Skip to main content

Advertisement

Log in

Diabetic Kidney Disease: Is There a Role for Glycemic Variability?

  • Microvascular Complications—Nephropathy (M Afkarian and B Roshanravan, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetes is the leading cause of kidney disease globally. Diabetic kidney disease (DKD) is a heterogeneous disorder manifested as albuminuria and/or decreasing GFR. Hyperglycemic burden is the major contributor to the development of DKD. In this article, we review the evidence for the contribution of glycemic variability and the pitfalls associated with use of hemoglobin A1c (A1C), the gold standard for assessment of glucose control, in the setting of DKD.

Recent Findings

Glycemic variability, characterized by swings in blood glucose levels, can result in generation of mitochondrial reactive oxygen species, a putative inciting factor for hyperglycemia-induced alterations in intracellular metabolic pathways. While there is indirect evidence supporting the role of glycemic variability in the pathogenesis of DKD, definitive data are lacking. A1C has many limitations and is a particularly suboptimal measure in patients with kidney disease, because its accuracy is compromised by variables affecting RBC survival and other factors. Continuous glucose monitoring (CGM) technology has the potential to enable us to use glucose as a more important clinical tool, for a more definitive understanding of glucose variability and its role in DKD.

Summary

Glycemic variability may be a factor in the development of DKD, but definitive evidence is lacking. Currently, all available glycemic biomarkers, including A1C, have limitations and in the setting of DKD and should be used cautiously. Emerging data suggest that personal and professional CGM will play an important role in managing diabetes in patients with DKD, where risk of hypoglycemia is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Afkarian M, Zelnick LR, Hall YN, Heagerty PJ, Tuttle K, Weiss NS, et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA. 2016;316(6):602–10. https://doi.org/10.1001/jama.2016.10924.

    Article  PubMed  PubMed Central  Google Scholar 

  2. de Boer IH. A new chapter for diabetic kidney disease. N Engl J Med. 2017;377(9):885–7.

    Article  PubMed  Google Scholar 

  3. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002-2012. N Engl J Med. 2017;376(15):1419–29. https://doi.org/10.1056/NEJMoa1610187.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. JAMA. 2015;314(10):1021–9. https://doi.org/10.1001/jama.2015.10029.

    Article  CAS  PubMed  Google Scholar 

  5. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124(6):2333–40. https://doi.org/10.1172/JCI72271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015;1:15018. A comprehensive review on diabetic kidney disease.

    Article  PubMed  Google Scholar 

  7. Pirart J. Glycaemic control and development of diabetic nephropathy. Acta Endocrinol Suppl (Copenh). 1981;242:41–2.

    CAS  Google Scholar 

  8. Diabetes C, Complications Trial Research G, Nathan DM, Genuth S, Lachin J, Cleary P, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86. https://doi.org/10.1056/NEJM199309303291401.

    Article  Google Scholar 

  9. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88.

    Article  CAS  PubMed  Google Scholar 

  10. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood). 2008;233(1):4–11. https://doi.org/10.3181/0705-MR-134.

    Article  CAS  Google Scholar 

  11. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes. 2009;58(5):1229–36. https://doi.org/10.2337/db08-1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25. https://doi.org/10.2337/diabetes.54.6.1615.

    Article  CAS  PubMed  Google Scholar 

  13. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20. https://doi.org/10.1038/414813a.

    Article  CAS  PubMed  Google Scholar 

  14. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45. https://doi.org/10.2337/diabetes.49.11.1939.

    Article  CAS  PubMed  Google Scholar 

  15. Susztak K, Raff AC, Schiffer M, Bottinger EP. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55(1):225–33. https://doi.org/10.2337/diabetes.55.01.06.db05-0894.

    Article  CAS  PubMed  Google Scholar 

  16. Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, et al. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes. 2008;57(5):1349–54. https://doi.org/10.2337/db08-0063.

    Article  CAS  PubMed  Google Scholar 

  17. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7. https://doi.org/10.1001/jama.295.14.1681.

    Article  CAS  PubMed  Google Scholar 

  18. Wentholt IM, Kulik W, Michels RP, Hoekstra JB, DeVries JH. Glucose fluctuations and activation of oxidative stress in patients with type 1 diabetes. Diabetologia. 2008;51(1):183–90. https://doi.org/10.1007/s00125-007-0842-6.

    Article  CAS  PubMed  Google Scholar 

  19. Waden J, Forsblom C, Thorn LM, Gordin D, Saraheimo M, Groop PH, et al. A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes. 2009;58(11):2649–55. https://doi.org/10.2337/db09-0693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin CC, Chen CC, Chen FN, Li CI, Liu CS, Lin WY, et al. Risks of diabetic nephropathy with variation in hemoglobin A1c and fasting plasma glucose. Am J Med. 2013;126(11):1017 e1–10.

    Article  Google Scholar 

  21. Sugawara A, Kawai K, Motohashi S, Saito K, Kodama S, Yachi Y, et al. HbA(1c) variability and the development of microalbuminuria in type 2 diabetes: Tsukuba Kawai Diabetes Registry 2. Diabetologia. 2012;55(8):2128–31. https://doi.org/10.1007/s00125-012-2572-7.

    Article  CAS  PubMed  Google Scholar 

  22. Penno G, Solini A, Bonora E, Fondelli C, Orsi E, Zerbini G, et al. HbA1c variability as an independent correlate of nephropathy, but not retinopathy, in patients with type 2 diabetes: the Renal Insufficiency And Cardiovascular Events (RIACE) Italian multicenter study. Diabetes Care. 2013;36(8):2301–10. https://doi.org/10.2337/dc12-2264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Downie E, Craig ME, Hing S, Cusumano J, Chan AK, Donaghue KC. Continued reduction in the prevalence of retinopathy in adolescents with type 1 diabetes: role of insulin therapy and glycemic control. Diabetes Care. 2011;34(11):2368–73. https://doi.org/10.2337/dc11-0102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kilpatrick ES, Rigby AS, Atkin SL. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care. 2006;29(7):1486–90. https://doi.org/10.2337/dc06-0293.

    Article  CAS  PubMed  Google Scholar 

  25. Kilpatrick ES, Rigby AS, Atkin SL. A1C variability and the risk of microvascular complications in type 1 diabetes: data from the diabetes control and complications trial. Diabetes Care. 2008;31(11):2198–202. https://doi.org/10.2337/dc08-0864.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kilpatrick ES, Rigby AS, Atkin SL. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care. 2009;32(10):1901–3. https://doi.org/10.2337/dc09-0109.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lachin JM, Bebu I, Bergenstal RM, Pop-Busui R, Service FJ, Zinman B, et al. Association of glycemic variability in type 1 diabetes with progression of microvascular outcomes in the diabetes control and complications trial. Diabetes Care. 2017;40(6):777–83. https://doi.org/10.2337/dc16-2426.

    Article  PubMed  Google Scholar 

  28. Mirani M, Berra C, Finazzi S, Calvetta A, Radaelli MG, Favareto F, et al. Inter-day glycemic variability assessed by continuous glucose monitoring in insulin-treated type 2 diabetes patients on hemodialysis. Diabetes Technol Ther. 2010;12(10):749–53. https://doi.org/10.1089/dia.2010.0052.

    Article  CAS  PubMed  Google Scholar 

  29. Lung TW, Petrie D, Herman WH, Palmer AJ, Svensson AM, Eliasson B, et al. Severe hypoglycemia and mortality after cardiovascular events for type 1 diabetic patients in Sweden. Diabetes Care. 2014;37(11):2974–81. https://doi.org/10.2337/dc14-0405.

    Article  CAS  PubMed  Google Scholar 

  30. Lind M, Svensson AM, Kosiborod M, Gudbjornsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371(21):1972–82. https://doi.org/10.1056/NEJMoa1408214.

    Article  PubMed  Google Scholar 

  31. Robinson RT, Harris ND, Ireland RH, Macdonald IA, Heller SR. Changes in cardiac repolarization during clinical episodes of nocturnal hypoglycaemia in adults with type 1 diabetes. Diabetologia. 2004;47(2):312–5. https://doi.org/10.1007/s00125-003-1292-4.

    Article  CAS  PubMed  Google Scholar 

  32. Frier BM, Schernthaner G, Heller SR. Hypoglycemia and cardiovascular risks. Diabetes Care. 2011;34(Suppl 2):S132–7. https://doi.org/10.2337/dc11-s220.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ceriello A, Novials A, Ortega E, La Sala L, Pujadas G, Testa R, et al. Evidence that hyperglycemia after recovery from hypoglycemia worsens endothelial function and increases oxidative stress and inflammation in healthy control subjects and subjects with type 1 diabetes. Diabetes. 2012;61(11):2993–7. https://doi.org/10.2337/db12-0224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abe M, Kalantar-Zadeh K. Haemodialysis-induced hypoglycaemia and glycaemic disarrays. Nat Rev Nephrol. 2015;11(5):302–13. https://doi.org/10.1038/nrneph.2015.38.

    Article  CAS  PubMed  Google Scholar 

  35. Raimann JG, Kruse A, Thijssen S, Kuntsevich V, Dabel P, Bachar M, et al. Metabolic effects of dialyzate glucose in chronic hemodialysis: results from a prospective, randomized crossover trial. Nephrol Dial Transplant. 2012;27(4):1559–68. https://doi.org/10.1093/ndt/gfr520.

    Article  CAS  PubMed  Google Scholar 

  36. Kazempour-Ardebili S, Lecamwasam VL, Dassanyake T, Frankel AH, Tam FW, Dornhorst A, et al. Assessing glycemic control in maintenance hemodialysis patients with type 2 diabetes. Diabetes Care. 2009;32(7):1137–42. https://doi.org/10.2337/dc08-1688.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ricks J, Molnar MZ, Kovesdy CP, Shah A, Nissenson AR, Williams M, et al. Glycemic control and cardiovascular mortality in hemodialysis patients with diabetes: a 6-year cohort study. Diabetes. 2012;61(3):708–15. https://doi.org/10.2337/db11-1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chu YW, Lin HM, Wang JJ, Weng SF, Lin CC, Chien CC. Epidemiology and outcomes of hypoglycemia in patients with advanced diabetic kidney disease on dialysis: a national cohort study. PLoS One. 2017;12(3):e0174601. https://doi.org/10.1371/journal.pone.0174601.

    Article  PubMed  PubMed Central  Google Scholar 

  39. American Diabetes A. 6. Glycemic Targets. Diabetes Care. 2017;40(Suppl 1):S48–56. https://doi.org/10.2337/dc17-S009.

    Article  Google Scholar 

  40. Bergenstal RM, Gal RL, Connor CG, Gubitosi-Klug R, Kruger D, Olson BA, et al. Racial differences in the relationship of glucose concentrations and hemoglobin A1c levels. Ann Intern Med. 2017;167(2):95–102. https://doi.org/10.7326/M16-2596.

    Article  PubMed  Google Scholar 

  41. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Article  Google Scholar 

  42. Ansari A, Thomas S, Goldsmith D. Assessing glycemic control in patients with diabetes and end-stage renal failure. Am J Kidney Dis. 2003;41(3):523–31. https://doi.org/10.1053/ajkd.2003.50114.

    Article  PubMed  Google Scholar 

  43. Sharif A, Baboolal K. Diagnostic application of the A(1c) assay in renal disease. J Am Soc Nephrol. 2010;21(3):383–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Herman WH, Ma Y, Uwaifo G, Haffner S, Kahn SE, Horton ES, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care. 2007;30(10):2453–7. https://doi.org/10.2337/dc06-2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herman WH. Do race and ethnicity impact hemoglobin A1c independent of glycemia? J Diabetes Sci Technol. 2009;3(4):656–60. https://doi.org/10.1177/193229680900300406.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wright LA, Hirsch IB. Metrics beyond hemoglobin A1C in diabetes management: time in range, hypoglycemia, and other parameters. Diabetes Technol Ther. 2017;19(S2):S16–26. https://doi.org/10.1089/dia.2017.0029.

    Article  PubMed  Google Scholar 

  47. Vos FE, Schollum JB, Coulter CV, Doyle TC, Duffull SB, Walker RJ. Red blood cell survival in long-term dialysis patients. Am J Kidney Dis. 2011;58(4):591–8. https://doi.org/10.1053/j.ajkd.2011.03.031.

    Article  PubMed  Google Scholar 

  48. Nakao T, Matsumoto H, Okada T, Han M, Hidaka H, Yoshino M, et al. Influence of erythropoietin treatment on hemoglobin A1c levels in patients with chronic renal failure on hemodialysis. Intern Med. 1998;37(10):826–30. https://doi.org/10.2169/internalmedicine.37.826.

    Article  CAS  PubMed  Google Scholar 

  49. Uzu T, Hatta T, Deji N, Izumiya T, Ueda H, Miyazawa I, et al. Target for glycemic control in type 2 diabetic patients on hemodialysis: effects of anemia and erythropoietin injection on hemoglobin A(1c). Ther Apher Dial. 2009;13(2):89–94. https://doi.org/10.1111/j.1744-9987.2009.00661.x.

    Article  CAS  PubMed  Google Scholar 

  50. Spencer DH, Grossman BJ, Scott MG. Red cell transfusion decreases hemoglobin A1c in patients with diabetes. Clin Chem. 2011;57(2):344–6. https://doi.org/10.1373/clinchem.2010.157321.

    Article  CAS  PubMed  Google Scholar 

  51. Inaba M, Okuno S, Kumeda Y, Yamada S, Imanishi Y, Tabata T, et al. Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection. J Am Soc Nephrol. 2007;18(3):896–903. https://doi.org/10.1681/ASN.2006070772.

    Article  CAS  PubMed  Google Scholar 

  52. Batacchi ZAI, Zelnick L, Robinson-Cohen C, Healy J, Henry C, Robinson N, et al. Accuracy of glycosylated hemoglobin in chronic kidney disease. Diabetes. 2017;67(Suppl 1):LB7.

    Google Scholar 

  53. •• Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med. 2014;29(2):388–94. A detailed review of inaccuracies in A1C measurements.

    Article  PubMed  Google Scholar 

  54. Selvin E, Rawlings AM, Grams M, Klein R, Steffes M, Coresh J. Association of 1,5-anhydroglucitol with diabetes and microvascular conditions. Clin Chem. 2014;60(11):1409–18. https://doi.org/10.1373/clinchem.2014.229427.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hirsch IB. Professional flash continuous glucose monitoring as a supplement to A1C in primary care. Postgrad Med. 2017;1–10.

  56. Lacy ME, Wellenius GA, Sumner AE, Correa A, Carnethon MR, Liem RI, et al. Association of sickle cell trait with hemoglobin A1c in African Americans. JAMA. 2017;317(5):507–15. https://doi.org/10.1001/jama.2016.21035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lind M, Polonsky W, Hirsch IB, Heise T, Bolinder J, Dahlqvist S, et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA. 2017;317(4):379–87. https://doi.org/10.1001/jama.2016.19976.

    Article  CAS  PubMed  Google Scholar 

  58. Beck RW, Riddlesworth TD, Ruedy K, Ahmann A, Haller S, Kruger D, et al. Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections: a randomized trial. Ann Intern Med. 2017;167(6):365–74. https://doi.org/10.7326/M16-2855.

    Article  PubMed  Google Scholar 

  59. Carlson AL, Mullen DM, Bergenstal RM. Clinical use of continuous glucose monitoring in adults with type 2 diabetes. Diabetes Technol Ther. 2017;19(S2):S4–S11. https://doi.org/10.1089/dia.2017.0024.

    Article  PubMed  Google Scholar 

  60. Joubert M, Fourmy C, Henri P, Ficheux M, Lobbedez T, Reznik Y. Effectiveness of continuous glucose monitoring in dialysis patients with diabetes: the DIALYDIAB pilot study. Diabetes Res Clin Pract. 2015;107(3):348–54. https://doi.org/10.1016/j.diabres.2015.01.026.

    Article  CAS  PubMed  Google Scholar 

  61. Yeoh EC, Lim BK, Fun S, Tong J, Yeoh LY, Sum CF, et al. Efficacy of self-monitoring of blood glucose versus retrospective continuous glucose monitoring in improving glycaemic control in diabetic kidney disease patients. Nephrology (Carlton). 2016. https://doi.org/10.1111/nep.12978.

  62. •• Hirsch IB, Verderese CA. Professional continuous flash glucose monitoring with ambulatory glucose profile reporting to supplement A1c: rationale and practical implementation. Endocr Pract. 2017. This article explains flash glucose monitoring, its clinical use, data interpretation, and benefits for use in patients with type 1 and type 2 diabetes.

  63. Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kroger J, Weitgasser R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet. 2016;388(10057):2254–63. https://doi.org/10.1016/S0140-6736(16)31535-5.

    Article  PubMed  Google Scholar 

  64. Haak T, Hanaire H, Ajjan R, Hermanns N, Riveline JP, Rayman G. Use of flash glucose-sensing technology for 12 months as a replacement for blood glucose monitoring in insulin-treated type 2 diabetes. Diabetes Ther. 2017;8(3):573–86. https://doi.org/10.1007/s13300-017-0255-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savitha Subramanian.

Ethics declarations

Conflict of Interest

Savitha Subramanian reports personal fees from Intarcia Pharmaceuticals and Akcea Therapeutics and grants from Ionis Pharmaceuticals.

Irl B. Hirsch reports grants from Medtronic Diabetes and Novo Nordisk and personal fees from Abbott Diabetes Care, Adocia, Intarcia, Roche, and Valeritas.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, S., Hirsch, I.B. Diabetic Kidney Disease: Is There a Role for Glycemic Variability?. Curr Diab Rep 18, 13 (2018). https://doi.org/10.1007/s11892-018-0979-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-0979-3

Keywords

Navigation