The Role and Potential Therapeutic Implications of the Fibroblast Growth Factors in Energy Balance and Type 2 Diabetes

  • Maitane Izaguirre
  • María J. Gil
  • Ignacio Monreal
  • Fabrizio Montecucco
  • Gema Frühbeck
  • Victoria Catalán
Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance


Purpose of Review

Obesity and its associated metabolic diseases have reached epidemic proportions worldwide, reducing life expectancy and quality of life. Several drugs have been tested to treat these diseases but many of them have damaging side effects. Consequently, there is an urgent need to develop more effective therapies. Recently, endocrine fibroblast growth factors (FGFs) have become attractive targets in the treatment of metabolic diseases. This review summarizes their most important functions as well as FGF-based therapies for the treatment of obesity and type 2 diabetes (T2D).

Recent Findings

Recent studies demonstrate that circulating levels of FGF19 are reduced in obesity. In fact, exogenous FGF19 administration is associated with a reduction in food intake as well as with improvements in glycaemia. In contrast, FGF21 levels are elevated in subjects with abdominal obesity, insulin resistance and T2D, probably representing a compensatory response. Additionally, elevated levels of circulating FGF23 in individuals with obesity and T2D are reported in most clinical studies. Finally, increased FGF1 levels in obese patients associated with adipogenesis have been described.


FGFs constitute important molecules in the treatment of metabolic diseases due to their beneficial effects on glucose and lipid metabolism. Among all members, FGF19 and FGF21 have demonstrated the ability to improve glucose, lipid and energy homeostasis, along with FGF1, which was recently discovered to have beneficial effects on metabolic homeostasis. Additionally, FGF23 may also play a role in insulin resistance or energy homeostasis beyond mineral metabolism control. These results highlight the relevant use of FGFs as potential biomarkers for the early diagnosis of metabolic diseases. In this regard, notable progress has been made in the development of FGF-based therapies and different approaches are being tested in different clinical trials. However, further studies are needed to determine their potential therapeutic use in the treatment of obesity and obesity-related comorbidities.


FGF FGFR α-Klotho β-Klotho T2D Obesity Energy balance 



This work was supported by ISCIII-Subdirección General de Evaluación y FEDER (PI13/00460 and PI16/01217; Plan Estatal I + D + I/2013-2016) and by Fundación Caja Navarra (20-2014). CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) is an initiative of the ISCIII, Spain.

The authors gratefully acknowledge the valuable collaboration of all the members of the Multidisciplinary Obesity Team, Clinica Universidad de Navarra, Pamplona, Spain.

Compliance with Ethical Standards

Conflict of Interest

Maitane Izaguirre, María J. Gil, Ignacio Monreal, Fabrizio Montecucco, Gema Frühbeck, and Victoria Catalán declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM. Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6:117–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2013;384:766–81.CrossRefGoogle Scholar
  3. 3.
    Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia. 2003;46:143–72.PubMedCrossRefGoogle Scholar
  5. 5.
    •• Bray GA, Frühbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. 2016;387:1947–56. Thorough review describing different strategies to treat obesity PubMedCrossRefGoogle Scholar
  6. 6.
    Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:342–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594–603.PubMedCrossRefGoogle Scholar
  8. 8.
    Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 2010;342:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009;8:235–53.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays. 2000;22:108–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27:3417–28.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Fukumoto S. Actions and mode of actions of FGF19 subfamily members. Endocr J. 2008;55:23–31.PubMedCrossRefGoogle Scholar
  14. 14.
    Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.PubMedCrossRefGoogle Scholar
  15. 15.
    Fon Tacer K, Bookout AL, Ding X, et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24:2050–64.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    •• Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627–35. Seminal paper describing the participation of FGFs in energy balance and glucose metabolism PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143:1741–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Newell FS, Su H, Tornqvist H, Whitehead JP, Prins JB, Hutley LJ. Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. FASEB J. 2006;20:2615–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Kreuger J, Prydz K, Pettersson RF, Lindahl U, Salmivirta M. Characterization of fibroblast growth factor 1 binding heparan sulfate domain. Glycobiology. 1999;9:723–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Schmidt DR, Holmstrom SR, Fon Tacer K, Bookout AL, Kliewer SA, Mangelsdorf DJ. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J Biol Chem. 2010;285:14486–94.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Henkel AS, Anderson KA, Dewey AM, Kavesh MH, Green RM. A chronic high-cholesterol diet paradoxically suppresses hepatic CYP7A1 expression in FVB/NJ mice. J Lipid Res. 2011;52:289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vergnes L, Lee JM, Chin RG, Auwerx J, Reue K. Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab. 2013;17:916–28.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Holt JA, Luo G, Billin AN, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003;17:1581–91.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Potthoff MJ, Boney-Montoya J, Choi M, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab. 2011;13:729–38.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem. 2009;284:10023–33.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kir S, Beddow SA, Samuel VT, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011;331:1621–4.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    • Marcelin G, Jo YH, Li X, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2014;3:19–28. This study provides evidence that FGF19 can signal in the hypothalamic arcuate nucleus improving peripheral insulin signaling through the induction of ERK1/2 signaling and the suppression of AGRP/NPY neurons activity in obese and insulin-resistant states PubMedCrossRefGoogle Scholar
  30. 30.
    Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 2013;154:9–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One. 2012;7:e33870.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wu X, Ge H, Baribault H, et al. Dual actions of fibroblast growth factor 19 on lipid metabolism. J Lipid Res. 2013;54:325–32.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983–90.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Muise ES, Azzolina B, Kuo DW, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol. 2008;74:403–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000;1492:203–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426–37.PubMedCrossRefGoogle Scholar
  37. 37.
    Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5:415–25.PubMedCrossRefGoogle Scholar
  38. 38.
    Lundasen T, Hunt MC, Nilsson LM, et al. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 2007;360:437–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Boutant M, Canto C. SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab. 2014;3:5–18.PubMedCrossRefGoogle Scholar
  40. 40.
    Lee JH, Giannikopoulos P, Duncan SA, et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med. 2011;17:812–5.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Patel R, Bookout AL, Magomedova L, et al. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol Endocrinol. 2015;29:213–23.PubMedCrossRefGoogle Scholar
  42. 42.
    De Sousa-Coelho AL, Marrero PF, Haro D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J. 2012;443:165–71.PubMedCrossRefGoogle Scholar
  43. 43.
    Laeger T, Henagan TM, Albarado DC, et al. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014;124:3913–22.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    De Sousa-Coelho AL, Relat J, Hondares E, et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res. 2013;54:1786–97.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology. 2009;150:4931–40.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yu Y, Bai F, Liu Y, et al. Fibroblast growth factor (FGF21) protects mouse liver against D-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways. Mol Cell Biochem. 2015;403:287–99.PubMedCrossRefGoogle Scholar
  47. 47.
    Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F. FGF21 expression and release in muscle cells: Involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J. 2014;463:191–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Ding X, Boney-Montoya J, Owen BM, et al. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 2012;16:387–93.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63:4057–63.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–81.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Samms RJ, Smith DP, Cheng CC, et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 2015;11:991–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Veniant MM, Sivits G, Helmering J, et al. Pharmacologic effects of FGF21 are independent of the “Browning” of white adipose tissue. Cell Metab. 2015;21:731–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17:779–89.PubMedCrossRefGoogle Scholar
  54. 54.
    Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17:790–7.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007;28:2382–6.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes. 2011;60:2758–62.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Bookout AL, de Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19:1147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Liang Q, Zhong L, Zhang J, et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 2014;63:4064–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ersoy FF. A short story of Klotho and FGF23: a deuce of dark side or the savior? Int Urol Nephrol. 2014;46:577–81.PubMedCrossRefGoogle Scholar
  61. 61.
    Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Farrow EG, White KE. Recent advances in renal phosphate handling. Nat Rev Nephrol. 2010;6:207–17.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lanske B, Razzaque MS. Molecular interactions of FGF23 and PTH in phosphate regulation. Kidney Int. 2014;86:1072–4.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutierrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One. 2015;10:e0122885.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Grethen E, Hill KM, Jones R, et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012;97:1655–62.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Itoh N, Ornitz DM. Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149:121–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Mouta Carreira C, Landriscina M, Bellum S, Prudovsky I, Maciag T. The comparative release of FGF1 by hypoxia and temperature stress. Growth Factors. 2001;18:277–85.PubMedCrossRefGoogle Scholar
  68. 68.
    Jackson A, Friedman S, Zhan X, Engleka KA, Forough R, Maciag T. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A. 1992;89:10691–5.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Shin JT, Opalenik SR, Wehby JN, et al. Serum-starvation induces the extracellular appearance of FGF-1. Biochim Biophys Acta. 1996;1312:27–38.PubMedCrossRefGoogle Scholar
  70. 70.
    Ananyeva NM, Tjurmin AV, Berliner JA, et al. Oxidized LDL mediates the release of fibroblast growth factor-1. Arterioscler Thromb Vasc Biol. 1997;17:445–53.PubMedCrossRefGoogle Scholar
  71. 71.
    Friesel R, Maciag T. Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb Haemost. 1999;82:748–54.PubMedGoogle Scholar
  72. 72.
    Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: from biology through engineering to potential medical applications. Crit Rev Clin Lab Sci. 2008;45:91–135.PubMedCrossRefGoogle Scholar
  73. 73.
    Hutley L, Shurety W, Newell F, et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes. 2004;53:3097–106.PubMedCrossRefGoogle Scholar
  74. 74.
    Hutley LJ, Newell FS, Kim YH, et al. A putative role for endogenous FGF-2 in FGF-1 mediated differentiation of human preadipocytes. Mol Cell Endocrinol. 2011;339:165–71.PubMedCrossRefGoogle Scholar
  75. 75.
    Jonker JW, Suh JM, Atkins AR, et al. A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature. 2012;485:391–4.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol. 2000;20:2260–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell Metab. 2010;16:693–705.CrossRefGoogle Scholar
  78. 78.
    Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab. 2015;26:22–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Morton GJ, Matsen ME, Bracy DP, et al. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest. 2013;123:4799–808.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Reiche M, Bachmann A, Lossner U, Bluher M, Stumvoll M, Fasshauer M. Fibroblast growth factor 19 serum levels: relation to renal function and metabolic parameters. Horm Metab Res. 2010;42:178–81.PubMedCrossRefGoogle Scholar
  81. 81.
    • Gallego-Escuredo JM, Gómez-Ambrosi J, Catalán V, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes. 2015;39:121–9. This study reports that obesity is associated with an increase in FGF21 as well as with a decrease in FGF19 circulating levels. Moreover, opposite changes in β-klotho expression in fat and liver indicate potential tissue-specific alterations in the responsiveness to endocrine FGF-s in obesity CrossRefGoogle Scholar
  82. 82.
    Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36:1859–64.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2016; doi: 10.1016/j.clnu.2016.04.027
  84. 84.
    Mraz M, Lacinova Z, Kavalkova P, et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-alpha agonist treatment. Physiol Res. 2011;60:627–36.PubMedGoogle Scholar
  85. 85.
    Brufau G, Stellaard F, Prado K, et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology. 2010;52:1455–64.PubMedCrossRefGoogle Scholar
  86. 86.
    Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018–27.PubMedCrossRefGoogle Scholar
  87. 87.
    Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Murphy M, Samms R, Warner A, et al. Increased responses to the actions of fibroblast growth factor 21 on energy balance and body weight in a seasonal model of adiposity. J Neuroendocrinol. 2013;25:180–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148:774–81.PubMedCrossRefGoogle Scholar
  90. 90.
    •• Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333–40. This study examines that daily administration of LY, a human FGF21 analog, provides clear evidence of its clinically meaningful effects on several metabolic comorbidities associated with type 2 diabetes PubMedCrossRefGoogle Scholar
  91. 91.
    Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32:1542–6.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010;139:456–63.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246–53.PubMedCrossRefGoogle Scholar
  94. 94.
    Li H, Fang Q, Gao F, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53:934–40.PubMedCrossRefGoogle Scholar
  95. 95.
    Fisher FM, Chui PC, Antonellis PJ, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59:2781–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Berglund ED, Li CY, Bina HA, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150:4084–93.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology. 2012;153:4238–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Hale C, Chen MM, Stanislaus S, et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153:69–80.PubMedCrossRefGoogle Scholar
  99. 99.
    Eto K, Tumenbayar B, Nagashima S, et al. Distinct association of serum FGF21 or adiponectin levels with clinical parameters in patients with type 2 diabetes. Diabetes Res Clin Pract. 2010;89:52–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Li X, Fan X, Ren F, et al. Serum FGF21 levels are increased in newly diagnosed type 2 diabetes with nonalcoholic fatty liver disease and associated with hsCRP levels independently. Diabetes Res Clin Pract. 2011;93:10–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Mraz M, Bartlova M, Lacinova Z, et al. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol. 2009;71:369–75.CrossRefGoogle Scholar
  102. 102.
    Xiao Y, Xu A, Law LS, et al. Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab. 2012;97:E54–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Vienberg SG, Brons C, Nilsson E, Astrup A, Vaag A, Andersen B. Impact of short-term high-fat feeding and insulin-stimulated FGF21 levels in subjects with low birth weight and controls. Eur J Endocrinol. 2012;167:49–57.PubMedCrossRefGoogle Scholar
  104. 104.
    Mirza MA, Alsio J, Hammarstedt A, et al. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb Vasc Biol. 2011;31:219–27.PubMedCrossRefGoogle Scholar
  105. 105.
    Holecki M, Chudek J, Wiecek A, Titz-Bober M, Dulawa J. The serum level of fibroblast growth factor-23 and calcium-phosphate homeostasis in obese perimenopausal women. Int J Endocrinol. 2011;2011:707126.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Marsell R, Mirza MA, Mallmin H, et al. Relation between fibroblast growth factor-23, body weight and bone mineral density in elderly men. Osteoporos Int. 2009;20:1167–73.PubMedCrossRefGoogle Scholar
  107. 107.
    Fernandez-Real JM, Puig J, Serrano M, et al. Iron and obesity status-associated insulin resistance influence circulating fibroblast-growth factor-23 concentrations. PLoS One. 2013;8:e58961.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res. 2010;25:1711–23.PubMedCrossRefGoogle Scholar
  109. 109.
    Wahl P, Xie H, Scialla J, et al. Earlier onset and greater severity of disordered mineral metabolism in diabetic patients with chronic kidney disease. Diabetes Care. 2012;35:994–1001.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Vervloet MG, van Zuilen AD, Heijboer AC, et al. Fibroblast growth factor 23 is associated with proteinuria and smoking in chronic kidney disease: an analysis of the MASTERPLAN cohort. BMC Nephrol. 2012;13:20.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Fajol A, Chen H, Umbach AT, Quarles LD, Lang F, Foller M. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by beta-blocker treatment. FASEB J. 2016;30:994–1001.PubMedCrossRefGoogle Scholar
  112. 112.
    Winther K, Nybo M, Vind B, Pedersen SM, Hojlund K, Rasmussen LM. Acute hyperinsulinemia is followed by increased serum concentrations of fibroblast growth factor 23 in type 2 diabetes patients. Scand J Clin Lab Invest. 2012;72:108–13.PubMedCrossRefGoogle Scholar
  113. 113.
    Hu X, Ma X, Luo Y, et al. Elevation in fibroblast growth factor 23 and its value for identifying subclinical atherosclerosis in first-degree relatives of patients with diabetes. Sci Rep. 2016;6:34696.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Reyes-Garcia R, Garcia-Martin A, Garcia-Fontana B, Morales-Santana S, Rozas-Moreno P, Munoz-Torres M. FGF23 in type 2 diabetic patients: relationship with bone metabolism and vascular disease. Diabetes Care. 2014;37:e89–90.PubMedCrossRefGoogle Scholar
  115. 115.
    Wojcik M, Dolezal-Oltarzewska K, Janus D, Drozdz D, Sztefko K, Starzyk JB. FGF23 contributes to insulin sensitivity in obese adolescents—preliminary results. Clin Endocrinol. 2012;77:537–40.CrossRefGoogle Scholar
  116. 116.
    Holecki M, Chudek J, Owczarek A, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin Endocrinol. 2015;82:900–9.CrossRefGoogle Scholar
  117. 117.
    Gómez-Ambrosi J, Salvador J, Paramo JA, et al. Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. Clin Biochem. 2002;35:315–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Ortega FJ, Mayas D, Moreno-Navarrete JM, et al. The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects. Obesity (Silver Spring). 2010;18:13–20.CrossRefGoogle Scholar
  119. 119.
    Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G. Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle. 2011;10:1548–56.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Moreno-Navarrete JM, Catalán V, Whyte L, et al. The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes. 2012;61:281–91.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Gómez-Ambrosi J, Pascual E, Catalán V, et al. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J Clin Endocrinol Metab. 2014;99:E2004–9.PubMedCrossRefGoogle Scholar
  122. 122.
    Mejhert N, Galitzky J, Pettersson AT, et al. Mapping of the fibroblast growth factors in human white adipose tissue. J Clin Endocrinol Metab. 2010;95:2451–7.PubMedCrossRefGoogle Scholar
  123. 123.
    Gerhard GS, Styer AM, Strodel WE, et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes. 2014;38:371–8.CrossRefGoogle Scholar
  124. 124.
    Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice. J Physiol Biochem. 2016;72:157–67.PubMedCrossRefGoogle Scholar
  125. 125.
    •• Suh JM, Jonker JW, Ahmadian M, et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature. 2014;513:436–9. This study demonstrates that recombinant FGF1 (rFGF1) produces glucose lowering and insulin sensitization without mitogenic effects, indicating that rFGF1 and its derivates may hold therapeutic promises PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Scarlett JM, Rojas JM, Matsen ME, et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med. 2016;22:800–6.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Seeley RJ, Sandoval DA. Targeting the brain as a cure for type 2 diabetes. Nat Med. 2016;22:709–11.PubMedCrossRefGoogle Scholar
  128. 128.
    Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun. 2015;6:6980.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    •• Li M, Page-McCaw P, Chen W. FGF1 mediates overnutrition-induced compensatory β-cell differentiation. Diabetes. 2016;65:96–109. This study describes Fgf1 signaling as a key component of the overnutrition-induced β-cell differentiation signal PubMedGoogle Scholar
  130. 130.
    Wang S, Yang Q, Yu S, et al. Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls. Endocr J. 2016;63:359–65.PubMedCrossRefGoogle Scholar
  131. 131.
    Nicholes K, Guillet S, Tomlinson E, et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol. 2002;160:2295–307.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Birrer MJ, Johnson ME, Hao K, et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol. 2007;25:2281–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Wu X, Ge H, Lemon B, et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc Natl Acad Sci U S A. 2010;107:14158–63.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Wu AL, Coulter S, Liddle C, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One. 2011;6:e17868.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    French DM, Lin BC, Wang M, et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One. 2012;7:e36713.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zhou M, Wang X, Phung V, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74:3306–16.PubMedCrossRefGoogle Scholar
  137. 137.
    Wu X, Lemon B, Li X, et al. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J Biol Chem. 2008;283:33304–9.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Luo J, Ko B, Elliott M, et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med. 2014;6:247ra100.PubMedCrossRefGoogle Scholar
  139. 139.
    Wu X, Li Y. Therapeutic utilities of fibroblast growth factor 19. Expert Opin Ther Targets. 2011;15:1307–16.PubMedCrossRefGoogle Scholar
  140. 140.
    Adams AC, Halstead CA, Hansen BC, et al. LY2405319, an engineered FGF21 variant. Improves the Metabolic Status of Diabetic Monkeys PLoS One. 2013;8:e65763.PubMedGoogle Scholar
  141. 141.
    Kharitonenkov A, Beals JM, Micanovic R, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One. 2013;8:e58575.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Huang Z, Wang H, Lu M, et al. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS One. 2011;6:e20669.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Camacho RC, Zafian PT, Achanfuo-Yeboah J, Manibusan A, Berger JP. Pegylated Fgf21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice. Eur J Pharmacol. 2013;715:41–5.PubMedCrossRefGoogle Scholar
  144. 144.
    Bendele A, Seely J, Richey C, Sennello G, Shopp G. Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42:152–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Webster R, Didier E, Harris P, et al. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos. 2007;35:9–16.PubMedCrossRefGoogle Scholar
  146. 146.
    Xu J, Bussiere J, Yie J, et al. Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation. Bioconjug Chem. 2013;24:915–25.PubMedCrossRefGoogle Scholar
  147. 147.
    Hecht R, Li YS, Sun J, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One. 2012;7:e49345.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Huang J, Ishino T, Chen G, et al. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther. 2013;346:270–80.PubMedCrossRefGoogle Scholar
  149. 149.
    Weng Y, Chabot JR, Bernardo B, et al. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS One. 2015;10:e0119104.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Giragossian C, Vage C, Li J, et al. Mechanistic investigation of the preclinical pharmacokinetics and interspecies scaling of PF-05231023, a fibroblast growth factor 21-antibody protein conjugate. Drug Metab Dispos. 2015;43:803–11.PubMedCrossRefGoogle Scholar
  151. 151.
    Dong JQ, Rossulek M, Somayaji VR, et al. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol. 2015;80:1051–63.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Wu AL, Kolumam G, Stawicki S, et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med. 2011;3:113ra126.PubMedCrossRefGoogle Scholar
  153. 153.
    Ussar S, Vienberg SG, Kahn CR. Receptor antibodies as novel therapeutics for diabetes. Sci Transl Med. 2011;3:113ps147.CrossRefGoogle Scholar
  154. 154.
    Foltz IN, Hu S, King C, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci Transl Med. 2012;4:162ra153.PubMedCrossRefGoogle Scholar
  155. 155.
    Smith R, Duguay A, Bakker A, et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/beta-Klotho bispecific protein. PLoS One. 2013;8:e61432.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer. 2004;11:709–24.PubMedCrossRefGoogle Scholar
  157. 157.
    Kingwell K. Obesity and diabetes: FGF1 goes long to tackle diabetes. Nat Rev Drug Discov. 2014;13:652–3.PubMedCrossRefGoogle Scholar
  158. 158.
    Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55:2470–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Maitane Izaguirre
    • 1
    • 2
  • María J. Gil
    • 3
  • Ignacio Monreal
    • 3
  • Fabrizio Montecucco
    • 4
    • 5
  • Gema Frühbeck
    • 1
    • 2
    • 6
    • 7
  • Victoria Catalán
    • 1
    • 2
    • 6
  1. 1.Metabolic Research LaboratoryClínica Universidad de NavarraPamplonaSpain
  2. 2.CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN)Instituto de Salud Carlos IIIPamplonaSpain
  3. 3.Department of BiochemistryClínica Universidad de NavarraPamplonaSpain
  4. 4.Department of Internal MedicineUniversity of GenoaGenoaItaly
  5. 5.IRCCS AOU San Martino—ISTGenoaItaly
  6. 6.Obesity and Adipobiology GroupInstituto de Investigación Sanitaria de Navarra (IdiSNA)PamplonaSpain
  7. 7.Department of Endocrinology & NutritionClínica Universidad de NavarraPamplonaSpain

Personalised recommendations