Advertisement

Current Diabetes Reports

, 18:60 | Cite as

Diabetes Among Non-Overweight Individuals: an Emerging Public Health Challenge

  • Unjali P. Gujral
  • Mary Beth Weber
  • Lisa R. Staimez
  • K. M. Venkat Narayan
Diabetes Epidemiology (E Selvin and K Foti, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Diabetes Epidemiology

Abstract

Purpose of Review

Overweight and obesity are well-established risk factors for type 2 diabetes. However, a substantial number of individuals develop the disease at underweight or normal weight. In this review, we discuss the epidemiology of type 2 diabetes in non-overweight adults; pose questions about etiology, pathophysiology, diagnosis, and prognosis; and examine implications for prevention and treatment.

Recent Findings

In population-based studies, the prevalence of type 2 diabetes ranged from 1.4–10.9%. However, the prevalence of type 2 diabetes in individuals with BMI < 25 kg/m2 ranged from 1.4–8.8%. In countries from Asia and Africa, the proportion of individuals with diabetes who were underweight or normal weight ranged from 24 to 66%, which is considerably higher than the US proportion of 10%. Impairments in insulin secretion, in utero undernutrition, and epigenetic alterations to the genome may play a role in diabetes development in this subgroup.

Summary

A substantial number of individuals with type 2 diabetes, particularly those with recent ancestry from Asia or Africa, are underweight or normal weight. Future research should consist of comprehensive studies of the prevalence of type 2 diabetes in non-overweight individuals; studies aimed at understanding gaps in the mechanisms, etiology, and pathophysiology of diabetes development in underweight or normal weight individuals; and trials assessing the effectiveness of interventions in this population.

Keywords

Type 2 diabetes Underweight Normal weight BMI 

Notes

Acknowledgments

We thank Dr. Tran Quang Binh, Dr. Silver Bahendeka, Dr. David Guwatudde, and Dr. R.M Anjana and the team at the Madras Diabetes Research Foundation for contributing additional data for our review article.

Funding Information

Mary Beth Weber and K.M. Venkat Narayan were supported by the National Institute of Diabetes And Digestive And Kidney Diseases of the National Institutes of Health under award number P30DK111024.

Compliance with Ethical Standards

Conflict of Interest

Unjali P. Gujral, Mary Beth Weber, Lisa R. Staimez, and K.M. Venkat Narayan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    International Diabetes Federation. IDF diabetes atlas. 8th ed. Brussels: International Diabetes Federation; 2017.Google Scholar
  2. 2.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384(9945):766–81.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Narayan KMV, Boyle JP, Thompson TJ, Gregg EW, Williamson DF. Effect of BMI on lifetime risk for diabetes in the U.S. Diabetes Care. 2007;30(6):1562–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Menke A, Rust KF, Fradkin J, Cheng YJ, Cowie CC. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States: a series of cross-sectional studies. Ann Intern Med. 2014;161(5):328–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes [Internet]. Nature 2006 [cited 2017 Dec 6]. Available from: https://www.nature.com/articles/nature 05482.
  6. 6.
    Gregg EW, Cheng YJ, Narayan KMV, Thompson TJ, Williamson DF. The relative contributions of different levels of overweight and obesity to the increased prevalence of diabetes in the United States: 1976–2004. Prev Med. 2007;45(5):348–52.CrossRefPubMedGoogle Scholar
  7. 7.
    Tulloch JA, Macintosh D. “J”-type diabetes. Lancet. 1961;278(7194):119–21.CrossRefGoogle Scholar
  8. 8.
    De Zoysa VP. Clinical variations of the diabetic syndrome in a tropical country (Ceylon). AMA Arch Intern Med. 1951;88(6):812–8.CrossRefGoogle Scholar
  9. 9.
    Hugh-Jones P. Diabetes in Jamaica. Lancet. 1955;266(6896):891–7.CrossRefGoogle Scholar
  10. 10.
    Tripathy BB, Kar BC. Observations on clinical patterns of diabetes mellitus in India. Diabetes. 1965;14(7):404–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Mohan V, Mohan R, Susheela L, Snehalatha C, Bharani G, Mahajan VK, et al. Tropical pancreatic diabetes in South India: heterogeneity in clinical and biochemical profile. Diabetologia. 1985;28(4):229–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362(12):1090–101.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang L, Gao P, Zhang M, Huang Z, Zhang D, Deng Q, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA. 2017;317(24):2515–23.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Miyakawa M, Shimizu T, Van Dat N, Thanh P, Thuy PTP, Anh NTH, et al. Prevalence, perception and factors associated with diabetes mellitus among the adult population in central Vietnam: a population-based, cross-sectional seroepidemiological survey. BMC Public Health. 2017;17:298.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Akter S, Rahman MM, Abe SK, Sultana P. Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: a nationwide survey. Bull World Health Organ. 2014;92:204–213A.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    • Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, et al. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR–INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 2017;5(8):585–96. This study is the largest nationally representative study of diabetes in India to date. CrossRefPubMedGoogle Scholar
  17. 17.
    Binh TQ, Nhung BT. Prevalence and risk factors of type 2 diabetes in middle-aged women in Northern Vietnam. Int J Diabetes Dev Ctries. 2016;36(2):150–7.CrossRefGoogle Scholar
  18. 18.
    Hwang J, Shon C. Relationship between socioeconomic status and type 2 diabetes: results from Korea National Health and Nutrition Examination Survey (KNHANES) 2010–2012. BMJ Open. 2014;4(8):e005710.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bailey SL, Ayles H, Beyers N, Godfrey-Faussett P, Muyoyeta M, du Toit E, et al. Diabetes mellitus in Zambia and the Western Cape province of South Africa: prevalence, risk factors, diagnosis and management. Diabetes Res Clin Pract. 2016;118:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bahendeka S, Wesonga R, Mutungi G, Muwonge J, Neema S, Guwatudde D. Prevalence and correlates of diabetes mellitus in Uganda: a population-based national survey. Tropical Med Int Health. 2016;21(3):405–16.CrossRefGoogle Scholar
  21. 21.
    Little M, Humphries S, Patel K, Dodd W, Dewey C. Factors associated with glucose tolerance, pre-diabetes, and type 2 diabetes in a rural community of south India: a cross-sectional study. Diabetol Metab Syndr. 2016;8:21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hu Y, Teng W, Liu L, Chen K, Liu L, Hua R, et al. Prevalence and risk factors of diabetes and diabetic retinopathy in Liaoning Province, China: a population-based cross-sectional study. PLoS One. 2015 Mar 18;10(3):e0121477.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Uehara A, Kurotani K, Kochi T, Kuwahara K, Eguchi M, Imai T, et al. Prevalence of diabetes and pre-diabetes among workers: Japan Epidemiology Collaboration on Occupational Health Study. Diabetes Res Clin Pract. 2014;106(1):118–27.CrossRefPubMedGoogle Scholar
  24. 24.
    Araneta MRG, Kanaya AM, Hsu WC, Chang HK, Grandinetti A, Boyko EJ, et al. Optimum BMI cut points to screen Asian Americans for type 2 diabetes. Diabetes Care. 2015 May 1;38(5):814–20.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McNeely MJ, Boyko EJ. Type 2 diabetes prevalence in Asian Americans: results of a national health survey. Diabetes Care. 2004;27(1):66–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Chiu M, Austin PC, Manuel DG, Shah BR, Tu JV. Deriving ethnic-specific BMI cutoff points for assessing diabetes risk. Diabetes Care. 2011;34(8):1741–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hsia DS, Larrivee S, Cefalu WT, Johnson WD. Impact of lowering BMI cut points as recommended in the revised American Diabetes Association’s Standards of Medical Care in Diabetes—2015 on diabetes screening in Asian Americans. Diabetes Care. 2015;38(11):2166–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Saad MF, Knowler WC, Pettitt DJ, Nelson RG, Charles MA, Bennett HP. A two-step model for development of non-insulin-dependent diabetes. Am J Med. 1991;90(1):229–35.CrossRefPubMedGoogle Scholar
  29. 29.
    Kasuga M. Insulin resistance and pancreatic cell failure. J Clin Invest. 2006;116(7):1756–60.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Banerji MA, Faridi N, Atluri R, Chaiken RL, Lebovitz HE. Body composition, visceral fat, leptin, and insulin resistance in Asian Indian men. J Clin Endocrinol Metab. 1999;84(1):137–44.PubMedGoogle Scholar
  31. 31.
    Boyko EJ, Fujimoto WY, Leonetti DL, Newell-Morris L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care. 2000;23(4):465–71.CrossRefPubMedGoogle Scholar
  32. 32.
    Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon K-H, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–40.CrossRefPubMedGoogle Scholar
  33. 33.
    Tanaka S, Horimai C, Katsukawa F. Ethnic differences in abdominal visceral fat accumulation between Japanese, African-Americans, and Caucasians: a meta-analysis. Acta Diabetol. 2003;40(1):s302–4.CrossRefPubMedGoogle Scholar
  34. 34.
    Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr. 2007;86(2):353–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Park Y-W, Allison DB, Heymsfield SB, Gallagher D. Larger amounts of visceral adipose tissue in Asian Americans. Obes Res. 2001;9(7):381–7.CrossRefPubMedGoogle Scholar
  36. 36.
    Kadowaki T, Sekikawa A, Murata K, Maegawa H, Takamiya T, Okamura T, et al. Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int J Obes. 2006;30(7):1163–5.CrossRefGoogle Scholar
  37. 37.
    Rush E, Plank L, Chandu V, Laulu M, Simmons D, Swinburn B, et al. Body size, body composition, and fat distribution: a comparison of young New Zealand men of European, Pacific Island, and Asian Indian ethnicities. N Z Med J Online Christch. 2004;117(1207):U1203.Google Scholar
  38. 38.
    Ali MK, Singh K, Kondal D, Devarajan R, Patel SA, Shivashankar R, et al. Effectiveness of a multicomponent quality improvement strategy to improve achievement of diabetes care goals: a randomized, controlled trial. Ann Intern Med. 2016;165(6):399–408.CrossRefPubMedGoogle Scholar
  39. 39.
    Sakurai M, Miura K, Takamura T, Ishizaki M, Morikawa Y, Nakamura K, et al. J-shaped relationship between waist circumference and subsequent risk for type 2 diabetes: an 8-year follow-up of relatively lean Japanese individuals. Diabet Med. 2009;26(8):753–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Kuwahara K, Honda T, Nakagawa T, Yamamoto S, Hayashi T, Mizoue T. Body mass index trajectory patterns and changes in visceral fat and glucose metabolism before the onset of type 2 diabetes. Sci Rep 2017;7.Google Scholar
  41. 41.
    Chan WB, Tong PCY, Chow CC, So WY, Ng MCY, Ma RCW, et al. The associations of body mass index, C-peptide and metabolic status in Chinese type 2 diabetic patients. Diabet Med J Br Diabet Assoc. 2004;21(4):349–53.CrossRefGoogle Scholar
  42. 42.
    Wang J, Yan R, Wen J, Kong X, Li H, Zhou P, et al. Association of lower body mass index with increased glycemic variability in patients with newly diagnosed type 2 diabetes: a cross-sectional study in China. Oncotarget 2017;8(42):73133.Google Scholar
  43. 43.
    Tatsumi Y, Morimoto A, Miyamatsu N, Noda M, Ohno Y, Deura K. Effect of body mass index on insulin secretion or sensitivity and diabetes. Am J Prev Med. 2015;48(2):128–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Staimez LR, Deepa M, Ali MK, Mohan V, Hanson RL. The tale of two Indians: a comparison of beta-cell function and insulin resistance between Pima Indians and Asian Indians. In: Diabetes Amer Diabetes Assoc 1701 N BEAUREGARD St, Alexandria, VA 22311–1717 USA; 2014. p. A400–A400.Google Scholar
  45. 45.
    Staimez LR, Weber MB, Ranjani H, Ali MK, Echouffo-Tcheugui JB, Phillips LS, et al. Evidence of reduced β-cell function in Asian Indians with mild dysglycemia. Diabetes Care. 2013;36(9):2772–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mohan V, Amutha A, Ranjani H, Unnikrishnan R, Datta M, Anjana RM, et al. Associations of β-cell function and insulin resistance with youth-onset type 2 diabetes and prediabetes among Asian Indians. Diabetes Technol Ther. 2013;15(4):315–22.CrossRefPubMedGoogle Scholar
  47. 47.
    Gujral UP, Narayan KM, Kahn SE, Kanaya AM. The relative associations of β-cell function and insulin sensitivity with glycemic status and incident glycemic progression in migrant Asian Indians in the United States: the MASALA study. J Diabetes Complicat. 2014;28(1):45–50.CrossRefPubMedGoogle Scholar
  48. 48.
    Gray LJ, Yates T, Davies MJ, Brady E, Webb DR, Sattar N, et al. Defining obesity cut-off points for migrant South Asians. PLoS One. 2011 Oct 19;6(10):e26464.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ntuk UE, Gill JM, Mackay DF, Sattar N, Pell JP. Ethnic-specific obesity cutoffs for diabetes risk: cross-sectional study of 490,288 UK biobank participants. Diabetes Care. 2014;37(9):2500–7.CrossRefPubMedGoogle Scholar
  50. 50.
    L h L. Decreased birthweights in infants after maternal in utero exposure to the Dutch famine of 1944–1945. Paediatr Perinat Epidemiol. 1992;6(2):240–53.CrossRefGoogle Scholar
  51. 51.
    Jensen CB, Storgaard H, Dela F, Holst JJ, Madsbad S, Vaag AA. Early differential defects of insulin secretion and action in 19-year-old Caucasian men who had low birth weight. Diabetes. 2002;51(4):1271–80.CrossRefPubMedGoogle Scholar
  52. 52.
    Li C, Johnson MS, Goran MI. Effects of low birth weight on insulin resistance syndrome in Caucasian and African-American children. Diabetes Care. 2001;24(12):2035–42.CrossRefPubMedGoogle Scholar
  53. 53.
    Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165(8):849–57.CrossRefPubMedGoogle Scholar
  54. 54.
    Wei J-N, Sung F-C, Li C-Y, Chang C-H, Lin R-S, Lin C-C, et al. Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care. 2003;26(2):343–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Lumey LH, Khalangot MD, Vaiserman AM. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932–33: a retrospective cohort study. Lancet Diabetes Endocrinol. 2015;3(10):787–94.CrossRefPubMedGoogle Scholar
  56. 56.
    de RSR, Painter RC, Roseboom TJ, Phillips DIW, Osmond C, Barker DJP, et al. Glucose tolerance at age 58 and the decline of glucose tolerance in comparison with age 50 in people prenatally exposed to the Dutch famine. Diabetologia. 2006;49(4):637–43.CrossRefGoogle Scholar
  57. 57.
    de RSR, Painter RC, Phillips DIW, Osmond C, Michels RPJ, Godsland IF, et al. Impaired insulin secretion after prenatal exposure to the Dutch famine. Diabetes Care. 2006;29(8):1897–901.CrossRefGoogle Scholar
  58. 58.
    Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335–41.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Li J, Liu S, Li S, Feng R, Na L, Chu X, et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a population-based cohort study of families in Suihua, China. Am J Clin Nutr 2016;ajcn138792.Google Scholar
  60. 60.
    Norris SA, Osmond C, Gigante D, Kuzawa CW, Ramakrishnan L, Lee NR, et al. Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care 2011;DC_110456.Google Scholar
  61. 61.
    Wang T, Huang T, Li Y, Zheng Y, Manson JE, Hu FB, et al. Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study. Diabetologia. 2016;59(9):1920–7.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kamal SMM, Hassan CH, Alam GM. Dual burden of underweight and overweight among women in Bangladesh: patterns, prevalence and sociodemographic correlates. J Health Popul Nutr. 2015;33(1):92–105.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Biswas T, Garnett SP, Pervin S, Rawal LB. The prevalence of underweight, overweight and obesity in Bangladeshi adults: data from a national survey. PLoS One. 2017;12(5):e0177395.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Min J, Zhao Y, Slivka L, Wang Y. Double burden of diseases worldwide: coexistence of undernutrition and overnutrition-related non-communicable chronic diseases. Obes Rev. 2018;19(1):49–61.CrossRefPubMedGoogle Scholar
  65. 65.
    Hanandita W, Tampubolon G. The double burden of malnutrition in Indonesia: social determinants and geographical variations. SSM - Popul Health. 2015;1:16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tan S-T, Scott W, Panoulas V, Sehmi J, Zhang W, Scott J, et al. Coronary heart disease in Indian Asians. Glob Cardiol Sci Pract. 2014;2014(1):4.CrossRefGoogle Scholar
  67. 67.
    Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chambers JC, Loh M, Lehne B, Drong A, Kriebel J, Motta V, et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet Diabetes Endocrinol 2015;3(7):526–534.Google Scholar
  69. 69.
    Low birthweight [Internet]. UNICEF DATA. [cited 2018 Mar 5]. Available from: https://data.unicef.org/topic/nutrition/low-birthweight/.
  70. 70.
    Doehner W, Erdmann E, Cairns R, Clark AL, Dormandy JA, Ferrannini E, et al. Inverse relation of body weight and weight change with mortality and morbidity in patients with type 2 diabetes and cardiovascular co-morbidity: an analysis of the PROactive study population. Int J Cardiol. 2012;162(1):20–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Logue J, Walker JJ, Leese G, Lindsay R, McKnight J, Morris A, et al. Association between BMI measured within a year after diagnosis of type 2 diabetes and mortality. Diabetes Care. 2013;36(4):887–93.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Carnethon MR, De Chavez PJD, Biggs ML, Lewis CE, Pankow JS, Bertoni AG, et al. Association of weight status with mortality in adults with incident diabetes. JAMA. 2012;308(6):581–90.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Tobias DK, Pan A, Jackson CL, O’reilly EJ, Ding EL, Willett WC, et al. Body-mass index and mortality among adults with incident type 2 diabetes. N Engl J Med. 2014;370(3):233–44.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yu E, Ley SH, Manson JE, Willett W, Satija A, Hu FB, et al. Weight history and all-cause and cause-specific mortality in three prospective cohort studies. Ann Intern Med. 2017;166(9):613–20.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
  76. 76.
    Siu AL. Screening for abnormal blood glucose and type 2 diabetes mellitus: U.S. Preventive Services Task Force recommendation statement screening for abnormal blood glucose and type 2 diabetes mellitus. Ann Intern Med. 2015;163(11):861–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Katulanda P, Hill NR, Stratton I, Sheriff R, De Silva SDN, Matthews DR. Development and validation of a diabetes risk score for screening undiagnosed diabetes in Sri Lanka (SLDRISK). BMC Endocr Disord. 2016;16:42.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nanri A, Nakagawa T, Kuwahara K, Yamamoto S, Honda T, Okazaki H, et al. Development of risk score for predicting 3-year incidence of type 2 diabetes: Japan Epidemiology Collaboration on Occupational Health Study. PLoS One. 2015;10(11):e0142779.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Organization WH. Screening for type 2 diabetes: report of a World Health Organization and International Diabetes Federation meeting. 2003Google Scholar
  80. 80.
    Group TDPP (DPP) R. The diabetes prevention program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71.CrossRefGoogle Scholar
  81. 81.
    Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS). Diabetes Care. 2003;26(12):3230–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Eriksson K-F, Lindgärde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise: the 6-year Malmö feasibility study. Diabetologia. 1991;34(12):891–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49(2):289–97.CrossRefPubMedGoogle Scholar
  84. 84.
    Li G, Zhang P, Wang J, Gregg EW, Yang W, Gong Q, et al. The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study. Lancet. 2008;371(9626):1783–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Sakane N, Sato J, Tsushita K, Tsujii S, Kotani K, Tsuzaki K, et al. Prevention of type 2 diabetes in a primary healthcare setting: three-year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health. 2011 Jan 17;11:40.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Balagopal P, Kamalamma N, Patel TG, Misra R. A community-based diabetes prevention and management education program in a rural village in India. Diabetes Care. 2008;31(6):1097–104.CrossRefPubMedGoogle Scholar
  87. 87.
    Balagopal P, Kamalamma N, Patel TG, Misra R. A community-based participatory diabetes prevention and management intervention in rural India using community health workers. Diabetes Educ. 2012;38(6):822–34.CrossRefPubMedGoogle Scholar
  88. 88.
    Bailey CJ. Metformin: historical overview. Diabetologia. 2017 Sep 1;60(9):1566–76.CrossRefPubMedGoogle Scholar
  89. 89.
    •• van Raalte DH, Verchere CB. Improving glycaemic control in type 2 diabetes: stimulate insulin secretion or provide beta-cell rest? Diabetes Obes Metab. 2017;19(9):1205–13. This review presents the evidence for improving glycemic control either by stimulating insulin secretion or promoting beta-cell rest. This is something that is of importance but has not been heavily discussed in the literature thusfar. CrossRefPubMedGoogle Scholar
  90. 90.
    Boyko EJ, Gerstein HC, Mohan V, Yusuf S, Sheridan P, Anand S, et al. Effects of ethnicity on diabetes incidence and prevention: results of the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabet Med. 2010;27(11):1226–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Unjali P. Gujral
    • 1
    • 2
  • Mary Beth Weber
    • 1
    • 2
  • Lisa R. Staimez
    • 1
    • 2
  • K. M. Venkat Narayan
    • 1
    • 2
    • 3
  1. 1.Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaUSA
  2. 2.Emory Global Diabetes Research CenterEmory UniversityAtlantaUSA
  3. 3.School of MedicineEmory UniversityAtlantaUSA

Personalised recommendations