Current Diabetes Reports

, 17:90 | Cite as

Shared Dysregulation of Homeostatic Brain-Body Pathways in Depression and Type 2 Diabetes

  • Claire J. Hoogendoorn
  • Juan F. Roy
  • Jeffrey S. Gonzalez
Psychosocial Aspects (S Jaser, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Psychosocial Aspects


Purpose of Review

The purpose of this review is to provide an overview of shared dysregulation of the hypothalamic-pituitary-adrenal (HPA) and brain-gut-microbiome (BGM) axes associated with depression and type 2 diabetes (T2D). Clinical implications and future research are also discussed.

Recent Findings

Both depression and T2D are associated with dysregulation of the HPA and BGM axes. These pathways regulate immune function, glucose metabolism, and sleep, which are altered in both illnesses. Dysregulation of homeostatic brain-body pathways may be positively influenced through different therapeutic actions, including psychotherapy, healthy eating, physical activity, sleep promotion, and certain anti-inflammatory or antidepressant medications.


While the causal nature of the relationship between depression and T2D remains unclear, these conditions share dysregulation of homeostatic brain-body pathways that are central to mental and physical health. Better understanding of this dysregulation may provide opportunities for interventions that could benefit both conditions. Future research should examine the additive burden of depression and T2D on HPA and BGM dysregulation and better differentiate depression from emotional distress.


Type 2 diabetes Depression Biological pathways Hypothalamic-pituitary-adrenal axis Brain-gut-microbiome axis 



Dr. Gonzalez's effort is partialy supported by grants from the National Institutes of Health: R18 DK098742, R01 DK104845 and P30 DK111022. Support was also provided by The Drs. David and Jane Willner Bloomgarden Family Fellowship Fund.

Compliance with Ethical Standards

Conflict of Interest

Claire J. Hoogendoorn, Juan F. Roy, and Jeffrey S. Gonzalez declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    National Institutes of Mental Health. Major depression among adults. Available at: Accessed 3/17 2017.
  2. 2.
    Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metrics. 2010;8(1):29.CrossRefGoogle Scholar
  3. 3.
    Ali S, Stone M, Peters J, Davies M, Khunti K. The prevalence of co-morbid depression in adults with type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2006;23(11):1165–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care. 2001;24(6):1069–78.CrossRefPubMedGoogle Scholar
  5. 5.
    De Jonge P, Roy J, Saz P, Marcos G, Lobo A. Prevalent and incident depression in community-dwelling elderly persons with diabetes mellitus: results from the ZARADEMP project. Diabetologia. 2006;49(11):2627–33.CrossRefPubMedGoogle Scholar
  6. 6.
    Campayo A, de Jonge P, Roy JF, Saz P, de la Cámara C, Quintanilla MA, et al. Depressive disorder and incident diabetes mellitus: the effect of characteristics of depression. Am J Psychiatry. 2010;167(5):580–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Gonzalez JS, Safren SA, Cagliero E, Wexler DJ, Delahanty L, Wittenberg E, et al. Depression, self-care, and medication adherence in type 2 diabetes: relationships across the full range of symptom severity. Diabetes Care. 2007;30(9):2222–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nouwen A, Nefs G, Caramlau I, Connock M, Winkley K, Lloyd CE, et al. Prevalence of depression in individuals with impaired glucose metabolism or undiagnosed diabetes: a systematic review and meta-analysis of the European depression in diabetes (EDID) research consortium. Diabetes Care. 2011;34(3):752–62.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moulton CD, Pickup JC, Ismail K. The link between depression and diabetes: the search for shared mechanisms. Lancet Diabetes Endocrinol. 2015;3(6):461–71.CrossRefPubMedGoogle Scholar
  10. 10.
    Gonzalez JS, Peyrot M, McCarl LA, Collins EM, Serpa L, Mimiaga MJ, et al. Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care. 2008;31(12):2398–403.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Miller GE, Chen E, Zhou ES. If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychol Bull. 2007;133(1):25.CrossRefPubMedGoogle Scholar
  12. 12.
    Vedder H. Physiology of the hypothalamic–pituitary–adrenocortical axis. NeuroImmune Biol. 2007;7:17–31.CrossRefGoogle Scholar
  13. 13.
    Blalock J. The immune system as the sixth sense. J Intern Med. 2005;257(2):126–38.CrossRefPubMedGoogle Scholar
  14. 14.
    Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    O’Mahony S, Clarke G, Borre Y, Dinan T, Cryan J. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.CrossRefPubMedGoogle Scholar
  16. 16.
    Eskandari F, Sternberg EM. Neural-immune interactions in health and disease. Ann N Y Acad Sci. 2002;966(1):20–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Grenham S, Clarke G, Cryan JF, Dinan TG. Brain–gut–microbe communication in health and disease. Front Physiol. 2011;2:94.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dhabhar FS. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuroimmunomodulation. 2009;16(5):300–17.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chakravarthy MV, Booth FW. Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol (1985). 2004;96(1):3–10.CrossRefGoogle Scholar
  20. 20.
    Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev. 2004;9(2):180–97.PubMedGoogle Scholar
  21. 21.
    McEwen BS. Stress, adaptation, and disease: Allostasis and allostatic load. Ann N Y Acad Sci. 1998;840(1):33–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions 1. Endocr Rev. 2000;21(1):55–89.PubMedGoogle Scholar
  23. 23.
    Kudielka BM, Schommer NC, Hellhammer DH, Kirschbaum C. Acute HPA axis responses, heart rate, and mood changes to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology. 2004;29(8):983–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Miller DB, O'Callaghan JP. Neuroendocrine aspects of the response to stress. Metab Clin Exp. 2002;51(6):5–10.CrossRefPubMedGoogle Scholar
  25. 25.
    Kaye J, Buchanan F, Kendrick A, Johnson P, Lowry C, Bailey J, et al. Acute carbon dioxide exposure in healthy adults: evaluation of a novel means of investigating the stress response. J Neuroendocrinol. 2004;16(3):256–64.CrossRefPubMedGoogle Scholar
  26. 26.
    Stetler C, Miller GE. Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med. 2011;73(2):114–26.CrossRefPubMedGoogle Scholar
  27. 27.
    Murri MB, Pariante C, Mondelli V, Masotti M, Atti AR, Mellacqua Z, et al. HPA axis and aging in depression: systematic review and meta-analysis. Psychoneuroendocrinology. 2014;41:46–62.CrossRefGoogle Scholar
  28. 28.
    Ferrari E, Casarotti D, Muzzoni B, Albertelli N, Cravello L, Fioravanti M, et al. Age-related changes of the adrenal secretory pattern: possible role in pathological brain aging. Brain Res Rev. 2001;37(1):294–300.CrossRefPubMedGoogle Scholar
  29. 29.
    Rosmond R, Björntorp P. Occupational status, cortisol secretory pattern, and visceral obesity in middle-aged men. Obes Res. 2000;8(6):445–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol. 2007;157(5):545–59.CrossRefPubMedGoogle Scholar
  31. 31.
    Chan O, Inouye K, Riddell MC, Vranic M, Matthews SG. Diabetes and the hypothalamo-pituitary-adrenal (HPA) axis. Minerva Endocrinol. 2003;28(2):87–102.PubMedGoogle Scholar
  32. 32.
    Roy M, Collier B, Roy A. Dysregulation of the hypothalamo-pituitary-adrenal axis and duration of diabetes. J Diabet Complicat. 1991;5(4):218–20.CrossRefGoogle Scholar
  33. 33.
    McEwen BS. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22(2):108–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.CrossRefPubMedGoogle Scholar
  36. 36.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.CrossRefPubMedGoogle Scholar
  38. 38.
    Knowles SR, Nelson EA, Palombo EA. Investigating the role of perceived stress on bacterial flora activity and salivary cortisol secretion: a possible mechanism underlying susceptibility to illness. Biol Psychol. 2008;77(2):132–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Holdeman LV, Good IJ, Moore WE. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl Environ Microbiol. 1976;31(3):359–75.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun. 2010;78(4):1509–19.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol Motil. 2013;25(9):713–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    • Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas M. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8(1):2016, 42. This review provides a thorough overview of current knowledge regarding the mechanistic interactions between the gut microbiota, and host energy metabolism and immune system, as it relates to obesity and metabolic disease Google Scholar
  45. 45.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015;528(7581):262–6.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6. e7 CrossRefPubMedGoogle Scholar
  47. 47.
    Magouliotis DE, Tasiopoulou VS, Sioka E, Chatedaki C, Zacharoulis D. Impact of bariatric surgery on metabolic and gut microbiota profile: a systematic review and meta-analysis. Obes Surg. 2017:1–13.Google Scholar
  48. 48.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response 1. Annu Rev Physiol. 2005;67:259–84.CrossRefPubMedGoogle Scholar
  50. 50.
    Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry. 2001;49(5):391–404.CrossRefPubMedGoogle Scholar
  52. 52.
    Franchimont DP, Chrousos GP. Glucocorticoid resistance in inflammatory diseases. NeuroImmune Biol. 2007;7:349–58.CrossRefGoogle Scholar
  53. 53.
    Macia L, Thorburn AN, Binge LC, Marino E, Rogers KE, Maslowski KM, et al. Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunol Rev. 2012;245(1):164–76.CrossRefPubMedGoogle Scholar
  54. 54.
    Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):24–31.CrossRefPubMedGoogle Scholar
  55. 55.
    Steptoe A, Kunz-Ebrecht S, Owen N. Lack of association between depressive symptoms and markers of immune and vascular inflammation in middle-aged men and women. Psychol Med. 2003;33(04):667–74.CrossRefPubMedGoogle Scholar
  56. 56.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.CrossRefPubMedGoogle Scholar
  57. 57.
    Beishuizen A, Thijs LG. Review: endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res. 2003;9(1):3–24.PubMedGoogle Scholar
  58. 58.
    Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107.CrossRefPubMedGoogle Scholar
  59. 59.
    Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A. 2010;107(21):9765–70.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dallman MF, Strack AM, Akana SF, Bradbury MJ, Hanson ES, Scribner KA, et al. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol. 1993;14(4):303–47.CrossRefPubMedGoogle Scholar
  61. 61.
    Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest. 1997;99(3):414–23.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Rosmond R. Stress induced disturbances of the HPA axis: a pathway to type 2 diabetes? Med Sci Monit. 2003;9(2):RA35–9.PubMedGoogle Scholar
  63. 63.
    Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol. 2010;26(1):5–11.CrossRefPubMedGoogle Scholar
  64. 64.
    Kan C, Silva N, Golden SH, Rajala U, Timonen M, Stahl D, et al. A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care. 2013;36(2):480–9.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang J, Niaura R, Dyer JR, Shen BJ, Todaro JF, McCaffery JM, et al. Hostility and urine norepinephrine interact to predict insulin resistance: the VA normative aging study. Psychosom Med. 2006;68(5):718–26.CrossRefPubMedGoogle Scholar
  66. 66.
    Lustman PJ, Anderson RJ, Freedland KE, de Groot M, Carney RM, Clouse RE. Depression and poor glycemic control: a meta-analytic review of the literature. Diabetes Care. 2000;23(7):934–42.CrossRefPubMedGoogle Scholar
  67. 67.
    • Snoek FJ, Bremmer MA, Hermanns N. Constructs of depression and distress in diabetes: time for an appraisal. Lancet Diabetes Endocrinol. 2015;3(6):450–60. This review describes evidence that diabetes distress and depression are distinct overlapping constructs, and reviews evidence that diabetes distress may mediate the relationship between depression and glycemic control. Further, the review outlines three distinct data-driven depression symptom profiles that appear to show differential relationships with metabolic outcomes CrossRefPubMedGoogle Scholar
  68. 68.
    Fisher L, Skaff M, Mullan J, Arean P, Glasgow R, Masharani U. A longitudinal study of affective and anxiety disorders, depressive affect and diabetes distress in adults with type 2 diabetes. Diabet Med. 2008;25(9):1096–101.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068–83.CrossRefPubMedGoogle Scholar
  70. 70.
    Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42(2):105–16.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    de Weerth C, Zijl RH, Buitelaar JK. Development of cortisol circadian rhythm in infancy. Early Hum Dev. 2003;73(1):39–52.CrossRefPubMedGoogle Scholar
  72. 72.
    Trinder M, Bisanz JE, Burton JP, Reid G. Bacteria need “sleep” too?: microbiome circadian rhythmicity, metabolic disease, and beyond. Univ Tor Med J. 2015;92(3)Google Scholar
  73. 73.
    Moreno-Indias I, Torres M, Montserrat JM, Sanchez-Alcoholado L, Cardona F, Tinahones FJ, et al. Intermittent hypoxia alters gut microbiota diversity in a mouse model of sleep apnoea. Eur Respir J. 2015;45(4):1055–65.CrossRefPubMedGoogle Scholar
  74. 74.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub; 2013.Google Scholar
  75. 75.
    Desan PH, Oren DA, Malison R, Price LH, Rosenbaum J, Smoller J, et al. Genetic polymorphism at the CLOCK gene locus and major depression. Am J Med Genet A. 2000;96(3):418–21.CrossRefGoogle Scholar
  76. 76.
    Germain A, Kupfer DJ. Circadian rhythm disturbances in depression. Hum Psychopharmacol Clin Exp. 2008;23(7):571–85.CrossRefGoogle Scholar
  77. 77.
    Bhaskar S, Hemavathy D, Prasad S. Prevalence of chronic insomnia in adult patients and its correlation with medical comorbidities. J Fam Med Prim Care. 2016;5(4):780.CrossRefGoogle Scholar
  78. 78.
    • Reutrakul S, Van Cauter E. Interactions between sleep, circadian function, and glucose metabolism: implications for risk and severity of diabetes. Ann N Y Acad Sci. 2014;1311(1):151–73. This review provides an update on current evidence from experimental, prospective and interventional studies linking sleep disturbance, circadian dysregulation, and glucose metabolism CrossRefPubMedGoogle Scholar
  79. 79.
    Knutson KL, Spiegel K, Penev P, Van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev. 2007;11(3):163–78.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Aronsohn RS, Whitmore H, Van Cauter E, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med. 2010;181(5):507–13.CrossRefPubMedGoogle Scholar
  81. 81.
    Ismail K, Winkley K, Rabe-Hesketh S. Systematic review and meta-analysis of randomised controlled trials of psychological interventions to improve glycaemic control in patients with type 2 diabetes. Lancet. 2004;363(9421):1589–97.CrossRefPubMedGoogle Scholar
  82. 82.
    Pirbaglou M, Katz J, de Souza RJ, Stearns JC, Motamed M, Ritvo P. Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutr Res. 2016;36(9):889–98.CrossRefPubMedGoogle Scholar
  83. 83.
    Kasińska MA, Drzewoski J. Effectiveness of probiotics in type 2 diabetes: a meta-analysis. Pol Arch Med Wewn. 2015;125(11):803–13.PubMedGoogle Scholar
  84. 84.
    Tsatsoulis A, Fountoulakis S. The protective role of exercise on stress system dysregulation and comorbidities. Ann N Y Acad Sci. 2006;1083(1):196–213.CrossRefPubMedGoogle Scholar
  85. 85.
    Blumenthal JA, Babyak MA, Doraiswamy PM, Watkins L, Hoffman BM, Barbour KA, et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosom Med. 2007;69(7):587–96.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Manber R, Bernert RA, Suh S, Nowakowski S, Siebern AT, Ong JC. CBT for insomnia in patients with high and low depressive symptom severity: adherence and clinical outcomes. J Clin Sleep Med. 2011;7(6):645.Google Scholar
  87. 87.
    De Groot M, Doyle T, Kushnick M, Shubrook J, Merrill J, Rabideau E, et al. Can lifestyle interventions do more than reduce diabetes risk? Treating depression in adults with type 2 diabetes with exercise and cognitive behavioral therapy. Curr Diab Rep. 2012;12(2):157–66.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Swain MG. Fatigue in chronic disease. Clin Sci (Lond). 2000;99(1):1–8.CrossRefGoogle Scholar
  89. 89.
    Laake JP, Stahl D, Amiel SA, Petrak F, Sherwood RA, Pickup JC, et al. The association between depressive symptoms and systemic inflammation in people with type 2 diabetes: findings from the South London Diabetes Study. Diabetes Care. 2014;37(8):2186–92.Google Scholar
  90. 90.
    Dinan TG. Serotonin and the regulation of hypothalamic-pituitary-adrenal axis function. Life Sci. 1996;58(20):1683–94.Google Scholar
  91. 91.
    Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci. 2012;4(1):48–63.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Himmerich H, Binder EB, Künzel HE, Schuld A, Lucae S, Uhr M, et al. Successful antidepressant therapy restores the disturbed interplay between TNF-α system and HPA axis. Biol Psychiatry. 2006;60(8):882–8.CrossRefPubMedGoogle Scholar
  93. 93.
    Guseva D, Holst K, Kaune B, Meier M, Keubler L, Glage S, et al. Serotonin 5-HT7 receptor is critically involved in acute and chronic inflammation of the gastrointestinal tract. Inflamm Bowel Dis. 2014;20(9):1516–29.CrossRefPubMedGoogle Scholar
  94. 94.
    Naughton M, Mulrooney JB, Leonard BE. A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol Clin Exp. 2000;15(6):397–415.CrossRefGoogle Scholar
  95. 95.
    Nemeroff CB, Owens MJ. Pharmacologic differences among the SSRIs: focus on monoamine transporters and the HPA axis. CNS Spectr. 2004;9(S4):23–31.CrossRefPubMedGoogle Scholar
  96. 96.
    Serretti A, Mandelli L. Antidepressants and body weight: a comprehensive review and meta-analysis. J Clin Psychiatry. 2010;71(10):1259–72.CrossRefPubMedGoogle Scholar
  97. 97.
    Deuschle M. Effects of antidepressants on glucose metabolism and diabetes mellitus type 2 in adults. Curr Opin Psychiatry. 2013;26(1):60–5.CrossRefPubMedGoogle Scholar
  98. 98.
    Kivimaki M, Hamer M, Batty GD, Geddes JR, Tabak AG, Pentti J, et al. Antidepressant medication use, weight gain, and risk of type 2 diabetes: a population-based study. Diabetes Care. 2010;33(12):2611–6.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Rubin RR, Ma Y, Marrero DG, Peyrot M, Barrett-Connor EL, Kahn SE, et al. Elevated depression symptoms, antidepressant medicine use, and risk of developing diabetes during the diabetes prevention program. Diabetes Care. 2008;31(3):420–6.CrossRefPubMedGoogle Scholar
  100. 100.
    Hiller-Sturmhöfel S, Bartke A. The endocrine system: an overview. Alcohol Res Health. 1998;22(3):153.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Claire J. Hoogendoorn
    • 1
  • Juan F. Roy
    • 1
  • Jeffrey S. Gonzalez
    • 1
    • 2
  1. 1.Ferkauf Graduate School of PsychologyYeshiva UniversityBronxUSA
  2. 2.Department of Medicine (Endocrinology)Albert Einstein College of MedicineBronxUSA

Personalised recommendations