Current Diabetes Reports

, 17:81 | Cite as

T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes

Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Abstract

Purpose of the Review

Obesity and type 2 diabetes (T2D) are considered chronic inflammatory diseases. While early publications have reported the implication of innate immune cells such as macrophages to promote systemic inflammation and metabolic dysfunctions, recent publications underline the alterations of the T cell compartment in human obesity and type 2 diabetes. These recent findings are the focus of this review.

Recent Findings

In humans, obesity and T2D induce the expansion of proinflammatory T cells such as CD4 Th1, Th17, and CD8 populations, whereas innate T cells such as MAIT and iNKT cells are decreased. These alterations reflect a loss of total T cell homeostasis that may contribute to tissue and systemic inflammation.

Summary

Whether these changes are adaptive to nutritional variations and/or contribute to the progression of metabolic diseases remains to be clarified. T cell phenotyping may improve obese and/or T2D patient stratification with therapeutic and prognostic implications.

Keywords

Obesity Type 2 diabetes Inflammation T cell Th17 MAIT 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Cancello R, Clément K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006;113(10):1141–7. doi:10.1111/j.1471-0528.2006.01004.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91.CrossRefPubMedGoogle Scholar
  3. 3.
    Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271(5249):665–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–15.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dalmas E, Rouault C, Abdennour M, Rovere C, Rizkalla S, Bar-Hen A, et al. Variations in circulating inflammatory factors are related to changes in calorie and carbohydrate intakes early in the course of surgery-induced weight reduction. Am J Clin Nutr. 2011;94(2):450–8. doi:10.3945/ajcn.111.013771.CrossRefPubMedGoogle Scholar
  6. 6.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. doi:10.1038/nature05485.CrossRefPubMedGoogle Scholar
  7. 7.
    Poitou C, Viguerie N, Cancello R, De Matteis R, Cinti S, Stich V, et al. Serum amyloid a: production by human white adipocyte and regulation by obesity and nutrition. Diabetologia. 2005;48(3):519–28. doi:10.1007/s00125-004-1654-6.CrossRefPubMedGoogle Scholar
  8. 8.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808. doi:10.1172/JCI19246.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. doi:10.1172/JCI19451.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cipolletta D, Kolodin D, Benoist C, Mathis D. Tissular T(regs): a unique population of adipose-tissue-resident Foxp3+CD4+ T cells that impacts organismal metabolism. Semin Immunol. 2011;23(6):431–7. doi:10.1016/j.smim.2011.06.002.CrossRefPubMedGoogle Scholar
  11. 11.
    Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18(3):363–74. doi:10.1038/nm.2627.CrossRefPubMedGoogle Scholar
  12. 12.
    Wu H, Ghosh S, Perrard XD, Feng L, Garcia GE, Perrard JL, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115(8):1029–38. doi:10.1161/CIRCULATIONAHA.106.638379.CrossRefPubMedGoogle Scholar
  13. 13.
    Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, et al. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol. 2009;29(10):1608–14. doi:10.1161/ATVBAHA.109.192583.CrossRefPubMedGoogle Scholar
  14. 14.
    Womack J, Tien PC, Feldman J, Shin JH, Fennie K, Anastos K, et al. Obesity and immune cell counts in women. Metabolism. 2007;56(7):998–1004. doi:10.1016/j.metabol.2007.03.008.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    •• Monteiro-Sepulveda M, Touch S, Mendes-Sá C, André S, Poitou C, Allatif O, et al. Jejunal T cell inflammation in human obesity correlates with decreased enterocyte insulin signaling. Cell Metab. 2015;22(1):113–24. doi:10.1016/j.cmet.2015.05.020. This work explores for the first time in a large cohort of obese and diabetic patients compared to lean individuals the phenotype of immune cells and notably T cells and their impact on enterocyte insulin sensitivity.CrossRefPubMedGoogle Scholar
  16. 16.
    Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28(7):1304–10. doi:10.1161/ATVBAHA.108.165100.CrossRefPubMedGoogle Scholar
  17. 17.
    O'Rourke RW, Metcalf MD, White AE, Madala A, Winters BR, Maizlin II, et al. Depot-specific differences in inflammatory mediators and a role for NK cells and IFN-gamma in inflammation in human adipose tissue. Int J Obes. 2009;33(9):978–90. doi:10.1038/ijo.2009.133.CrossRefGoogle Scholar
  18. 18.
    Zeyda M, Huber J, Prager G, Stulnig TM. Inflammation correlates with markers of T-cell subsets including regulatory T cells in adipose tissue from obese patients. Obesity (Silver Spring). 2011;19(4):743–8. doi:10.1038/oby.2010.123.CrossRefGoogle Scholar
  19. 19.
    Pacifico L, Di Renzo L, Anania C, Osborn JF, Ippoliti F, Schiavo E, et al. Increased T-helper interferon-gamma-secreting cells in obese children. Eur J Endocrinol. 2006;154(5):691–7. doi:10.1530/eje.1.02138.CrossRefPubMedGoogle Scholar
  20. 20.
    McLaughlin T, Liu L-F, Lamendola C, Shen L, Morton J, Rivas H, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol. 2014;34(12):2637–43. doi:10.1161/ATVBAHA.114.304636.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15(8):921–9. doi:10.1038/nm.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21(4):527–42. doi:10.1016/j.cmet.2015.03.001.CrossRefPubMedGoogle Scholar
  23. 23.
    Garidou L, Pomié C, Klopp P, Waget A, Charpentier J, Aloulou M, et al. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab. 2015;22(1):100–12. doi:10.1016/j.cmet.2015.06.001.CrossRefPubMedGoogle Scholar
  24. 24.
    Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M, Stamenkovic-Pejkovic D, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes. 2009;33(1):151–6. doi:10.1038/ijo.2008.216.CrossRefGoogle Scholar
  25. 25.
    Jagannathan-Bogdan M, McDonnell ME, Shin H, Rehman Q, Hasturk H, Apovian CM, et al. Elevated proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2 diabetes. J Immunol. 2011;186(2):1162–72. doi:10.4049/jimmunol.1002615.CrossRefPubMedGoogle Scholar
  26. 26.
    Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, et al. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med. 2012;90(2):175–86. doi:10.1007/s00109-011-0816-5.CrossRefPubMedGoogle Scholar
  27. 27.
    Sumarac-Dumanovic M, Jeremic D, Pantovic A, Janjetovic K, Stamenkovic-Pejkovic D, Cvijovic G, et al. Therapeutic improvement of glucoregulation in newly diagnosed type 2 diabetes patients is associated with a reduction of IL-17 levels. Immunobiology. 2013;218(8):1113–8. doi:10.1016/j.imbio.2013.03.002.CrossRefPubMedGoogle Scholar
  28. 28.
    • Zhao R, Tang D, Yi S, Li W, Wu C, Lu Y, et al. Elevated peripheral frequencies of Th22 cells: a novel potent participant in obesity and type 2 diabetes. PLoS One. 2014;9(1):e85770. doi:10.1371/journal.pone.0085770. One of the first studies exploring Th22 subset and cytokine production in the blood of obese and type 2 diabetic patients.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Guo H, Xu BC, Yang XG, Peng D, Wang Y, Liu XB, et al. A high frequency of peripheral blood IL-22(+) CD4(+) T cells in patients with new onset type 2 diabetes mellitus. J Clin Lab Anal. 2016;30(2):95–102. doi:10.1002/jcla.21821.CrossRefPubMedGoogle Scholar
  30. 30.
    Bertola A, Ciucci T, Rousseau D, Bourlier V, Duffaut C, Bonnafous S, et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes. 2012;61(9):2238–47. doi:10.2337/db11-1274.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    •• Dalmas E, Venteclef N, Caer C, Poitou C, Cremer I, Aron-Wisnewsky J, et al. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes. 2014;63(6):1966–77. doi:10.2337/db13-1511. This paper provides new insights into the dialogue between macrophages and T cells through the secretions of IL-1β and Th17-derived cytokines in the obese adipose tissue.CrossRefPubMedGoogle Scholar
  32. 32.
    Fabbrini E, Cella M, McCartney SA, Fuchs A, Abumrad NA, Pietka TA, et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013;145(2):366-74.e1-3. doi:10.1053/j.gastro.2013.04.010.CrossRefPubMedGoogle Scholar
  33. 33.
    Cavallari JF, Denou E, Foley KP, Khan WI, Schertzer JD. Different Th17 immunity in gut, liver, and adipose tissues during obesity: the role of diet, genetics, and microbes. Gut Microbes. 2016;7(1):82–9. doi:10.1080/19490976.2015.1127481.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21. doi:10.1016/j.cell.2014.05.052.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zúñiga LA, Shen W-J, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C, et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol. 2010;185(11):6947–59. doi:10.4049/jimmunol.1001269.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lee SH, Jhun J, Byun JK, Kim EK, Jung K, Lee JE, et al. IL-17 axis accelerates the inflammatory progression of obese in mice via TBK1 and IKBKE pathway. Immunol Lett. 2017;184:67–75. doi:10.1016/j.imlet.2017.02.004.CrossRefPubMedGoogle Scholar
  37. 37.
    van der Weerd K, Dik WA, Schrijver B, Schweitzer DH, Langerak AW, Drexhage HA, et al. Morbidly obese human subjects have increased peripheral blood CD4+ T cells with skewing toward a Treg- and Th2-dominated phenotype. Diabetes. 2012;61(2):401–8. doi:10.2337/db11-1065.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wagner NM, Brandhorst G, Czepluch F, Lankeit M, Eberle C, Herzberg S, et al. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity (Silver Spring). 2013;21(3):461–8. doi:10.1002/oby.20087.CrossRefGoogle Scholar
  39. 39.
    Travers RL, Motta AC, Betts JA, Bouloumie A, Thompson D. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obes. 2015;39(5):762–9. doi:10.1038/ijo.2014.195.CrossRefGoogle Scholar
  40. 40.
    Pereira S, Teixeira L, Aguilar E, Oliveira M, Savassi-Rocha A, Pelaez JN, et al. Modulation of adipose tissue inflammation by FOXP3+ Treg cells, IL-10, and TGF-β in metabolically healthy class III obese individuals. Nutrition. 2014;30(7–8):784–90. doi:10.1016/j.nut.2013.11.023.CrossRefPubMedGoogle Scholar
  41. 41.
    Esser N, L'homme L, De Roover A, Kohnen L, Scheen AJ, Moutschen M, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2016;56(11):2487–97. doi:10.1007/s00125-013-3023-9.CrossRefGoogle Scholar
  42. 42.
    Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes. 2008;32(3):451–63. doi:10.1038/sj.ijo.0803744.CrossRefGoogle Scholar
  43. 43.
    Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20. doi:10.1038/nm.1964.CrossRefPubMedGoogle Scholar
  44. 44.
    Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol. 2015;16(11):1114–23. doi:10.1038/ni.3298.CrossRefPubMedGoogle Scholar
  45. 45.
    Tard C, Rouxel O, Lehuen A. Regulatory role of natural killer T cells in diabetes. Biom J. 2015;38(6):484–95. doi:10.1016/j.bj.2015.04.001.Google Scholar
  46. 46.
    Sugimoto C, Fujita H, Wakao H. Mucosal-associated invariant T cells from induced pluripotent stem cells: a novel approach for modeling human diseases. World J Stem Cells. 2016;8(4):158–69. doi:10.4252/wjsc.v8.i4.158.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lynch L, Nowak M, Varghese B, Clark J, Hogan AE, Toxavidis V, et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity. 2012;37(3):574–87. doi:10.1016/j.immuni.2012.06.016.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lynch L, O'Shea D, Winter DC, Geoghegan J, Doherty DG, O'Farrelly C. Invariant NKT cells and CD1d(+) cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol. 2009;39(7):1893–901. doi:10.1002/eji.200939349.CrossRefPubMedGoogle Scholar
  49. 49.
    Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metab. 2013;17(6):851–9. doi:10.1016/j.cmet.2013.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422(6928):164–9. doi:10.1038/nature01433.CrossRefPubMedGoogle Scholar
  51. 51.
    • Carolan E, Tobin LM, Mangan BA, Corrigan M, Gaoatswe G, Byrne G, et al. Altered distribution and increased IL-17 production by mucosal-associated invariant T cells in adult and childhood obesity. J Immunol. 2015;194(12):5775–80. doi:10.4049/jimmunol.1402945. This is the first study exploring MAIT cells frequency in the adipose tissue of obese versus lean subjects; the authors show that MAIT cell frequency is decreased in the obese adipose tissue.CrossRefPubMedGoogle Scholar
  52. 52.
    •• Magalhaes I, Pingris K, Poitou C, Bessoles S, Venteclef N, Kiaf B, et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest. 2015;125(4):1752–62. doi:10.1172/JCI78941. This paper reports that circulating MAIT cells are decreased in obesity and type 2 diabetic subjects with increased proinflammatory cytokine production.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood. 2011;117(4):1250–9. doi:10.1182/blood-2010-08-303339.CrossRefPubMedGoogle Scholar
  54. 54.
    Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Trans Immunol. 2016;5(8):e98. doi:10.1038/cti.2016.51.CrossRefGoogle Scholar
  55. 55.
    Tang X-Z, Jo J, Tan AT, Sandalova E, Chia A, Tan KC, et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol. 2013;190(7):3142–52. doi:10.4049/jimmunol.1203218.CrossRefPubMedGoogle Scholar
  56. 56.
    Eckle SBG, Corbett AJ, Keller AN, Chen Z, Godfrey DI, Liu L, et al. Recognition of vitamin B precursors and byproducts by mucosal associated invariant T cells. J Biol Chem. 2015;290(51):30204–11. doi:10.1074/jbc.R115.685990.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, Bessoles S, et al. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev. 2016;272(1):120–38. doi:10.1111/imr.12423.CrossRefPubMedGoogle Scholar
  58. 58.
    Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature. 2012;491(7426):717–23. doi:10.1038/nature11605.PubMedGoogle Scholar
  59. 59.
    McWilliam HEG, Birkinshaw RW, Villadangos JA, McCluskey J, Rossjohn J. MR1 presentation of vitamin B-based metabolite ligands. Curr Opin Immunol. 2015;34:28–34. doi:10.1016/j.coi.2014.12.004.CrossRefPubMedGoogle Scholar
  60. 60.
    Le Bourhis L, Martin E, Péguillet I, Guihot A, Froux N, Coré M, et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol. 2010;11(8):701–8. doi:10.1038/ni.1890.CrossRefPubMedGoogle Scholar
  61. 61.
    Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 2010;8(6):e1000407. doi:10.1371/journal.pbio.1000407.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Napier RJ, Adams EJ, Gold MC, Lewinsohn DM. The role of mucosal associated invariant T cells in antimicrobial immunity. Front Immunol. 2015;6:344. doi:10.3389/fimmu.2015.00344.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hiejima E, Kawai T, Nakase H, Tsuruyama T, Morimoto T, Yasumi T, et al. Reduced numbers and Proapoptotic features of mucosal-associated invariant T cells as a characteristic finding in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(7):1529–40. doi:10.1097/MIB.0000000000000397.CrossRefPubMedGoogle Scholar
  64. 64.
    Lee OJ, Cho Y-N, Kee S-J, Kim M-J, Jin H-M, Lee S-J, et al. Circulating mucosal-associated invariant T cell levels and their cytokine levels in healthy adults. Exp Gerontol. 2014;49:47–54. doi:10.1016/j.exger.2013.11.003.CrossRefPubMedGoogle Scholar
  65. 65.
    Novak J, Dobrovolny J, Novakova L, Kozak T. The decrease in number and change in phenotype of mucosal-associated invariant T cells in the elderly and differences in men and women of reproductive age. Scand J Immunol. 2014;80(4):271–5. doi:10.1111/sji.12193.CrossRefPubMedGoogle Scholar
  66. 66.
    Howson LJ, Salio M, Cerundolo V. MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol. 2015;6:303. doi:10.3389/fimmu.2015.00303.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hinks TSC. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology. 2016;148(1):1–12. doi:10.1111/imm.12582.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Treiner E. Mucosal-associated invariant T cells in inflammatory bowel diseases: bystanders, defenders, or offenders? Front Immunol. 2015;6:27. doi:10.3389/fimmu.2015.00027.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Costanzo AE, Taylor KR, Dutt S, Han PP, Fujioka K, Jameson JM. Obesity impairs γδ T cell homeostasis and antiviral function in humans. PLoS One. 2015;10(3) doi:10.1371/journal.pone.0120918.
  70. 70.
    Muller LM, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AI, et al. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis. 2005;41(3):281–8. doi:10.1086/431587.CrossRefPubMedGoogle Scholar
  71. 71.
    Paich HA, Sheridan PA, Handy J, Karlsson EA, Schultz-Cherry S, Hudgens MG, et al. Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza a virus. Obesity (Silver Spring). 2013;21(11):2377–86. doi:10.1002/oby.20383.CrossRefGoogle Scholar
  72. 72.
    Tagliabue C, Principi N, Giavoli C, Esposito S. Obesity: impact of infections and response to vaccines. Eur J Clin Microbiol Infect Dis. 2016;35(3):325–31. doi:10.1007/s10096-015-2558-8.CrossRefPubMedGoogle Scholar
  73. 73.
    Delgoffe GM, Pollizzi KN, Waickman AT, Heikamp E, Meyers DJ, Horton MR, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol. 2011;12(4):295–303. doi:10.1038/ni.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Procaccini C, De Rosa V, Galgani M, Carbone F, Cassano S, Greco D, et al. Leptin-induced mTOR activation defines a specific molecular and transcriptional signature controlling CD4+ effector T cell responses. J Immunol. 2012;189(6):2941–53. doi:10.4049/jimmunol.1200935.CrossRefPubMedGoogle Scholar
  75. 75.
    Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87. doi:10.1038/nrc.2016.36.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Sothea Touch
    • 1
    • 2
    • 3
  • Karine Clément
    • 1
    • 2
    • 3
    • 4
  • Sébastien André
    • 1
    • 2
    • 3
  1. 1.INSERM, UMR_S 1166, Team 6 NutriomicsParisFrance
  2. 2.Sorbonne Universités, UPMC University Paris 06, UMR_S 1166ParisFrance
  3. 3.ICAN, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de ParisInstitute of Cardiometabolism and NutritionParisFrance
  4. 4.Nutrition, Endocrinology and Cardiology DepartmentsAssistance Publique Hôpitaux de Paris, Pitié-Salpêtrière HospitalParisFrance

Personalised recommendations