amy H. Auchincloss
    • 1
    • 2
  • Ana V. Diez-Roux
    • 1
    • 2
  1. 1.Urban Health CollaborativeDrexel Dornsife School of Public HealthPhiladelphiaUSA
  2. 2.Department of Epidemiology and BiostatisticsDrexel Dornsife School of Public HealthPhiladelphiaUSA

Personalised recommendations