Regulating Autophagy as a Therapeutic Target for Diabetic Nephropathy

  • Munehiro KitadaEmail author
  • Yoshio Ogura
  • Itaru Monno
  • Daisuke Koya
Microvascular Complications—Nephropathy (M Afkarian, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Microvascular Complications—Nephropathy


Purpose of Review

Autophagy promotes cellular health in response to various cellular stresses and to changes in nutrient conditions. In this review, we focus on the role of autophagy in the pathogenesis of diabetic nephropathy and discuss the regulation of autophagy as a new therapeutic target for the suppression of diabetic nephropathy.

Recent Findings

Previous studies have indicated that autophagy deficiency or insufficiency in renal cells, including podocytes, mesangial cells, endothelial cells and tubular cells, contributes to the pathogenesis of diabetic nephropathy. Alterations in the nutrient-sensing pathways, including mammalian target of rapamycin complex1 (mTORC1), AMP-activated kinase (AMPK) and Sirt1, due to excess nutrition in diabetes are implicated in the impairment of autophagy.


Maintaining both basal and adaptive autophagy against cellular stress may protect the kidney from diabetes-induced cellular stresses. Therefore, the activation of autophagy through the modulation of nutrient-sensing pathways may be a new therapeutic option for the suppression of diabetic nephropathy.


Diabetic nephropathy Autophagy mTORC1 Sirt1 


Compliance with Ethical Standards

Conflict of Interest

Boehringer Ingelheim, Mitsubishi Tanabe Pharma, Kyowa Hakko Kirin, Taisho Toyama Pharmaceutical Co., and Ono Pharmaceutical Co. contributed to establishing the Division of Anticipatory Molecular Food Science and Technology. Munehiro Kitada, Yoshio Ogura, Itaru Monno, and Daisuke Koya declare that there are no conflicts of interest associated with this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


This work was financially supported by a Grant for Promoted Research from Kanazawa Medical University (S2016-11) to M.K.; a Grant-in-Aid for Challenging Exploratory Research (16 K15472), the Science Research Promotion Fund for the promotion and mutual corporation for private schools of Japan, and a Grant for Collaborative Research from Kanazawa Medical University (C2015-2) to D.K.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Kitada M, Kanasaki K, Koya D. Clinical therapeutic strategies for early stage of diabetic kidney disease. World J Diabetes. 2014;5(3):342–56.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci. 2013;124(3):153–64.CrossRefPubMedGoogle Scholar
  3. 3.
    Kitada M, Zhang Z, Mima A, King GL. Molecular mechanisms of diabetic vascular complications. J Diabetes Investig. 2010;1(3):77–89.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Roscioni SS, Heerspink HJ, de Zeeuw D. The effect of RAAS blockade on the progression of diabetic nephropathy. Nat Rev Nephrol. 2014;10(2):77–87.CrossRefPubMedGoogle Scholar
  5. 5.
    Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. New Engl J Med. 2016;375(4):323–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kume S, Koya D, Uzu T, Maegawa H. Role of nutrient-sensing signals in the pathogenesis of diabetic nephropathy. BioMed Res Int. 2014;2014:315494.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. New Engl J Med. 2013;368(7):651–62.CrossRefPubMedGoogle Scholar
  10. 10.
    Tanaka Y, Kume S, Kitada M, Kanasaki K, Uzu T, Maegawa H, et al. Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res. 2012;2012:628978.CrossRefPubMedGoogle Scholar
  11. 11.
    Koya D, Kitada M, Kume S, Kanasaki K. Interventions against nutrient-sensing pathways represent an emerging new therapeutic approach for diabetic nephropathy. Clin Exp Nephrol. 2014;18(2):210–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Investig. 2015;125(1):25–32.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jewell JL, Guan KL. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci. 2013;38(5):233–42.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.CrossRefPubMedGoogle Scholar
  16. 16.
    Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17(15):1829–34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15.CrossRefPubMedGoogle Scholar
  18. 18.
    Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316–23.CrossRefPubMedGoogle Scholar
  19. 19.
    Ma L, Teruya-Feldstein J, Bonner P, Bernardi R, Franz DN, Witte D, et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res. 2007;67(15):7106–12.CrossRefPubMedGoogle Scholar
  20. 20.
    Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290–303.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mack HI, Zheng B, Asara JM, Thomas SM. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy. 2012;8(8):1197–214.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A. 2011;108(12):4788–93.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–61.CrossRefPubMedGoogle Scholar
  29. 29.
    Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circulation Res. 2010;107(12):1470–82.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Diff. 2014;21(3):348–58.CrossRefGoogle Scholar
  31. 31.
    Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009;284(41):28319–31.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Investig. 2010;120(4):1043–55.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kaufmann A, Beier V, Franquelim HG, Wollert T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell. 2014;156(3):469–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105(9):3374–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015;57(3):456–66.CrossRefPubMedGoogle Scholar
  36. 36.
    Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5(2):e9199.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun. 2012;427(1):191–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis: Off J Nat Kidney Found. 2003;41(1):1–12.CrossRefGoogle Scholar
  41. 41.
    Rule AD, Amer H, Cornell LD, Taler SJ, Cosio FG, Kremers WK, et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Int Med. 2010;152(9):561–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hsu CY, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Int Med. 2009;169(4):342–50.CrossRefGoogle Scholar
  43. 43.
    Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F, et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2008;295(5):F1563–73.CrossRefPubMedGoogle Scholar
  44. 44.
    Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxidants Redox Signal. 2016;25(12):657–84.CrossRefGoogle Scholar
  45. 45.
    Kitada M, Koya D, Sugimoto T, Isono M, Araki S, Kashiwagi A, et al. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes. 2003;52(10):2603–14.CrossRefPubMedGoogle Scholar
  46. 46.
    Kitada M, Kume S, Imaizumi N, Koya D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes. 2011;60(2):634–43.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cunard R, Sharma K. The endoplasmic reticulum stress response and diabetic kidney disease. Am J Physiol Renal Physiol. 2011;300(5):F1054–61.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Takiyama Y, Haneda M. Hypoxia in diabetic kidneys. BioMed Res Int. 2014;2014:837421.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N, et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes. 2011;60(3):981–92.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K, et al. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia. 2016;59(6):1307–17.CrossRefPubMedGoogle Scholar
  51. 51.
    Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashiwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun. 2006;340(1):296–301.CrossRefPubMedGoogle Scholar
  52. 52.
    Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res. 2011;2011:908185.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol. 2003;7(4):255–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol. 2015;224(1):R15–30.CrossRefPubMedGoogle Scholar
  55. 55.
    Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Investig. 2014;124(6):2333–40.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Investig. 2010;120(4):1084–96.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    • Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016;65(3):755–67. This study show that the impaired autophagy in podocytes is implicated in the pathogenesis of advanced diabetic nephropathy in human and animal models, and that serum factors that promote podocyte stress and dysfunction with the blunting of autophagy in proteinuric individuals may exist.Google Scholar
  58. 58.
    Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Investig. 2011;121(6):2197–209.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Investig. 2011;121(6):2181–96.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One. 2013; 8(4):e60546.Google Scholar
  61. 61.
    Haneda M, Koya D, Isono M, Kikkawa R. Overview of glucose signaling in mesangial cells in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1374–82.CrossRefPubMedGoogle Scholar
  62. 62.
    Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME. Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-beta1. J Biol Chem. 2012;287(15):11677–88.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med. 2013;5(3):441–55.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxidative Med Cell Longev. 2010;3(2):101–8.CrossRefGoogle Scholar
  65. 65.
    Xu L, Fan Q, Wang X, Zhao X, Wang L. Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell Death Dis. 2016;7(11):e2445.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fu J, Lee K, Chuang PY, Liu Z, He JC. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol. 2015;308(4):F287–97.CrossRefPubMedGoogle Scholar
  67. 67.
    • Lenoir O, Jasiek M, Henique C, Guyonnet L, Hartleben B, Bork T, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy. 2015;11(7):1130–45. This study provides that autophagy is a key protective mechanism on both cellular layers, glomerular endothelial cells and podocytes, in the glomerular filtration barrier.Google Scholar
  68. 68.
    Fan Y, Li X, Xiao W, Fu J, Harris RC, Lindenmeyer M, et al. BAMBI elimination enhances alternative TGF-beta signaling and glomerular dysfunction in diabetic mice. Diabetes. 2015;64(6):2220–33.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A, et al. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS One. 2010;5(9), e12995.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Risdon RA, Sloper JC, De Wardener HE. Relationship between renal function and histologic changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet. 1968;2(7564):363–6.CrossRefPubMedGoogle Scholar
  71. 71.
    Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999;56(5):1627–37.CrossRefPubMedGoogle Scholar
  72. 72.
    Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA, Kretzler M, Cohen CD, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol. 2008;19(11):2225–36.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regulatory, Integrative Comparative Physiol. 2011;300(5):R1009–22.CrossRefGoogle Scholar
  74. 74.
    Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011;22(5):902–13.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    • Yamamoto T, Takabatake Y, Kimura T, Takahashi A, Namba T, Matsuda J, et al. Time-dependent dysregulation of autophagy: implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy. 2016;12(5):801–13. This study provides an importance of age-dependent high basal autophagy for mitochondrial quality control, and show that a reduced capacity for upregulation of autophagic flux in response to metabolic stress is associated with age-related kidney diseases.Google Scholar
  76. 76.
    Yamahara K, Kume S, Koya D, Tanaka Y, Morita Y, Chin-Kanasaki M, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol. 2013;24(11):1769–81.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 Inhibitors and the Diabetic Kidney. Diabetes Care. 2016;39 Suppl 2:S165–71.CrossRefPubMedGoogle Scholar
  78. 78.
    Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. New Engl J Med. 2016;375(18):1801–2.PubMedGoogle Scholar
  79. 79.
    Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol. 2013;304(2):F156–67.CrossRefPubMedGoogle Scholar
  80. 80.
    Vestri S, Okamoto MM, de Freitas HS. Aparecida Dos Santos R, Nunes MT, Morimatsu M, et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membrane Biol. 2001;182(2):105–12.CrossRefGoogle Scholar
  81. 81.
    Vidotti DB, Arnoni CP, Maquigussa E, Boim MA. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol. 2008;28(1):107–14.CrossRefPubMedGoogle Scholar
  82. 82.
    Tabatabai NM, Sharma M, Blumenthal SS, Petering DH. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract. 2009;83(1):e27–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Munehiro Kitada
    • 1
    • 2
    Email author
  • Yoshio Ogura
    • 1
  • Itaru Monno
    • 1
  • Daisuke Koya
    • 1
    • 2
  1. 1.Department of Diabetology and EndocrinologyKanazawa Medical UniversityUchinadaJapan
  2. 2.Division of Anticipatory Molecular Food Science and Technology, Medical Research InstituteKanazawa Medical UniversityUchinadaJapan

Personalised recommendations