Current Diabetes Reports

, 17:62 | Cite as

Bariatric Surgery for Adolescents with Type 2 Diabetes: an Emerging Therapeutic Strategy

Pediatric Type 2 and Monogenic Diabetes (PS Zeitler, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pediatric Type 2 and Monogenic Diabetes


Purpose of Review

Type 2 diabetes (T2D) is a growing public health problem in youth, but conventional treatments are often insufficient to treat this disease and its comorbidities. We review evidence supporting an emerging role for bariatric surgery as a treatment for adolescent T2D.

Recent Findings

Paralleling what has been seen in adult patients, bariatric surgery dramatically improves glycemic control in patients with T2D. In fact, remission of T2D has been observed in as many as 95–100% of adolescents with diabetes after bariatric surgery, particularly vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) surgery. This striking outcome may be due to both weight-dependent- and weight-independent factors, and recent studies suggest that T2D-related comorbidities may also improve after surgery.


Bariatric surgery including RYGB and VSG is a powerful therapeutic option for obese adolescents with T2D. Benefits must be weighed against risk for postoperative complications such as nutritional deficiencies, but earlier surgical intervention might lead to more complete metabolic remission in obese patients with T2D.


Bariatric surgery Type 2 diabetes Obesity Adolescent Roux-en-Y gastric bypass surgery Sleeve gastrectomy 



Dr. Stefater has received research grants from the Pediatric Endocrine Society and the Endocrine Fellows Foundation. Her training is also funded by an institutional T32 (DK007699) training grant.

Dr. Inge has received grants from the National Institute of Diabetes and Digestive and Kidney Diseases.

Compliance with Ethical Standards

Conflict of Interest

Dr. Stefater declares that she has no conflict of interest.

Dr. Inge has been a consultant for Standard Bariatric and UpToDate.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Association AD. Statistics about diabetes 2017. 2017. Available from:
  2. 2.
    Dabelea D, Mayer-Davis EJ, Saydah S, Imperatore G, Linder B, Divers J, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA. 2014;311(17):1778–86.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Imperatore G, Boyle JP, Thompson TJ, Case D, Dabelea D, Hamman RF, et al. Projections of type 1 and type 2 diabetes burden in the U.S. population aged <20 years through 2050: dynamic modeling of incidence, mortality, and population growth. Diabetes Care. 2012;35(12):2515–20.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Constantino MI, Molyneaux L, Limacher-Gisler F, Al-Saeed A, Luo C, Wu T, et al. Long-term complications and mortality in young-onset diabetes: type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care. 2013;36(12):3863–9.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Copeland KC, Zeitler P, Geffner M, Guandalini C, Higgins J, Hirst K, et al. Characteristics of adolescents and youth with recent-onset type 2 diabetes: the TODAY cohort at baseline. J Clin Endocrinol Metab. 2011;96(1):159–67.CrossRefPubMedGoogle Scholar
  6. 6.
    Rosenbloom AL, Silverstein JH, Amemiya S, Zeitler P, Klingensmith GJ. International Society for P, et al. ISPAD Clinical Practice Consensus Guidelines 2006–2007. Type 2 diabetes mellitus in the child and adolescent. Pediatr Diabetes. 2008;9(5):512–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Group TS, Zeitler P, Hirst K, Pyle L, Linder B, Copeland K, et al. A clinical trial to maintain glycemic control in youth with type 2 diabetes. N Engl J Med. 2012;366(24):2247–56.CrossRefGoogle Scholar
  8. 8.
    Klingensmith GJ, Connor CG, Ruedy KJ, Beck RW, Kollman C, Haro H, et al. Presentation of youth with type 2 diabetes in the Pediatric Diabetes Consortium. Pediatr Diabetes. 2016;17(4):266–73.CrossRefPubMedGoogle Scholar
  9. 9.
    Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA. 2012;307(5):483–90.CrossRefPubMedGoogle Scholar
  10. 10.
    Wickremesekera K, Miller G, Naotunne TD, Knowles G, Stubbs RS. Loss of insulin resistance after Roux-en-Y gastric bypass surgery: a time course study. Obes Surg. 2005;15(4):474–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Rizzello M, Abbatini F, Casella G, Alessandri G, Fantini A, Leonetti F, et al. Early postoperative insulin-resistance changes after sleeve gastrectomy. Obes Surg. 20(1):50–5.Google Scholar
  12. 12.
    Basso N, Capoccia D, Rizzello M, Abbatini F, Mariani P, Maglio C, et al. First-phase insulin secretion, insulin sensitivity, ghrelin, GLP-1, and PYY changes 72 h after sleeve gastrectomy in obese diabetic patients: the gastric hypothesis. Surg Endosc. 2011.Google Scholar
  13. 13.
    Rubino F, Gagner M, Gentileschi P, Kini S, Fukuyama S, Feng J, et al. The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann Surg. 2004;240(2):236–42.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg. 1995;222(3):339–50. discussion 50-2CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Al-Sabah SK, Almazeedi SM, Dashti SA, Al-Mulla AY, Ali DA, Jumaa TH. The efficacy of laparoscopic sleeve gastrectomy in treating adolescent obesity. Obes Surg. 2015;25(1):50–4.CrossRefPubMedGoogle Scholar
  16. 16.
    •• Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Helmrath MA, Brandt ML, et al. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374(2):113–23. A part of the Teen-LABS study, this was the first large (242 patients), prospective study of outcomes 3 years after sleeve gastrectomy or RYGB in adolescents CrossRefPubMedGoogle Scholar
  17. 17.
    Vilallonga R, Himpens J, van de Vrande S. Long-term (7 years) follow-up of Roux-en-Y gastric bypass on obese adolescent patients (<18 years). Obesity facts. 2016;9(2):91–100.CrossRefPubMedGoogle Scholar
  18. 18.
    Inge TH, Miyano G, Bean J, Helmrath M, Courcoulas A, Harmon CM, et al. Reversal of type 2 diabetes mellitus and improvements in cardiovascular risk factors after surgical weight loss in adolescents. Pediatrics. 2009;123(1):214–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Kelsey MM, Geffner ME, Guandalini C, Pyle L, Tamborlane WV, Zeitler PS, et al. Presentation and effectiveness of early treatment of type 2 diabetes in youth: lessons from the TODAY study. Pediatr Diabetes. 2016;17(3):212–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Copeland KC, Silverstein J, Moore KR, Prazar GE, Raymer T, Shiffman RN, et al. Management of newly diagnosed type 2 diabetes mellitus (T2DM) in children and adolescents. Pediatrics. 2013;131(2):364–82.CrossRefPubMedGoogle Scholar
  21. 21.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.CrossRefPubMedGoogle Scholar
  22. 22.
    George MM, Copeland KC. Current treatment options for type 2 diabetes mellitus in youth: today’s realities and lessons from the TODAY study. Curr Diab Rep. 2013;13(1):72–80.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Smith JD, Mills E, Carlisle SE. Treatment of pediatric type 2 diabetes. Ann Pharmacother. 2016;50(9):768–77.CrossRefPubMedGoogle Scholar
  24. 24.
    Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KG, Zimmet PZ, et al. Metabolic surgery in the treatment algorithm for type 2 diabetes: a joint statement by International Diabetes Organizations. Surg Obes Relat Dis. 2016;12(6):1144–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Lawson ML, Kirk S, Mitchell T, Chen MK, Loux TJ, Daniels SR, et al. One-year outcomes of Roux-en-Y gastric bypass for morbidly obese adolescents: a multicenter study from the Pediatric Bariatric Study Group. J Pediatr Surg. 2006;41(1):137–43. discussion −43CrossRefPubMedGoogle Scholar
  26. 26.
    Carlsson LM, Peltonen M, Ahlin S, Anveden A, Bouchard C, Carlsson B, et al. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med. 2012;367(8):695–704.CrossRefPubMedGoogle Scholar
  27. 27.
    Rubino F, R’Bibo SL, del Genio F, Mazumdar M, McGraw TE. Metabolic surgery: the role of the gastrointestinal tract in diabetes mellitus. Nat Rev Endocrinol. 6(2):102–9.Google Scholar
  28. 28.
    Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G, et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg. 2003;238(4):467–84. Discussion 84–5PubMedPubMedCentralGoogle Scholar
  29. 29.
    • Courcoulas AP, Belle SH, Neiberg RH, Pierson SK, Eagleton JK, Kalarchian MA, et al. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA surgery. 2015;150(10):931–40. A part of the LABS study, the adult correlate to the Teen-LABS study, this was a large, prospective study examining the impact of RYGB and AGB versus lifestyle intervention in adult diabetic patients CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Korner J, Inabnet W, Conwell IM, Taveras C, Daud A, Olivero-Rivera L, et al. Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels. Obesity (Silver Spring). 2006;14(9):1553–61.CrossRefGoogle Scholar
  31. 31.
    Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcomes. N Engl J Med. 2014;370(21):2002–13.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    • Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes. N Eng J Med. 2017;376(7):641–51. A prospective study of 134 adult patients followed 5 years after bariatric surgery showed superior rates of diabetes remission amongst patients treated with VSG or RYGB, as compared with intensive medical therapy CrossRefGoogle Scholar
  33. 33.
    Capella JF, Capella RF. Bariatric surgery in adolescence. Is this the best age to operate? Obes Surg. 2003;13(6):826–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Strauss RS, Bradley LJ, Brolin RE. Gastric bypass surgery in adolescents with morbid obesity. J Pediatr. 2001;138(4):499–504.CrossRefPubMedGoogle Scholar
  35. 35.
    Inge T, Wilson KA, Gamm K, Kirk S, Garcia VF, Daniels SR. Preferential loss of central (trunk) adiposity in adolescents and young adults after laparoscopic gastric bypass. Surg Obes Relat Dis. 2007;3(2):153–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Collins J, Mattar S, Qureshi F, Warman J, Ramanathan R, Schauer P, et al. Initial outcomes of laparoscopic Roux-en-Y gastric bypass in morbidly obese adolescents. Surg Obes Relat Dis. 2007;3(2):147–52.CrossRefPubMedGoogle Scholar
  37. 37.
    Stanford A, Glascock JM, Eid GM, Kane T, Ford HR, Ikramuddin S, et al. Laparoscopic Roux-en-Y gastric bypass in morbidly obese adolescents. J Pediatr Surg. 2003;38(3):430–3.CrossRefPubMedGoogle Scholar
  38. 38.
    Dolan K, Creighton L, Hopkins G, Fielding G. Laparoscopic gastric banding in morbidly obese adolescents. Obes Surg. 2003;13(1):101–4.CrossRefPubMedGoogle Scholar
  39. 39.
    Sugerman HJ, Sugerman EL, DeMaria EJ, Kellum JM, Kennedy C, Mowery Y, et al. Bariatric surgery for severely obese adolescents. J Gastrointest Surg. 2003;7(1):102–7. Discussion 7–8CrossRefPubMedGoogle Scholar
  40. 40.
    O’Brien PE, Sawyer SM, Laurie C, Brown WA, Skinner S, Veit F, et al. Laparoscopic adjustable gastric banding in severely obese adolescents: a randomized trial. JAMA. 2010;303(6):519–26.CrossRefPubMedGoogle Scholar
  41. 41.
    •• Inge TH, Jenkins TM, Xanthakos SA, Dixon JB, Daniels SR, Zeller MH, et al. Long-term outcomes of bariatric surgery in adolescents with severe obesity (FABS-5+): a prospective follow-up analysis. Lancet Diabetes Endocrinol. 2017;5(3):165–73. Five-year outcomes of the Teen-LABS study, a large prospective study of adolescent bariatric surgery CrossRefPubMedGoogle Scholar
  42. 42.
    Inge TH, Jenkins TM, Zeller M, Dolan L, Daniels SR, Garcia VF, et al. Baseline BMI is a strong predictor of nadir BMI after adolescent gastric bypass. J Pediatr. 2010;156(1):103–8. e1 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dixon JB, O’Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Heron M, Hoyert DL, Murphy SL, Xu J, Kochanek KD, Tejada-Vera B. Deaths: final data for 2006. Natl Vital Stat Rep. 2009;57(14):1–134.PubMedGoogle Scholar
  45. 45.
    Arterburn D, Schauer DP, Wise RE, Gersin KS, Fischer DR, Selwyn CA Jr, et al. Change in predicted 10-year cardiovascular risk following laparoscopic Roux-en-Y gastric bypass surgery. Obes Surg. 2009;19(2):184–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Torquati A, Wright K, Melvin W, Richards W. Effect of gastric bypass operation on Framingham and actual risk of cardiovascular events in class II to III obesity. J Am Coll Surg. 2007;204(5):776–82. discussion 82-3CrossRefPubMedGoogle Scholar
  47. 47.
    McCloskey CA, Ramani GV, Mathier MA, Schauer PR, Eid GM, Mattar SG, et al. Bariatric surgery improves cardiac function in morbidly obese patients with severe cardiomyopathy. Surg Obes Relat Dis. 2007;3(5):503–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Zlabek JA, Grimm MS, Larson CJ, Mathiason MA, Lambert PJ, Kothari SN. The effect of laparoscopic gastric bypass surgery on dyslipidemia in severely obese patients. Surg Obes Relat Dis. 2005;1(6):537–42.CrossRefPubMedGoogle Scholar
  49. 49.
    Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after Roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247(3):401–7.CrossRefPubMedGoogle Scholar
  50. 50.
    Benaiges D, Goday A, Ramon JM, Hernandez E, Pera M, Cano JF. Laparoscopic sleeve gastrectomy and laparoscopic gastric bypass are equally effective for reduction of cardiovascular risk in severely obese patients at one year of follow-up. Surg Obes Relat Dis. 2011.Google Scholar
  51. 51.
    Woelnerhanssen B, Peterli R, Steinert RE, Peters T, Borbely Y, Beglinger C. Effects of postbariatric surgery weight loss on adipokines and metabolic parameters: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy-a prospective randomized trial. Surg Obes Relat Dis. 2011.Google Scholar
  52. 52.
    Iannelli A, Dainese R, Piche T, Facchiano E, Gugenheim J. Laparoscopic sleeve gastrectomy for morbid obesity. World J Gastroenterol. 2008;14(6):821–7.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.CrossRefPubMedGoogle Scholar
  54. 54.
    Vidal J, Ibarzabal A, Romero F, Delgado S, Momblan D, Flores L, et al. Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obes Surg. 2008;18(9):1077–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Ippisch HM, Inge TH, Daniels SR, Wang B, Khoury PR, Witt SA, et al. Reversibility of cardiac abnormalities in morbidly obese adolescents. J Am Coll Cardiol. 2008;51(14):1342–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Willens HJ, Chakko SC, Byers P, Chirinos JA, Labrador E, Castrillon JC, et al. Effects of weight loss after gastric bypass on right and left ventricular function assessed by tissue Doppler imaging. Am J Cardiol. 2005;95(12):1521–4.CrossRefPubMedGoogle Scholar
  57. 57.
    Ehrmann DA. Polycystic ovary syndrome. N Engl J Med. 2005;352(12):1223–36.CrossRefPubMedGoogle Scholar
  58. 58.
    Skubleny D, Switzer NJ, Gill RS, Dykstra M, Shi X, Sagle MA, et al. The impact of bariatric surgery on polycystic ovary syndrome: a systematic review and meta-analysis. Obes Surg. 2016;26(1):169–76.CrossRefPubMedGoogle Scholar
  59. 59.
    Milone M, De Placido G, Musella M, Sosa Fernandez LM, Sosa Fernandez LV, Campana G, et al. Incidence of successful pregnancy after weight loss interventions in infertile women: a systematic review and meta-analysis of the literature. Obes Surg. 2016;26(2):443–51.CrossRefPubMedGoogle Scholar
  60. 60.
    Roehrig HR, Xanthakos SA, Sweeney J, Zeller MH, Inge TH. Pregnancy after gastric bypass surgery in adolescents. Obes Surg. 2007;17(7):873–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Magdaleno R Jr, Pereira BG, Chaim EA, Turato ER. Pregnancy after bariatric surgery: a current view of maternal, obstetrical and perinatal challenges. Arch Gynecol Obstet. 2012;285(3):559–66.CrossRefPubMedGoogle Scholar
  62. 62.
    Kominiarek MA. Preparing for and managing a pregnancy after bariatric surgery. Semin Perinatol. 2011;35(6):356–61.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dalfra MG, Busetto L, Chilelli NC, Lapolla A. Pregnancy and foetal outcome after bariatric surgery: a review of recent studies. J Matern Fetal Neonatal Med. 2012;25(9):1537–43.CrossRefPubMedGoogle Scholar
  64. 64.
    US Renal Data System. USRDS 2014 annual data report: atlas of end-stage renal disease in the United States [press release]. Bethesda: National Institute of Diabetes and Digestive Kidney Diseases; 2014.Google Scholar
  65. 65.
    Afkarian M, Sachs MC, Kestenbaum B, Hirsch IB, Tuttle KR, Himmelfarb J, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol: JASN. 2013;24(2):302–8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75.CrossRefPubMedGoogle Scholar
  67. 67.
    Heneghan HM, Cetin D, Navaneethan SD, Orzech N, Brethauer SA, Schauer PR. Effects of bariatric surgery on diabetic nephropathy after 5 years of follow-up. Surg Obes Relat Dis. 2013;9(1):7–14.CrossRefPubMedGoogle Scholar
  68. 68.
    Stephenson DT, Jandeleit-Dahm K, Balkau B, Cohen N. Improvement in albuminuria in patients with type 2 diabetes after laparoscopic adjustable gastric banding. Diab Vasc Dis Res. 2013;10(6):514–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Friedman AN, Wolfe B. Is bariatric surgery an effective treatment for type II diabetic kidney disease? Clin J Am Soc Nephrol: CJASN. 2016;11(3):528–35.CrossRefPubMedGoogle Scholar
  70. 70.
    Upala S, Wijarnpreecha K, Congrete S, Rattanawong P, Sanguankeo A. Bariatric surgery reduces urinary albumin excretion in diabetic nephropathy: a systematic review and meta-analysis. Surg Obes Relat Dis. 2016;12(5):1037–44.CrossRefPubMedGoogle Scholar
  71. 71.
    Zakaria AS, Rossetti L, Cristina M, Veronelli A, Lombardi F, Saibene A, et al. Effects of gastric banding on glucose tolerance, cardiovascular and renal function, and diabetic complications: a 13-year study of the morbidly obese. Surg Obes Relat Dis. 2016;12(3):587–95.CrossRefPubMedGoogle Scholar
  72. 72.
    Carlsson LM, Romeo S, Jacobson P, Burza MA, Maglio C, Sjoholm K, et al. The incidence of albuminuria after bariatric surgery and usual care in Swedish Obese Subjects (SOS): a prospective controlled intervention trial. Int J Obes. 2015;39(1):169–75.CrossRefGoogle Scholar
  73. 73.
    Carlsson LM, Sjoholm K, Karlsson C, Jacobson P, Andersson-Assarsson JC, Svensson PA, et al. Long-term incidence of microvascular disease after bariatric surgery or usual care in patients with obesity, stratified by baseline glycaemic status: a post hoc analysis of participants from the Swedish Obese Subjects study. Lancet Diabetes Endocrinol. 2017.Google Scholar
  74. 74.
    Gorman DM, le Roux CW, Docherty NG. The effect of bariatric surgery on diabetic retinopathy: good, bad, or both? Diabetes Metab J. 2016;40(5):354–64.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Merlotti C, Ceriani V, Morabito A, Pontiroli AE. Bariatric surgery and diabetic retinopathy: a systematic review and meta-analysis of controlled clinical studies. Obes Rev. 2017;18(3):309–16.CrossRefPubMedGoogle Scholar
  76. 76.
    Kim YJ, Kim BH, Choi BM, Sun HJ, Lee SJ, Choi KS. Bariatric surgery is associated with less progression of diabetic retinopathy: a systematic review and meta-analysis. Surg Obes Relat Dis. 2017;13(2):352–60.CrossRefPubMedGoogle Scholar
  77. 77.
    Yau JW, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35(3):556–64.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Amin AM, Wharton H, Clarke M, Syed A, Dodson P, Tahrani AA. The impact of bariatric surgery on retinopathy in patients with type 2 diabetes: a retrospective cohort study. Surg Obes Relat Dis. 2016;12(3):606–12.CrossRefPubMedGoogle Scholar
  79. 79.
    Arteaga JR, Huerta S, Livingston EH. Management of gastrojejunal anastomotic leaks after Roux-en-Y gastric bypass. Am Surg. 2002;68(12):1061–5.PubMedGoogle Scholar
  80. 80.
    Burgos AM, Braghetto I, Csendes A, Maluenda F, Korn O, Yarmuch J, et al. Gastric leak after laparoscopic-sleeve gastrectomy for obesity. Obes Surg. 2009;19(12):1672–7.CrossRefPubMedGoogle Scholar
  81. 81.
    Rasmussen JJ, Fuller W, Ali MR. Marginal ulceration after laparoscopic gastric bypass: an analysis of predisposing factors in 260 patients. Surg Endosc. 2007;21(7):1090–4.CrossRefPubMedGoogle Scholar
  82. 82.
    Chouillard EK, Karaa A, Elkhoury M, Greco VJ. Intercontinental Society of Natural Orifice E, Laparoscopic S. Laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy for morbid obesity: case-control study. Surg Obes Rel Dis. 2011;7(4):500–5.CrossRefGoogle Scholar
  83. 83.
    Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357(8):741–52.CrossRefPubMedGoogle Scholar
  84. 84.
    Tsai WS, Inge TH, Burd RS. Bariatric surgery in adolescents: recent national trends in use and in-hospital outcome. Arch Pediatr Adolesc Med. 2007;161(3):217–21.CrossRefPubMedGoogle Scholar
  85. 85.
    Inge TH, Zeller MH, Jenkins TM, Helmrath M, Brandt ML, Michalsky MP, et al. Perioperative outcomes of adolescents undergoing bariatric surgery: the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) Study. JAMA Pediatr. 2014;168(1):47–53.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gehrer S, Kern B, Peters T, Christoffel-Courtin C, Peterli R. Fewer nutrient deficiencies after laparoscopic sleeve gastrectomy (LSG) than after laparoscopic Roux-Y-gastric bypass (LRYGB)—a prospective study. Obes Surg. 2010;20(4):447–53.CrossRefPubMedGoogle Scholar
  87. 87.
    Clements RH, Katasani VG, Palepu R, Leeth RR, Leath TD, Roy BP, et al. Incidence of vitamin deficiency after laparoscopic Roux-en-Y gastric bypass in a university hospital setting. Am Surg. 2006;72(12):1196–202. Discussion 203–4PubMedGoogle Scholar
  88. 88.
    Griffith DP, Liff DA, Ziegler TR, Esper GJ, Winton EF. Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity (Silver Spring). 2009;17(4):827–31.CrossRefGoogle Scholar
  89. 89.
    Poitou Bernert C, Ciangura C, Coupaye M, Czernichow S, Bouillot JL, Basdevant A. Nutritional deficiency after gastric bypass: diagnosis, prevention and treatment. Diabetes Metab. 2007;33(1):13–24.CrossRefPubMedGoogle Scholar
  90. 90.
    Xanthakos SA. Nutritional deficiencies in obesity and after bariatric surgery. Pediatr Clin N Am. 2009;56(5):1105–21.CrossRefGoogle Scholar
  91. 91.
    Towbin A, Inge TH, Garcia VF, Roehrig HR, Clements RH, Harmon CM, et al. Beriberi after gastric bypass surgery in adolescence. J Pediatr. 2004;145(2):263–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Mallory GN, Macgregor AM. Folate status following gastric bypass surgery (the great folate mystery). Obes Surg. 1991;1(1):69–72.CrossRefPubMedGoogle Scholar
  93. 93.
    Jeffreys RM, Hrovat K, Woo JG, Schmidt M, Inge TH, Xanthakos SA. Dietary assessment of adolescents undergoing laparoscopic Roux-en-Y gastric bypass surgery: macro- and micronutrient, fiber, and supplement intake. Surg Obes Relat Dis. 2011.Google Scholar
  94. 94.
    Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL. Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab. 2004;89(3):1061–5.CrossRefPubMedGoogle Scholar
  95. 95.
    Mahdy T, Atia S, Farid M, Adulatif A. Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg. 2008;18(12):1526–31.CrossRefPubMedGoogle Scholar
  96. 96.
    von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U. Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism. 2004;53(7):918–21.CrossRefGoogle Scholar
  97. 97.
    Kaulfers AM, Bean JA, Inge TH, Dolan LM, Kalkwarf HJ. Bone loss in adolescents after bariatric surgery. Pediatrics. 2011;127(4):e956–61.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):e7038.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Schafer AL. Vitamin D and intestinal calcium transport after bariatric surgery. J Steroid Biochem Mol Biol. 2016.Google Scholar
  100. 100.
    Pacifico L, Anania C, Poggiogalle E, Osborn JF, Prossomariti G, Martino F, et al. Relationships of acylated and des-acyl ghrelin levels to bone mineralization in obese children and adolescents. Bone. 2009;45(2):274–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Carlin AM, Rao DS, Yager KM, Parikh NJ, Kapke A. Treatment of vitamin D depletion after Roux-en-Y gastric bypass: a randomized prospective clinical trial. Surg Obes Relat Dis. 2009;5(4):444–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Xanthakos SA, Inge TH. Nutritional consequences of bariatric surgery. Curr Opin Clin Nutr Metab Care. 2006;9(4):489–96.CrossRefPubMedGoogle Scholar
  103. 103.
    Fullmer MA, Abrams SH, Hrovat K, Mooney L, Scheimann AO, Hillman JB, et al. Nutritional strategy for adolescents undergoing bariatric surgery: report of a working group of the Nutrition Committee of NASPGHAN/NACHRI. J Pediatr Gastroenterol Nutr. 2012;54(1):125–35.CrossRefPubMedGoogle Scholar
  104. 104.
    Rand CS, Macgregor AM. Adolescents having obesity surgery: a 6-year follow-up. South Med J. 1994;87(12):1208–13.CrossRefPubMedGoogle Scholar
  105. 105.
    Zeitler P, Hirst K, Copeland KC, El Ghormli L, Levitt Katz L, Levitsky LL, et al. HbA1c after a short period of monotherapy with metformin identifies durable glycemic control among adolescents with type 2 diabetes. Diabetes Care. 2015;38(12):2285–92.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of EndocrinologyBoston Children’s HospitalBostonUSA
  2. 2.Department of SurgeryChildren’s Hospital ColoradoAuroraUSA

Personalised recommendations