Advertisement

Current Diabetes Reports

, 17:116 | Cite as

Gene Editing and Human Pluripotent Stem Cells: Tools for Advancing Diabetes Disease Modeling and Beta-Cell Development

  • Katelyn Millette
  • Senta Georgia
Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Abstract

Purpose of Review

This review will focus on the multiple approaches to gene editing and address the potential use of genetically modified human pluripotent stem cell-derived beta cells (SC-β) as a tool to study human beta-cell development and model their function in diabetes. We will explore how new variations of CRISPR/Cas9 gene editing may accelerate our understanding of beta-cell developmental biology, elucidate novel mechanisms that establish and regulate beta-cell function, and assist in pioneering new therapeutic modalities for treating diabetes.

Recent Findings

Improvements in CRISPR/Cas9 target specificity and homology-directed recombination continue to advance its use in engineering stem cells to model and potentially treat disease. We will review how CRISPR/Cas9 gene editing is informing our understanding of beta-cell development and expanding the therapeutic possibilities for treating diabetes and other diseases.

Summary

Here we focus on the emerging use of gene editing technology, specifically CRISPR/Cas9, as a means of manipulating human gene expression to gain novel insights into the roles of key factors in beta-cell development and function. Taken together, the combined use of SC-β cells and CRISPR/Cas9 gene editing will shed new light on human beta-cell development and function and accelerate our progress towards developing new therapies for patients with diabetes.

Keywords

Diabetes Gene editing CRISPR/Cas9 Pluripotent stem cells Cellular therapy Disease modeling Beta cells Insulin 

Abbreviations

iPSC

Induced pluripotent stem cell

SC-β

Human pluripotent stem cell-derived beta cells

hPSC

Human pluripotent stem cell

ESC

Embryonic stem cell

HR

Homologous recombination

NHEJ

Non-homologous end-joining

ZFN

Zinc finger nucleases

TALEN

Transcription activator-like effector nucleases

CRISPR

Clustered regularly interspaced short palindromic repeats

sgRNA

Single-guide RNA

DSB

Double-strand break

GWAS

Genome-wide association study

Notes

Acknowledgements

We thank Cristy Lytal for her help in editing the manuscript. SG was supported by a Larry L. Hillblom Foundation grant (2015-D-006-SUP) and a California Institute for Regenerative Medicine Discovery grant (DISC1-088680).

Compliance with Ethical Standards

Conflict of Interest

Katelyn Millette and Senta Georgia declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 1985;4(2):110–25.PubMedGoogle Scholar
  3. 3.
    Kloppel G, Drenck CR, Oberholzer M, Heitz PU. Morphometric evidence for a striking B-cell reduction at the clinical onset of type 1 diabetes. Virchows Archiv A, Pathol Anat Histopathol. 1984;403(4):441–52.CrossRefGoogle Scholar
  4. 4.
    Balboa D, Otonkoski T. Human pluripotent stem cell based islet models for diabetes research. Best Pract Res Clin Endocrinol Metab. 2015;29(6):899–909.  https://doi.org/10.1016/j.beem.2015.10.012.PubMedCrossRefGoogle Scholar
  5. 5.
    Hayek A, King CC. Brief review: cell replacement therapies to treat type 1 diabetes mellitus. Clin Diabetes Endocrinol. 2016;2(1):4.  https://doi.org/10.1186/s40842-016-0023-y.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nair G, Hebrok M. Islet formation in mice and men: lessons for the generation of functional insulin-producing beta-cells from human pluripotent stem cells. Curr Opin Genet Dev. 2015;32:171–80.  https://doi.org/10.1016/j.gde.2015.03.004.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Quiskamp N, Bruin JE, Kieffer TJ. Differentiation of human pluripotent stem cells into beta-cells: Potential and challenges. Best Pract Res Clin Endocrinol Metab. 2015;29(6):833–47.  https://doi.org/10.1016/j.beem.2015.10.011.PubMedCrossRefGoogle Scholar
  8. 8.
    Schiesser JV, Wells JM. Generation of beta cells from human pluripotent stem cells: are we there yet? Ann N Y Acad Sci. 2014;1311:124–37.  https://doi.org/10.1111/nyas.12369.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tan G, Elefanty AG, Stanley EG. beta-cell regeneration and differentiation: how close are we to the 'holy grail'? J Mol Endocrinol. 2014;53(3):R119–29.  https://doi.org/10.1530/jme-14-0188.PubMedCrossRefGoogle Scholar
  10. 10.
    Tse HM, Kozlovskaya V, Kharlampieva E, Hunter CS. Minireview: Directed Differentiation and Encapsulation of Islet beta-Cells-Recent Advances and Future Considerations. Mo Endocrinol (Baltimore, Md). 2015;29(10):1388–99.  https://doi.org/10.1210/me.2015-1085.CrossRefGoogle Scholar
  11. 11.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science (New York, NY). 1998;282(5391):1145–7.CrossRefGoogle Scholar
  12. 12.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRefGoogle Scholar
  13. 13.
    •• Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33.  https://doi.org/10.1038/nbt.3033. http://www.nature.com/nbt/journal/v32/n11/abs/nbt.3033.html - supplementary-information. One of two prevailing protocols for generating glucose responsive SC-β in vitro PubMedCrossRefGoogle Scholar
  14. 14.
    Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–39.  https://doi.org/10.1016/j.cell.2014.09.040.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, et al. Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J. 2015;34(13):1759–72.  10.15252/embj.201591058.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L. Noggin, retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology. 2010;138(7):2233–2245, 45.e1-14.  https://doi.org/10.1053/j.gastro.2010.02.056.PubMedCrossRefGoogle Scholar
  17. 17.
    Micallef SJ, Janes ME, Knezevic K, Davis RP, Elefanty AG, Stanley EG. Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes. 2005;54(2):301–5.PubMedCrossRefGoogle Scholar
  18. 18.
    D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41.  https://doi.org/10.1038/nbt1163.PubMedCrossRefGoogle Scholar
  19. 19.
    D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.  https://doi.org/10.1038/nbt1259.PubMedCrossRefGoogle Scholar
  20. 20.
    Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52.  https://doi.org/10.1038/nbt1393.PubMedCrossRefGoogle Scholar
  21. 21.
    Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29.  https://doi.org/10.2337/db11-1711.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One. 2012;7(5):e37004.  https://doi.org/10.1371/journal.pone.0037004.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Liang F, Han M, Romanienko PJ, Jasin M. Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. 1998;95(9):5172–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci. 1996;93(3):1156–60.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.  https://doi.org/10.1534/genetics.111.131433.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Segal DJ, Crotty JW, Bhakta MS, Barbas CF 3rd, Horton NC. Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. J Mol Biol. 2006;363(2):405–21.  https://doi.org/10.1016/j.jmb.2006.08.016.PubMedCrossRefGoogle Scholar
  28. 28.
    Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005;23(8):967–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Isalan M. Zinc-finger nucleases: how to play two good hands. Nat Methods. 2011;9(1):32–4.  https://doi.org/10.1038/nmeth.1805.PubMedCrossRefGoogle Scholar
  30. 30.
    Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, et al. Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31(2):294–301.  https://doi.org/10.1016/j.molcel.2008.06.016.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, et al. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 2008;5(5):374–5.  https://doi.org/10.1038/nmeth0508-374.PubMedCrossRefGoogle Scholar
  32. 32.
    Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S. Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun. 2005;334(4):1191–7.  https://doi.org/10.1016/j.bbrc.2005.07.021.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29(9):816–23.  https://doi.org/10.1038/nbt.1948.PubMedCrossRefGoogle Scholar
  35. 35.
    Hofer U, Henley JE, Exline CM, Mulhern O, Lopez E, Cannon PM. Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc finger nucleases using humanized mice. J Infect Dis. 2013;208(Suppl 2):S160–4.  https://doi.org/10.1093/infdis/jit382.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10.  https://doi.org/10.1056/NEJMoa1300662.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science (New York, NY). 2009;326(5959):1509–12.  https://doi.org/10.1126/science.1178811.CrossRefGoogle Scholar
  38. 38.
    Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science (New York, NY). 2009;326(5959):1501.  https://doi.org/10.1126/science.1178817.CrossRefGoogle Scholar
  39. 39.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.  https://doi.org/10.1038/nbt.1755.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. 2011;29(2):149–53.  https://doi.org/10.1038/nbt.1775.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93.  https://doi.org/10.1093/nar/gkr597.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Reyon D, Khayter C, Regan MR, Joung JK, Sander JD. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Current protocols in molecular biology. 2012;Chapter 12:Unit 12 5. doi:10.1002/0471142727.mb1215s100.Google Scholar
  43. 43.
    Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31.  https://doi.org/10.1038/nm.3793.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Bultmann S, Morbitzer R, Schmidt CS, Thanisch K, Spada F, Elsaesser J, et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res. 2012;40(12):5368–77.  https://doi.org/10.1093/nar/gks199.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res. 2012;40(15):e117.  https://doi.org/10.1093/nar/gks624.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, et al. A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. 2013;31(3):251–8.  https://doi.org/10.1038/nbt.2517.PubMedCrossRefGoogle Scholar
  47. 47.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science (New York, NY). 2007;315(5819):1709–12.  https://doi.org/10.1126/science.1138140.CrossRefGoogle Scholar
  48. 48.
    Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010;11(3):181–90.  https://doi.org/10.1038/nrg2749.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiol (Reading, England). 2005;151(Pt 8):2551–61.  https://doi.org/10.1099/mic.0.28048-0.Google Scholar
  50. 50.
    Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.  https://doi.org/10.1007/s00239-004-0046-3.PubMedCrossRefGoogle Scholar
  51. 51.
    Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiol (Reading, England). 2005;151(Pt 3):653–63.  https://doi.org/10.1099/mic.0.27437-0.Google Scholar
  52. 52.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science (New York, NY). 2007;315(5819):1709.CrossRefGoogle Scholar
  53. 53.
    •• Wright Addison V, Nuñez James K, Doudna JA. Biology and Applications of CRISPR Systems: Harnessing Nature’s Toolbox for Genome Engineering. Cell. 2016;164(1):29–44.  https://doi.org/10.1016/j.cell.2015.12.035. In-depth review of CRISPR-Cas9 gene editing PubMedCrossRefGoogle Scholar
  54. 54.
    Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (New York, NY). 2012;337(6096):816.CrossRefGoogle Scholar
  56. 56.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science (New York, NY). 2013;339(6121):823–6.  https://doi.org/10.1126/science.1232033.CrossRefGoogle Scholar
  57. 57.
    Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12(4):393–4.  https://doi.org/10.1016/j.stem.2013.03.006.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Mandal PK, Ferreira LMR, Collins R, Meissner TB, Boutwell CL, Friesen M, et al. Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. 2014;15(5):643–52.  https://doi.org/10.1016/j.stem.2014.10.004.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9.  https://doi.org/10.1016/j.cell.2013.08.021.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6.  https://doi.org/10.1038/nbt.2623. http://www.nature.com/nbt/journal/v31/n9/abs/nbt.2623.html - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33(2):187–97.  https://doi.org/10.1038/nbt.3117. http://www.nature.com/nbt/journal/v33/n2/abs/nbt.3117.html - supplementary-informationPubMedCrossRefGoogle Scholar
  62. 62.
    Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. 2017;14(6):607–14.  https://doi.org/10.1038/nmeth.4278. http://www.nature.com/nmeth/journal/v14/n6/abs/nmeth.4278.html - supplementary-informationPubMedCrossRefGoogle Scholar
  63. 63.
    Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12(3):237–43.  https://doi.org/10.1038/nmeth.3284. http://www.nature.com/nmeth/journal/v12/n3/abs/nmeth.3284.html - supplementary-informationPubMedCrossRefGoogle Scholar
  64. 64.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32(3):279–84.  https://doi.org/10.1038/nbt.2808. http://www.nature.com/nbt/journal/v32/n3/abs/nbt.2808.html - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Yang L, Grishin D, Wang G, Aach J, Zhang C-Z, Chari R, et al. Targeted and genome-wide sequencing reveal single nucleotide variations impacting specificity of Cas9 in human stem cells. Nat Commun. 2014;5:5507.  https://doi.org/10.1038/ncomms6507. http://www.nature.com/articles/ncomms6507 - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31(9):839–43.  https://doi.org/10.1038/nbt.2673. http://www.nature.com/nbt/journal/v31/n9/abs/nbt.2673.html - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–5.  https://doi.org/10.1038/nature16526.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science (New York, NY). 2015;351(6268):84.CrossRefGoogle Scholar
  69. 69.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science (New York, NY). 2013;339(6121):819–23.  https://doi.org/10.1126/science.1231143.CrossRefGoogle Scholar
  70. 70.
    Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. 2014;11(4):399–402.  https://doi.org/10.1038/nmeth.2857.PubMedCrossRefGoogle Scholar
  71. 71.
    Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A. Optical Control of CRISPR/Cas9 Gene Editing. J Am Chem Soc. 2015;137(17):5642–5.  https://doi.org/10.1021/ja512664v.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gonzalez F, Zhu Z, Shi ZD, Lelli K, Verma N, Li QV, et al. An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. 2014;15(2):215–26.  https://doi.org/10.1016/j.stem.2014.05.018.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. 2015;33(5):538–42.  https://doi.org/10.1038/nbt.3190. http://www.nature.com/nbt/journal/v33/n5/abs/nbt.3190.html - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33(5):543–8.  https://doi.org/10.1038/nbt.3198. http://www.nature.com/nbt/journal/v33/n5/abs/nbt.3198.html - supplementary-informationPubMedCrossRefGoogle Scholar
  75. 75.
    Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. elife. 2014;3:e04766.  https://doi.org/10.7554/eLife.04766.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Zhang J-P, Li X-L, Li G-H, Chen W, Arakaki C, Botimer GD, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol. 2017;18(1):35.  https://doi.org/10.1186/s13059-017-1164-8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, et al. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep. 2015;5:8841.  https://doi.org/10.1038/srep08841. http://www.nature.com/articles/srep08841 - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Yang L, Guell M, Byrne S, Yang JL, Los AA, Mali P. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41  https://doi.org/10.1093/nar/gkt555.
  79. 79.
    Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. 2014;5:5560.  https://doi.org/10.1038/ncomms6560. http://www.nature.com/articles/ncomms6560 - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. 2014;5. doi: https://doi.org/10.1038/ncomms6560.
  81. 81.
    Yang Y, Zhang X, Yi L, Hou Z, Chen J, Kou X, et al. Naive Induced Pluripotent Stem Cells Generated From beta-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9. Stem Cells Transl Med. 2016;5(1):8–19.  https://doi.org/10.5966/sctm.2015-0157.PubMedCrossRefGoogle Scholar
  82. 82.
    Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA, Villalta JE, et al. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. elife. 2016;5:e12677.  https://doi.org/10.7554/eLife.12677.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Jensen KT, Fløe L, Petersen TS, Huang J, Xu F, Bolund L, et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett. 2017;591(13):1892–901.  https://doi.org/10.1002/1873-3468.12707.PubMedCrossRefGoogle Scholar
  84. 84.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-γuided platform for sequence-specific control of gene expression. Cell. 2013;152(5):1173–83.  https://doi.org/10.1016/j.cell.2013.02.022.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.  https://doi.org/10.1016/j.cell.2013.06.044.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gimenez CA, Ielpi M, Mutto A, Grosembacher L, Argibay P, Pereyra-Bonnet F. CRISPR-on system for the activation of the endogenous human INS gene. Gene Ther. 2016;23(6):543–7.  https://doi.org/10.1038/gt.2016.28.PubMedCrossRefGoogle Scholar
  87. 87.
    Polstein LR, Gersbach CA. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol. 2015;11(3):198–200.  https://doi.org/10.1038/nchembio.1753. http://www.nature.com/nchembio/journal/v11/n3/abs/nchembio.1753.html - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA Methylation in the Mammalian Genome. Cell. 167(1):233–47.e17.  https://doi.org/10.1016/j.cell.2016.08.056.
  89. 89.
    Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163  https://doi.org/10.1016/j.cell.2015.09.038.
  90. 90.
    •• Nakade S, Yamamoto T, Sakuma T. Cas9, Cpf1 and C2c1/2/3―What's next? Bioengineered. 2017;8(3):265–73.  https://doi.org/10.1080/21655979.2017.1282018. Excellent and very readable review paper focused on CRISPR-based editing tools PubMedCrossRefGoogle Scholar
  91. 91.
    Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol. 2016;34(8):869–74.  https://doi.org/10.1038/nbt.3620. http://www.nature.com/nbt/journal/v34/n8/abs/nbt.3620.html - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kim D, Kim J, Hur JK, Been KW, Yoon S-H, Kim J-S. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol. 2016;34(8):863–8.  https://doi.org/10.1038/nbt.3609. http://www.nature.com/nbt/journal/v34/n8/abs/nbt.3609.html - supplementary-informationPubMedCrossRefGoogle Scholar
  93. 93.
    Kim Y, Cheong S-A, Lee JG, Lee S-W, Lee MS, Baek I-J, et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol. 2016;34(8):808–10.  https://doi.org/10.1038/nbt.3614. http://www.nature.com/nbt/journal/v34/n8/abs/nbt.3614.html - supplementary-informationPubMedCrossRefGoogle Scholar
  94. 94.
    Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol. 2016;34(8):807–8.  https://doi.org/10.1038/nbt.3596. http://www.nature.com/nbt/journal/v34/n8/abs/nbt.3596.html - supplementary-informationPubMedCrossRefGoogle Scholar
  95. 95.
    Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, et al. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv. 2017;3(4):e1602814.  https://doi.org/10.1126/sciadv.1602814.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, et al. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J. 2002;21(23):6338–47.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gradwohl G, Dierich A, LeMeur M, Guillemot F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000;97(4):1607–11.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.PubMedGoogle Scholar
  99. 99.
    Rubio-Cabezas O, Jensen JN, Hodgson MI, Codner E, Ellard S, Serup P, et al. Permanent Neonatal Diabetes and Enteric Anendocrinosis Associated With Biallelic Mutations in NEUROG3. Diabetes. 2011;60(4):1349–53.  https://doi.org/10.2337/db10-1008.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang J, Cortina G, Wu SV, Tran R, Cho JH, Tsai MJ, et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N Engl J Med. 2006;355(3):270–80.  https://doi.org/10.1056/NEJMoa054288.PubMedCrossRefGoogle Scholar
  101. 101.
    Sayar E, Islek A, Yilmaz A, Akcam M, Flanagan SE, Artan R. Extremely rare cause of congenital diarrhea: enteric anendocrinosis. Pediatr Int: Off J Jpn Pediatr Soc. 2013;55(5):661–3.  https://doi.org/10.1111/ped.12169.CrossRefGoogle Scholar
  102. 102.
    McGrath PS, Watson CL, Ingram C, Helmrath MA, Wells JM. The Basic Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine Pancreas. Diabetes. 2015;64(7):2497–505.  https://doi.org/10.2337/db14-1412.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    •• Zhu Z, Li Qing V, Lee K, Rosen Bess P, González F, Soh C-L, et al. Genome Editing of Lineage Determinants in Human Pluripotent Stem Cells Reveals Mechanisms of Pancreatic Development and Diabetes. Cell Stem Cell. 2016;18(6):755–68.  https://doi.org/10.1016/j.stem.2016.03.015. Excellent example of how to use CRISPR/Cas9 gene editing to target genes of interest, differentiate hPSCs into SC-β, and evaluate the role of genes in beta-cell development and the pathogenesis of diabetes PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Shi ZD, Lee K, Yang D, Amin S, Verma N, Li QV, et al. Genome Editing in hPSCs Reveals GATA6 Haploinsufficiency and a Genetic Interaction with GATA4 in Human Pancreatic Development. Cell Stem Cell. 2017;  https://doi.org/10.1016/j.stem.2017.01.001.
  105. 105.
    Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet. 2010;42(7):579–89.  https://doi.org/10.1038/ng.609.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Magi R, Reschen ME, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47(12):1415–25.  https://doi.org/10.1038/ng.3437.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J, et al. Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. Diabetes. 2010;59(5):1266–75.  https://doi.org/10.2337/db09-1568.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    van de Bunt M, Manning Fox JE, Dai X, Barrett A, Grey C, Li L, et al. Transcript Expression Data from Human Islets Links Regulatory Signals from Genome-Wide Association Studies for Type 2 Diabetes and Glycemic Traits to Their Downstream Effectors. PLoS Genet. 2015;11(12):e1005694.  https://doi.org/10.1371/journal.pgen.1005694.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dimas AS, Lagou V, Barker A, Knowles JW, Magi R, Hivert MF, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63(6):2158–71.  https://doi.org/10.2337/db13-0949.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Rutter GA. Dorothy Hodgkin Lecture 2014 Understanding genes identified by genome-wide association studies for Type 2 diabetes. Diabet Med. 2014;31(12):1480–7.  https://doi.org/10.1111/dme.12579.PubMedCrossRefGoogle Scholar
  111. 111.
    Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.  https://doi.org/10.1038/nature18642. http://www.nature.com/nature/journal/v536/n7614/abs/nature18642.html - supplementary-informationPubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zeng H, Guo M, Zhou T, Tan L, Chong Chi N, Zhang T, et al. An Isogenic Human ESC Platform for Functional Evaluation of Genome-wide-Association-Study-Identified Diabetes Genes and Drug Discovery. Cell Stem Cell. 2016;19(3):326–40.  https://doi.org/10.1016/j.stem.2016.07.002.PubMedCrossRefGoogle Scholar
  113. 113.
    Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, et al. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo. Stem Cells Transl Med. 2015;4(10):1214–22.  https://doi.org/10.5966/sctm.2015-0079.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Tomei AA, Villa C, Ricordi C. Development of an encapsulated stem cell-based therapy for diabetes. Expert Opin Biol Ther. 2015;15(9):1321–36.  https://doi.org/10.1517/14712598.2015.1055242.PubMedCrossRefGoogle Scholar
  115. 115.
    Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22(3):306–11.  https://doi.org/10.1038/nm.4030.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Desai T, Shea LD. Advances in islet encapsulation technologies. Nat Rev Drug Discov. 2017;16(5):338–50.  https://doi.org/10.1038/nrd.2016.232.PubMedCrossRefGoogle Scholar
  117. 117.
    Vaithilingam V, Bal S, Tuch BE. Encapsulated Islet Transplantation: Where Do We Stand? Rev Diabetic Stud: RDS. 2017;14(1):51–78.  https://doi.org/10.1900/rds.2017.14.51.PubMedCrossRefGoogle Scholar
  118. 118.
    Gjelberg HK, Hoem D, Verbeke CS, Eide J, Cooper JG, Molven A. Hypoglycemia and decreased insulin requirement caused by malignant insulinoma in a type 1 diabetic patient: when the hoof beats are from a zebra, not a horse. Clin Case Rep. 2017;  https://doi.org/10.1002/ccr3.927.
  119. 119.
    Lu P, Chen J, He L, Ren J, Chen H, Rao L, et al. Generating Hypoimmunogenic Human Embryonic Stem Cells by the Disruption of Beta 2-Microglobulin. Stem Cell Rev Rep. 2013;9(6):806–13.  https://doi.org/10.1007/s12015-013-9457-0.CrossRefGoogle Scholar
  120. 120.
    Feng Q, Shabrani N, Thon Jonathan N, Huo H, Thiel A, Machlus Kellie R, et al. Scalable Generation of Universal Platelets from Human Induced Pluripotent Stem Cells. Stem Cell Rep. 2014;3(5):817–31.  https://doi.org/10.1016/j.stemcr.2014.09.010.CrossRefGoogle Scholar
  121. 121.
    Chen H, Li Y, Lin X, Cui D, Cui C, Li H, et al. Functional disruption of human leukocyte antigen II in human embryonic stem cell. Biol Res. 2015;48:59.  https://doi.org/10.1186/s40659-015-0051-6.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zhao L, Teklemariam T, Hantash BM. Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem Cell Res. 2014;13(2):342–54.  https://doi.org/10.1016/j.scr.2014.08.004.PubMedCrossRefGoogle Scholar
  123. 123.
    Gornalusse GG, Hirata RK, Funk SE, Riolobos L, Lopes VS, Manske G, et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat Biotechnol. 2017;  https://doi.org/10.1038/nbt.3860. http://www.nature.com/nbt/journal/vaop/ncurrent/abs/nbt.3860.html - supplementary-information
  124. 124.
    Thatava T, Kudva YC, Edukulla R, Squillace K, De Lamo JG, Khan YK, et al. Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther: J Am Soc Gene Ther. 2013;21(1):228–39.  https://doi.org/10.1038/mt.2012.245.CrossRefGoogle Scholar
  125. 125.
    Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy Kalyan K, et al. Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Rep. 2016;6(2):200–12.  https://doi.org/10.1016/j.stemcr.2015.12.009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Center for Endocrinology, Diabetes and Metabolism, Department of PediatricsChildren’s Hospital Los AngelesLos AngelesUSA
  2. 2.Departments of Pediatrics and Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Developmental Biology and Regenerative Medicine ProgramSaban Research Institute of Children’s Hospital Los AngelesLos AngelesUSA

Personalised recommendations