Current Diabetes Reports

, 18:51 | Cite as

Methods for Measuring Risk for Type 2 Diabetes in Youth: the Oral Glucose Tolerance Test (OGTT)

  • Melinda E. Chen
  • Rebecca S. Aguirre
  • Tamara S. HannonEmail author
Pediatric Type 2 and Monogenic Diabetes (PS Zeitler and O Pinhas-Hamiel, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pediatric Type 2 and Monogenic Diabetes


Purpose of Review

The oral glucose tolerance test (OGTT) is used both in clinical practice and research to assess glucose tolerance. In addition, the OGTT is utilized for surrogate measures of insulin sensitivity and the insulin response to enteral glucose and has been widely applied in the evaluation of β-cell dysfunction in obesity, prediabetes, and type 2 diabetes. Here we review the use of the OGTT and the OGTT-derived indices for measurement of risk markers for type 2 diabetes in youth.

Recent Findings

Advantages of using the OGTT for measures of diabetes risk include its accessibility and the incorporation of physiological contributions of the gut-pancreas axis in the measures of insulin response to glucose. Mathematical modeling expands the potential gains from the OGTT in physiology and clinical research. Disadvantages include individual differences in the rate of glucose absorption that modify insulin responses, imperfect control of the glycemic stimulus, and poor intraindividual reproducibility.


Available research suggests the OGTT provides valuable information about the development of impaired glycemic control and β-cell function in obese youth along the spectrum of glucose tolerance.


Insulin sensitivity β-cell function Prediabetes Adolescent Pediatric 


Compliance with Ethical Standards

Conflict of Interest

Melinda E. Chen, Rebecca S. Aguirre, and Tamara S. Hannon declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    D'Adamo E, Caprio S. Type 2 diabetes in youth: epidemiology and pathophysiology. Diabetes Care. 2011;34(Suppl 2):S161–5.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hannon TS, Arslanian SA. The changing face of diabetes in youth: lessons learned from studies of type 2 diabetes. Ann N Y Acad Sci. 2015;1353:113–37.CrossRefPubMedGoogle Scholar
  3. 3.
    Bacha F, Lee S, Gungor N, Arslanian SA. From pre-diabetes to type 2 diabetes in obese youth: pathophysiological characteristics along the spectrum of glucose dysregulation. Diabetes Care. 2010;33(10):2225–31.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    •• Chen ME, Chandramouli AG, Considine RV, Hannon TS, Mather KJ. Comparison of beta-cell function between overweight/obese adults and adolescents across the spectrum of glycemia. Diabetes Care. 2018;41(2):318–25. This manuscript describes the comparison of adult and adolescent OGTT test results with model-derived and direct measures of insulin secretion and insulin sensitivity across a spectrum of glucose tolerance levels. Adolescents have much lower insulin sensitivity as compared with adults, whereas, adults have poorer beta-cell responses to glucose at earlier stages of glucose intolerance. These results may suggest different approaches to diabetes prevention in youths versus adults. CrossRefPubMedGoogle Scholar
  5. 5.
    • Hannon TS, Kahn SE, Utzschneider KM, Buchanan TA, Nadeau KJ, Zeitler PS, et al. Review of methods for measuring beta-cell function: design considerations from the Restoring Insulin Secretion (RISE) Consortium. Diabetes Obes Metab. 2018;20(1):14–24. A current review of intravenous and oral techniques for measuring beta-cell function. CrossRefPubMedGoogle Scholar
  6. 6.
    American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of medical care in diabetes. Diabetes Care. 2018;41(Suppl 1):S13–S27.Google Scholar
  7. 7.
    Burns SF, Bacha F, Lee SJ, Tfayli H, Gungor N, Arslanian SA. Declining beta-cell function relative to insulin sensitivity with escalating OGTT 2-h glucose concentrations in the nondiabetic through the diabetic range in overweight youth. Diabetes Care. 2011;34(9):2033–40.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335–41.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    TODAY Study Group. Effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and beta-cell function in TODAY. Diabetes Care. 2013;36(6):1749–57.Google Scholar
  10. 10.
    Kahn SE, Lachin JM, Zinman B, Haffner SM, Aftring RP, Paul G, et al. Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in ADOPT. Diabetes. 2011;60(5):1552–60.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    O'Meara NM, Sturis J, Van Cauter E, Polonsky KS. Lack of control by glucose of ultradian insulin secretory oscillations in impaired glucose tolerance and in non-insulin-dependent diabetes mellitus. J Clin Invest. 1993;92(1):262–71.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988;81(2):442–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ferrannini E, Pilo A. Pattern of insulin delivery after intravenous glucose injection in man and its relation to plasma glucose disappearance. J Clin Invest. 1979;64(1):243–54.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nesher R, Cerasi E. Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes. 2002;51(Suppl 1):S53–9.CrossRefPubMedGoogle Scholar
  15. 15.
    O'Connor MD, Landahl H, Grodsky GM. Comparison of storage- and signal-limited models of pancreatic insulin secretion. Am J Phys. 1980;238(5):R378–89.Google Scholar
  16. 16.
    Kahn SE. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med. 2000;108(Suppl 6a):2S–8S.CrossRefPubMedGoogle Scholar
  17. 17.
    Mezza T, Muscogiuri G, Sorice GP, Clemente G, Hu J, Pontecorvi A, et al. Insulin resistance alters islet morphology in nondiabetic humans. Diabetes. 2014;63(3):994–1007.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Byrne MM, Sturis J, Polonsky KS. Insulin secretion and clearance during low-dose graded glucose infusion. Am J Phys. 1995;268(1 Pt 1):E21–7.Google Scholar
  19. 19.
    Haffner SM, Stern MP, Watanabe RM, Bergman RN. Relationship of insulin clearance and secretion to insulin sensitivity in non-diabetic Mexican Americans. Eur J Clin Investig. 1992;22(3):147–53.CrossRefGoogle Scholar
  20. 20.
    Jones CN, Pei D, Staris P, Polonsky KS, Chen YD, Reaven GM. Alterations in the glucose-stimulated insulin secretory dose-response curve and in insulin clearance in nondiabetic insulin-resistant individuals. J Clin Endocrinol Metab. 1997;82(6):1834–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Polonsky KS, Rubenstein AH. C-peptide as a measure of the secretion and hepatic extraction of insulin. Pitfalls and limitations. Diabetes. 1984;33(5):486–94.CrossRefPubMedGoogle Scholar
  22. 22.
    Polonsky KS, Rubenstein AH. Current approaches to measurement of insulin secretion. Diabetes Metab Rev. 1986;2(3–4):315–29.CrossRefPubMedGoogle Scholar
  23. 23.
    • Chan CL, Pyle L, Newnes L, Nadeau KJ, Zeitler PS, Kelsey MM. Continuous glucose monitoring and its relationship to hemoglobin A1c and oral glucose tolerance testing in obese and prediabetic youth. J Clin Endocrinol Metab. 2015;100(3):902–10. This manuscript describes the utility of HbA1c and OGTT in the evaluation of obese youth at risk for type 2 diabetes. CrossRefPubMedGoogle Scholar
  24. 24.
    Roman R, Zeitler PS. Oral glucose tolerance testing in asymptomatic obese children: more questions than answers. J Clin Endocrinol Metab. 2008;93(11):4228–30.CrossRefPubMedGoogle Scholar
  25. 25.
    Moran A, Pillay K, Becker DJ, Acerini CL. ISPAD Clinical Practice Consensus Guidelines 2014. Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes. 2014;15(Suppl 20):65–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Moran A, Brunzell C, Cohen RC, Katz M, Marshall BC, Onady G, et al. Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care. 2010;33(12):2697–708.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Moyer VA. Screening for gestational diabetes mellitus: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;160(6):414–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Dabelea D, Rewers A, Stafford JM, Standiford DA, Lawrence JM, Saydah S, et al. Trends in the prevalence of ketoacidosis at diabetes diagnosis: the SEARCH for diabetes in youth study. Pediatrics. 2014;133(4):e938–45.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Libman IM, Barinas-Mitchell E, Bartucci A, Robertson R, Arslanian S. Reproducibility of the oral glucose tolerance test in overweight children. J Clin Endocrinol Metab. 2008;93(11):4231–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dalla Man C, Campioni M, Polonsky KS, Basu R, Rizza RA, Toffolo G, et al. Two-hour seven-sample oral glucose tolerance test and meal protocol: minimal model assessment of beta-cell responsivity and insulin sensitivity in nondiabetic individuals. Diabetes. 2005;54(11):3265–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Cali AM, Bonadonna RC, Trombetta M, Weiss R, Caprio S. Metabolic abnormalities underlying the different prediabetic phenotypes in obese adolescents. J Clin Endocrinol Metab. 2008;93(5):1767–73.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bacha F, Pyle L, Nadeau K, Cuttler L, Goland R, Haymond M, et al. Determinants of glycemic control in youth with type 2 diabetes at randomization in the TODAY study. Pediatr Diabetes. 2012;13(5):376–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Christophi CA, Resnick HE, Ratner RE, Temprosa M, Fowler S, Knowler WC, et al. Confirming glycemic status in the Diabetes Prevention Program: implications for diagnosing diabetes in high risk adults. J Diabetes Complicat. 2013;27(2):150–7.CrossRefPubMedGoogle Scholar
  34. 34.
    George L, Bacha F, Lee S, Tfayli H, Andreatta E, Arslanian S. Surrogate estimates of insulin sensitivity in obese youth along the spectrum of glucose tolerance from normal to prediabetes to diabetes. J Clin Endocrinol Metab. 2011;96(7):2136–45.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.CrossRefPubMedGoogle Scholar
  37. 37.
    Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.CrossRefPubMedGoogle Scholar
  38. 38.
    Yeckel CW, Weiss R, Dziura J, Taksali SE, Dufour S, Burgert TS, et al. Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescents. J Clin Endocrinol Metab. 2004;89(3):1096–101.CrossRefPubMedGoogle Scholar
  39. 39.
    Stumvoll M, Mitrakou A, Pimenta W, Jenssen T, Yki-Jarvinen H, Van Haeften T, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000;23(3):295–301.CrossRefPubMedGoogle Scholar
  40. 40.
    Belfiore F, Iannello S, Volpicelli G. Insulin sensitivity indices calculated from basal and OGTT-induced insulin, glucose, and FFA levels. Mol Genet Metab. 1998;63(2):134–41.CrossRefPubMedGoogle Scholar
  41. 41.
    Gutt M, Davis CL, Spitzer SB, Llabre MM, Kumar M, Czarnecki EM, et al. Validation of the insulin sensitivity index (ISI(0,120)): comparison with other measures. Diabetes Res Clin Pract. 2000;47(3):177–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Mather KJ, Hunt AE, Steinberg HO, Paradisi G, Hook G, Katz A, et al. Repeatability characteristics of simple indices of insulin resistance: implications for research applications. J Clin Endocrinol Metab. 2001;86(11):5457–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Xiang AH, Watanabe RM, Buchanan TA. HOMA and Matsuda indices of insulin sensitivity: poor correlation with minimal model-based estimates of insulin sensitivity in longitudinal settings. Diabetologia. 2014;57(2):334–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Phillips DI, Clark PM, Hales CN, Osmond C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet Med. 1994;11(3):286–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Cali AM, Man CD, Cobelli C, Dziura J, Seyal A, Shaw M, et al. Primary defects in beta-cell function further exacerbated by worsening of insulin resistance mark the development of impaired glucose tolerance in obese adolescents. Diabetes Care. 2009;32(3):456–61.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Faulenbach MV, Wright LA, Lorenzo C, Utzschneider KM, Goedecke JH, Fujimoto WY, et al. Impact of differences in glucose tolerance on the prevalence of a negative insulinogenic index. J Diabetes Complicat. 2013;27(2):158–61.CrossRefPubMedGoogle Scholar
  47. 47.
    Hannon TS, Mather KJ. Measuring the transition to diabetes. J Diabetes Complicat. 2013;27(2):101–2.CrossRefPubMedGoogle Scholar
  48. 48.
    Hannon TS, Kirkman MS, Patel YR, Considine RV, Mather KJ. Profound defects in beta-cell function in screen-detected type 2 diabetes are not improved with glucose-lowering treatment in the Early Diabetes Intervention Program (EDIP). Diabetes Metab Res Rev. 2014;30(8):767–76.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jensen CC, Cnop M, Hull RL, Fujimoto WY, Kahn SE. Beta-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the US. Diabetes. 2002;51(7):2170–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Utzschneider KM, Prigeon RL, Tong J, Gerchman F, Carr DB, Zraika S, et al. Within-subject variability of measures of beta cell function derived from a 2 h OGTT: implications for research studies. Diabetologia. 2007;50(12):2516–25.CrossRefPubMedGoogle Scholar
  51. 51.
    Abdul-Ghani MA, Lyssenko V, Tuomi T, Defronzo RA, Groop L. The shape of plasma glucose concentration curve during OGTT predicts future risk of type 2 diabetes. Diabetes Metab Res Rev. 2010;26(4):280–6.CrossRefPubMedGoogle Scholar
  52. 52.
    Tschritter O, Fritsche A, Shirkavand F, Machicao F, Haring H, Stumvoll M. Assessing the shape of the glucose curve during an oral glucose tolerance test. Diabetes Care. 2003;26(4):1026–33.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhou W, Gu Y, Li H, Luo M. Assessing 1-h plasma glucose and shape of the glucose curve during oral glucose tolerance test. Eur J Endocrinol. 2006;155(1):191–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Kim JY, Coletta DK, Mandarino LJ, Shaibi GQ. Glucose response curve and type 2 diabetes risk in Latino adolescents. Diabetes Care. 2012;35(9):1925–30.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nolfe G, Spreghini MR, Sforza RW, Morino G, Manco M. Beyond the morphology of the glucose curve following an oral glucose tolerance test in obese youth. Eur J Endocrinol. 2012;166(1):107–14.CrossRefPubMedGoogle Scholar
  56. 56.
    • Kim JY, Michaliszyn SF, Nasr A, Lee S, Tfayli H, Hannon T, et al. The shape of the glucose response curve during an oral glucose tolerance test heralds biomarkers of type 2 diabetes risk in obese youth. Diabetes Care. 2016;39(8):1431–9. This manuscript describes the usefullness of data collected at different time-points during a research OGTT as compared with clamp studies for evaluating risk for type 2 diabetes in obese youth. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bergman RN, Ader M, Huecking K, Van Citters G. Accurate assessment of beta-cell function: the hyperbolic correction. Diabetes. 2002;51(Suppl 1):S212–20.CrossRefPubMedGoogle Scholar
  58. 58.
    Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes. 1993;42(11):1663–72.CrossRefPubMedGoogle Scholar
  59. 59.
    Giannini C, Weiss R, Cali A, Bonadonna R, Santoro N, Pierpont B, et al. Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes. 2012;61(3):606–14.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sjaarda L, Lee S, Tfayli H, Bacha F, Bertolet M, Arslanian S. Measuring beta-cell function relative to insulin sensitivity in youth: does the hyperglycemic clamp suffice? Diabetes Care. 2013;36(6):1607–12.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK, Zinman B. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring). 2008;16(8):1901–7.CrossRefGoogle Scholar
  62. 62.
    Retnakaran R, Qi Y, Goran MI, Hamilton JK. Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet Med. 2009;26(12):1198–203.CrossRefPubMedGoogle Scholar
  63. 63.
    Xiang AH, Kjos SL, Takayanagi M, Trigo E, Buchanan TA. Detailed physiological characterization of the development of type 2 diabetes in Hispanic women with prior gestational diabetes mellitus. Diabetes. 2010;59(10):2625–30.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    De Gaetano A, Panunzi S, Matone A, Samson A, Vrbikova J, Bendlova B, et al. Routine OGTT: a robust model including incretin effect for precise identification of insulin sensitivity and secretion in a single individual. PLoS One. 2013;8(8):e70875.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Holst JJ, Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am J Physiol Endocrinol Metab. 2004;287(2):E199–206.CrossRefPubMedGoogle Scholar
  66. 66.
    Muscelli E, Mari A, Natali A, Astiarraga BD, Camastra S, Frascerra S, et al. Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab. 2006;291(6):E1144–50.CrossRefPubMedGoogle Scholar
  67. 67.
    Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37.CrossRefPubMedGoogle Scholar
  68. 68.
    Greenbaum CJ, Prigeon RL, D'Alessio DA. Impaired beta-cell function, incretin effect, and glucagon suppression in patients with type 1 diabetes who have normal fasting glucose. Diabetes. 2002;51(4):951–7.CrossRefPubMedGoogle Scholar
  69. 69.
    •• Michaliszyn SF, Mari A, Lee S, Bacha F, Tfayli H, Farchoukh L, et al. Beta-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to type 2 diabetes. Diabetes. 2014;63(11):3846–55. This manuscript describes OGTT-modeled beta-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. There is an impairment in incretin effect with decreasing glucose tolerance. CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Aulinger BA, Vahl TP, Prigeon RL, D'Alessio DA, Elder DA. The incretin effect in obese adolescents with and without type 2 diabetes: impaired or intact? Am J Physiol Endocrinol Metab. 2016;310(9):E774–81.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Breda E, Cavaghan MK, Toffolo G, Polonsky KS, Cobelli C. Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity. Diabetes. 2001;50(1):150–8.CrossRefPubMedGoogle Scholar
  72. 72.
    • Cobelli C, Dalla Man C, Toffolo G, Basu R, Vella A, Rizza R. The oral minimal model method. Diabetes. 2014;63(4):1203–13. This review describes the methodology used to develop and utilize the oral minimal method, the measures it provides, and how it can provide novel insights regarding the regulation of postprandial metabolism. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mari A, Schmitz O, Gastaldelli A, Oestergaard T, Nyholm B, Ferrannini E. Meal and oral glucose tests for assessment of beta-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab. 2002;283(6):E1159–66.CrossRefPubMedGoogle Scholar
  74. 74.
    Rijkelijkhuizen JM, Girman CJ, Mari A, Alssema M, Rhodes T, Nijpels G, et al. Classical and model-based estimates of beta-cell function during a mixed meal vs. an OGTT in a population-based cohort. Diabetes Res Clin Pract. 2009;83(2):280–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Melinda E. Chen
    • 1
  • Rebecca S. Aguirre
    • 2
  • Tamara S. Hannon
    • 2
    Email author
  1. 1.University of Nebraska Medical CenterOmahaUSA
  2. 2.Indiana University School of MedicineIndianapolisUSA

Personalised recommendations