Current Diabetes Reports

, 16:120 | Cite as

A Plethora of GLP-1 Agonists: Decisions About What to Use and When

  • Susan L. SamsonEmail author
  • Alan J. Garber
Pharmacologic Treatment of Type 2 Diabetes (HE Lebovitz and G Bahtiyar, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pharmacologic Treatment of Type 2 Diabetes


Incretin-based therapies are important addition to our armamentarium for the treatment of type 2 diabetes (T2DM). There are six Glucagon-like peptide-1 receptor agonists (GLP-1RAs) which have received regulatory approval for clinical use. The short-acting GLP-1RAs include exenatide twice daily, liraglutide once daily, and lixisenatide once daily. The approved long-acting GLP-1RAs are administered weekly and are exenatide, albiglutide, and dulaglutide. Although all of these therapies lower hemoglobin A1C (HbA1C), there also are unique features of GLP-1RAs that have been made manifest from clinical trial data with regard to weight-loss efficacy, fasting and post-prandial glucose control, cardiovascular safety and protection, and gastrointestinal and injection adverse effects. It is imperative to consider these features when tailoring the choice of a GLP-1RA to patient specific characteristics.


Type 2 diabetes Weight loss Obesity Impaired glucose tolerance Impaired fasting glucose Diabetes prevention Pre-diabetes 



glucagon-like peptide-1 receptor agonist


hemoglobin A1C


heart failure


major adverse cardiac events


Compliance with Ethical Standards

Conflict of Interest

Susan L. Samson has no relevant pharmaceutical disclosures but she is on the Board of Directors of the American Association of Clinical Endocrinologists. Alan J. Garber serves as consultant and on advisory boards for Janssen Pharmaceuticals, Merck & Co., Novo Nordisk Inc. He is the past president of the American College of Endocrinology and the Board of Director of the American Association of Clinical Endocrinologists and serves on the board of director of both associations.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. 1.
    Starling EH. Discussion on the Therapeutic Value of Hormones. Proc R Soc Med. 1914;7:29–31.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Moore B, Edie ES, Abram J. On the treatment of Diabetus mellitus by acid extract of Duodenal Mucous Membrane. Biochem J. 1906;1:28–38.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    La Barre, J. Sur les possibilite’s d’un traitement du diabète par l’incrétine. Bulletin de l’Académie Royale de Médecine de Belgique. 1932; 12:620-634.Google Scholar
  4. 4.
    Elrick H, Stimmler L, Hlad CJ, ARAI Y. Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab. 1964;24:1076–82.CrossRefPubMedGoogle Scholar
  5. 5.
    McIntyre N, Holdsworth CD, Turner DS. Intestinal factors in the control of insulin secretion. J Clin Endocrinol Metab. 1965;25:1317–24.CrossRefPubMedGoogle Scholar
  6. 6.
    McIntyre N, Holdsworth CD, Turner DS. New interpretation of oral glucose tolerance. Lancet. 1964;2:20–1.CrossRefPubMedGoogle Scholar
  7. 7.
    D’Alessio DA, Sandoval DA, Seeley RJ. New ways in which GLP-1 can regulate glucose homeostasis. J Clin Invest. 2005;115:3406–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brown JC. Candidate hormones of the gut. 3. Gastric inhibitory polypeptide (GIP). Gastroenterology. 1974;67:733–4.PubMedGoogle Scholar
  9. 9.
    Bell GI. The glucagon superfamily: precursor structure and gene organization. Peptides. 1986;7 Suppl 1:27–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;2:1300–4.CrossRefPubMedGoogle Scholar
  11. 11.
    Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest. 1993;91:301–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Naslund E, Gutniak M, Skogar S, Rossner S, Hellstrom PM. Glucagon-like peptide 1 increases the period of postprandial satiety and slows gastric emptying in obese men. Am J Clin Nutr. 1998;68:525–30.PubMedGoogle Scholar
  13. 13.
    Verdich C, Flint A, Gutzwiller JP, Naslund E, Beglinger C, Hellstrom PM, et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001;86:4382–9.PubMedGoogle Scholar
  14. 14.
    Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, et al. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc Natl Acad Sci USA. 2000;97:6874–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Holst JJ. Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes. 1995;44:1126–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Deacon CF, Hughes TE, Holst JJ. Dipeptidyl peptidase IV inhibition potentiates the insulinotropic effect of glucagon-like peptide 1 in the anesthetized pig. Diabetes. 1998;47:764–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267:7402–5.PubMedGoogle Scholar
  18. 18.
    Nauck MA. Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am J Med. 2011;124:S3–S18.CrossRefPubMedGoogle Scholar
  19. 19.
    Aroda VR, DeYoung MB. Clinical implications of exenatide as a twice-daily or once-weekly therapy for type 2 diabetes. Postgrad Med. 2011;123:228–38.CrossRefPubMedGoogle Scholar
  20. 20.
    Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372:1240–50.CrossRefPubMedGoogle Scholar
  21. 21.
    Wysham CH, MacConell LA, Maggs DG, Zhou M, Griffin PS, Trautmann ME. Five-year efficacy and safety data of exenatide once weekly: long-term results from the DURATION-1 randomized clinical trial. Mayo Clin Proc. 2015;90:356–65.CrossRefPubMedGoogle Scholar
  22. 22.
    Aimaretti G. Liraglutide: a once-daily human glucagon-like peptide-1 analogue. J Endocrinol Invest. 2009;32:701–3.CrossRefPubMedGoogle Scholar
  23. 23.
    Larsen PJ, Fledelius C, Knudsen LB, Tang-Christensen M. Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes. 2001;50:2530–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374:39–47.CrossRefPubMedGoogle Scholar
  25. 25.
    Buse JB, Nauck M, Forst T, Sheu WH, Shenouda SK, Heilmann CR, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study. Lancet. 2013;381:117–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Baggio LL, Huang Q, Brown TJ, Drucker DJ. A recombinant human glucagon-like peptide (GLP)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes. 2004;53:2492–500.CrossRefPubMedGoogle Scholar
  27. 27.
    Rosenstock J, Reusch J, Bush M, Yang F, Stewart M. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care. 2009;32:1880–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pratley RE, Nauck MA, Barnett AH, Feinglos MN, Ovalle F, Harman-Boehm I, et al. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, open-label, multicentre, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2014;2:289–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Glaesner W, Vick AM, Millican R, Ellis B, Tschang SH, Tian Y, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev. 2010;26:287–96.CrossRefPubMedGoogle Scholar
  30. 30.
    Barrington P, Chien JY, Showalter HD, Schneck K, Cui S, Tibaldi F, et al. A 5-week study of the pharmacokinetics and pharmacodynamics of LY2189265, a novel, long-acting glucagon-like peptide-1 analogue, in patients with type 2 diabetes. Diabetes Obes Metab. 2011;13:426–33.CrossRefPubMedGoogle Scholar
  31. 31.
    Umpierrez G, Umpierrez G. T, Povedano S, Perez Manghi F, Shurzinske L, Pechtner V. Efficacy and safety of dulaglutide monotherapy versus metformin in type 2 diabetes in a randomized controlled trial (AWARD-3). Diabetes Care. 2014;37:2168–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Nauck M, Weinstock RS, Umpierrez GE, Guerci B, Skrivanek Z, Milicevic Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diabetes Care. 2014;37:2149–58.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dungan KM, Povedano ST, Forst T, Gonzalez JG, Atisso C, Sealls W, et al. Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial. Lancet. 2014;384:1349–57.CrossRefPubMedGoogle Scholar
  34. 34.
    Christensen M, Knop FK, Holst JJ, Vilsboll T. Lixisenatide, a novel GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus. IDrugs. 2009;12:503–13.PubMedGoogle Scholar
  35. 35.
    Bolli GB, Owens DR. Lixisenatide, a novel GLP-1 receptor agonist: efficacy, safety and clinical implications for type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16:588–601.CrossRefPubMedGoogle Scholar
  36. 36.
    Werner U, Haschke G, Herling AW, Kramer W. Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept. 2010;164:58–64.CrossRefPubMedGoogle Scholar
  37. 37.
    Fonseca VA, Alvarado-Ruiz R, Raccah D, Boka G, Miossec P, Gerich JE. Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care. 2012;35:1225–31.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rosenstock J, Raccah D, Koranyi L, Maffei L, Boka G, Miossec P, et al. Efficacy and safety of lixisenatide once daily versus exenatide twice daily in type 2 diabetes inadequately controlled on metformin: a 24-week, randomized, open-label, active-controlled study (GetGoal-X). Diabetes Care. 2013;36:2945–51.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lau J, Bloch P, Schaffer L, Pettersson I, Spetzler J, Kofoed J, et al. Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J Med Chem. 2015;58:7370–80.CrossRefPubMedGoogle Scholar
  40. 40.
    Jabbour J, Peiber TR, Rosenstock J, Hartoft-Nielsen M, Hansen OKH, Davies M. Robust dose-dependent glucose lowering and body weight (BW) reductions with the novel oral formulation of semaglutide in patients with early type 2 diabetes (T2D). OR: Endocrine Society’s 98th Annual Meeting and Expo; 2016. p. 15–3.Google Scholar
  41. 41.
    Nauck MA, Petrie JR, Sesti G, Mannucci E, Courreges JP, Lindegaard ML, et al. A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care. 2016;39:231–41.CrossRefPubMedGoogle Scholar
  42. 42.•
    Marso, S. P., Bain, S. C., Consoli, A., Eliaschewitz, F. G., Jodar, E., Leiter, L. A., Lingvay, I., Rosenstock, J., Seufert, J., Warren, M. L., Woo, V., Hansen, O., Holst, A. G., Pettersson, J., and Vilsboll, T. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; Epub ahead of print. This study is the first cardiovascular safety trial for a long acting GLP-1 receptor agonist.Google Scholar
  43. 43.
    Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2005;48:1684–99.CrossRefPubMedGoogle Scholar
  44. 44.
    Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes. 1999;48:937–42.CrossRefPubMedGoogle Scholar
  45. 45.
    Sivertsen J, Rosenmeier J, Holst JJ, Vilsboll T. The effect of glucagon-like peptide 1 on cardiovascular risk. Nat Rev Cardiol. 2012;9:209–22.CrossRefPubMedGoogle Scholar
  46. 46.
    Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;114:1788–803.CrossRefPubMedGoogle Scholar
  47. 47.
    Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33:187–215.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kim J, Samson SL. Cardiovascular effects of incretin therapy in diabetes care. Metab Syndr Relat Disord. 2014;12:303–10.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Smilowitz NR, Donnino R, Schwartzbard A. Glucagon-like peptide-1 receptor agonists for diabetes mellitus: a role in cardiovascular disease. Circulation. 2014;129:2305–12.CrossRefPubMedGoogle Scholar
  50. 50.
    Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab. 2007;293:E1289–95.CrossRefPubMedGoogle Scholar
  51. 51.
    Koska J. Incretins and preservation of endothelial function. Cardiovasc Hematol Agents Med Chem. 2012;10:295–308.CrossRefPubMedGoogle Scholar
  52. 52.
    Rizzo M, Chandalia M, Patti AM, Di Bartolo V, Rizvi AA, Montalto G, et al. Liraglutide decreases carotid intima-media thickness in patients with type 2 diabetes: 8-month prospective pilot study. Cardiovasc Diabetol. 2014;13:49.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail. 2006;12:694–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Madsbad S. Review of head-to-head comparisons of glucagon-like peptide-1 receptor agonists. Diabetes Obes Metab. 2016;18:317–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Ratner R, Han J, Nicewarner D, Yushmanova I, Hoogwerf BJ, Shen L. Cardiovascular safety of exenatide BID: an integrated analysis from controlled clinical trials in participants with type 2 diabetes. Cardiovasc Diabetol. 2011;10:22.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Marso SP, Lindsey JB, Stolker JM, House JA, Martinez Ravn G, Kennedy KF, et al. Cardiovascular safety of liraglutide assessed in a patient-level pooled analysis of phase 2: 3 liraglutide clinical development studies. Diab Vasc Dis Res. 2011;8:237–40.CrossRefPubMedGoogle Scholar
  57. 57.
    Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Effects of glucagon-like peptide-1 receptor agonists on cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:38–47.CrossRefPubMedGoogle Scholar
  58. 58.
    Best JH, Hoogwerf BJ, Herman WH, Pelletier EM, Smith DB, Wenten M, et al. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care. 2011;34:90–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Hiatt WR, Kaul S, Smith RJ. The cardiovascular safety of diabetes drugs—insights from the rosiglitazone experience. N Engl J Med. 2013;369:1285–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Bentley-Lewis R, Aguilar D, Riddle MC, Claggett B, Diaz R, Dickstein K, et al. Rationale, design, and baseline characteristics in evaluation of LIXisenatide in acute coronary syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo. Am Heart J. 2015;169:631–8.CrossRefPubMedGoogle Scholar
  61. 61.•
    Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373:2247–57. This study examines the cardiovascular safety of lixisenatide in high risk patients.CrossRefPubMedGoogle Scholar
  62. 62.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.CrossRefPubMedGoogle Scholar
  63. 63.•
    Marso SP, Poulter NR, Nissen SE, Nauck MA, Zinman B, Daniels GH, et al. Design of the liraglutide effect and action in diabetes: evaluation of cardiovascular outcome results (LEADER) trial. Am Heart J. 2013;166:823–30. This study examines the cardiovascular safety of liraglutide in high risk patients and is the only trial thus far that shows a benefit for a GLP-1 receptor agonist.Google Scholar
  64. 64.
    Margulies KB, Hernandez AF, Redfield MM, Givertz MM, Oliveira GH, Cole R, et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016;316:500–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Glucose tolerance and cardiovascular mortality. Comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med. 2001;161:397–405.CrossRefGoogle Scholar
  66. 66.
    Blake DR, Meigs JB, Muller DC, Najjar SS, Andres R, Nathan DM. Impaired glucose tolerance, but not impaired fasting glucose, is associated with increased levels of coronary heart disease risk factors: results from the Baltimore Longitudinal Study on Aging. Diabetes. 2004;53:2095–100.CrossRefPubMedGoogle Scholar
  67. 67.
    Meigs JB, Nathan DM, D’Agostino Sr RB, Wilson PW. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. Diabetes Care. 2002;25:1845–50.CrossRefPubMedGoogle Scholar
  68. 68.
    Cavalot F, Pagliarino A, Valle M, Di Martino L, Bonomo K, Massucco P, et al. Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: lessons from the San Luigi Gonzaga Diabetes Study. Diabetes Care. 2011;34:2237–43.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Monnier L, Colette C, Owens D. Postprandial and basal glucose in type 2 diabetes: assessment and respective impacts. Diabetes Technol Ther. 2011;13 Suppl 1:S25–32.PubMedGoogle Scholar
  70. 70.
    Ahren B, Gautier JF, Berria R, Stager W, Aronson R, Bailey CJ. Pronounced reduction of postprandial glucagon by lixisenatide: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:861–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Lorenz M, Pfeiffer C, Steinstrasser A, Becker RH, Rutten H, Ruus P, et al. Effects of lixisenatide once daily on gastric emptying in type 2 diabetes--relationship to postprandial glycemia. Regul Pept. 2013;185:1–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Kapitza C, Forst T, Coester HV, Poitiers F, Ruus P, Hincelin-Mery A. Pharmacodynamic characteristics of lixisenatide once daily versus liraglutide once daily in patients with type 2 diabetes insufficiently controlled on metformin. Diabetes Obes Metab. 2013;15:642–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Shah P, Basu A, Basu R, Rizza R. Impact of lack of suppression of glucagon on glucose tolerance in humans. Am J Physiol. 1999;277:E283–90.PubMedGoogle Scholar
  74. 74.
    Shah P, Vella A, Basu A, Basu R, Schwenk WF, Rizza RA. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2000;85:4053–9.PubMedGoogle Scholar
  75. 75.
    Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus Statement By The American Association Of Clinical Endocrinologists And American College Of Endocrinology On The Comprehensive Type 2 Diabetes Management Algorithm--2016 Executive Summary. Endocr Pract. 2016;22:84–113.CrossRefPubMedGoogle Scholar
  76. 76.
    Giugliano D, Maiorino MI, Bellastella G, Esposito K. Comment on American Diabetes Association. Approaches to glycemic treatment. Sec. 7. In Standards of Medical Care in Diabetes—2016. Diabetes Care. 2016;39 Suppl 1:S52–9. Diabetes Care. 2016;39:e86-e87.Google Scholar
  77. 77.
    Herman WH, Kalyani RR, Wexler DJ, Matthews DR, Inzucchi SE. Response to comment on American Diabetes Association. Approaches to glycemic treatment. Sec. 7. In Standards of Medical Care in Diabetes—2016. Diabetes Care. 2016;39 Suppl 1:S52–9. Diabetes Care. 2016;39:e88-e89.Google Scholar
  78. 78.
    Diamant M, Nauck MA, Shaginian R, Malone JK, Cleall S, Reaney M, et al. Glucagon-like peptide 1 receptor agonist or bolus insulin with optimized basal insulin in type 2 diabetes. Diabetes Care. 2014;2014:2763–73.CrossRefGoogle Scholar
  79. 79.
    Charbonnel B, Bertolini M, Tinahones FJ, Domingo MP, Davies M. Lixisenatide plus basal insulin in patients with type 2 diabetes mellitus: a meta-analysis. J Diabetes Complications. 2014;28:880–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Riddle MC, Forst T, Aronson R, Sauque-Reyna L, Souhami E, Silvestre L, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled with newly initiated and continuously titrated basal insulin glargine: a 24-week, randomized, placebo-controlled study (GetGoal-Duo 1). Diabetes Care. 2013;36:2497–503.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Riddle MC, Aronson R, Home P, Marre M, Niemoeller E, Miossec P, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled by established basal insulin: a 24-week, randomized, placebo-controlled comparison (GetGoal-L). Diabetes Care. 2013;36:2489–96.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Rosenstock J, Guerci B, Hanefeld M, Gentile S, Aronson R, Tinahones FJ, et al. Prandial options to advance basal insulin glargine therapy: testing lixisenatide plus basal insulin versus insulin glulisine either as basal-plus or basal-bolus in type 2 diabetes: the GetGoal Duo-2 Trial. Diabetes Care. 2016;39:1318–28.CrossRefPubMedGoogle Scholar
  83. 83.•
    Gough SC, Bode BW, Woo VC, Rodbard HW, Linjawi S, Zacho M, et al. One-year efficacy and safety of a fixed combination of insulin degludec and liraglutide in patients with type 2 diabetes: results of a 26-week extension to a 26-week main trial. Diabetes Obes Metab. 2015;17:965–73. This study explores the efficacy of combination of a short-acting GLP-1 receptor agonist with long-acting basal insulin.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Gough SC, Bode B, Woo V, Rodbard HW, Linjawi S, Poulsen P, et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2:885–93.CrossRefPubMedGoogle Scholar
  85. 85.•
    Rosenstock, J., Aronson, R., Grunberger, G., Hanefeld, M., Piatti, P., Serusclat, P., Cheng, X., Zhou, T., Niemoeller, E., Souhami, E., and Davies, M. Benefits of LixiLan, a titratable fixed-ratio combination of insulin glargine plus lixisenatide, versus insulin glargine and lixisenatide monocomponents in type 2 diabetes inadequately controlled with oral agents: the LixiLan-O randomized trial. Diabetes Care. 2016; Epub ahead of print. This study explores the efficacy of combination of a short-acting GLP-1 receptor agonist with long-acting basal insulin.Google Scholar
  86. 86.
    Kuhadiya ND, Malik R, Bellini NJ, Patterson JL, Traina A, Makdissi A, et al. Liraglutide as additional treatment to insulin in obese patients with type 1 diabetes mellitus. Endocr Pract. 2013;19:963–7.CrossRefPubMedGoogle Scholar
  87. 87.
    Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314:687–99.CrossRefPubMedGoogle Scholar
  88. 88.•
    Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N Engl J Med. 2015;373:11–22. This is a key study that examined efficacy of a GLP-1 receptor agonist for weight loss in non-diabetic patients.CrossRefPubMedGoogle Scholar
  89. 89.
    Fineman MS, Mace KF, Diamant M, Darsow T, Cirincione BB, Booker Porter TK, et al. Clinical relevance of anti-exenatide antibodies: safety, efficacy and cross-reactivity with long-term treatment. Diabetes Obes Metab. 2012;14:546–54.CrossRefPubMedGoogle Scholar
  90. 90.
    Ratner RE, Rosenstock J, Boka G. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diabet Med. 2010;27:1024–32.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Buse JB, Garber A, Rosenstock J, Schmidt WE, Brett JH, Videbaek N, et al. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the liraglutide effect and action in diabetes (LEAD) trials. J Clin Endocrinol Metab. 2011;96:1695–702.CrossRefPubMedGoogle Scholar
  92. 92.
    Dong JZ, Shen Y, Zhang J, Tsomaia N, Mierke DF, Taylor JE. Discovery and characterization of taspoglutide, a novel analogue of human glucagon-like peptide-1, engineered for sustained therapeutic activity in type 2 diabetes. Diabetes Obes Metab. 2011;13:19–25.CrossRefPubMedGoogle Scholar
  93. 93.
    Rosenstock J, Balas B, Charbonnel B, Bolli GB, Boldrin M, Ratner R, et al. The fate of taspoglutide, a weekly GLP-1 receptor agonist, versus twice-daily exenatide for type 2 diabetes: the T-emerge 2 trial. Diabetes Care. 2013;36:498–504.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Drucker DJ, Sherman SI, Bergenstal RM, Buse JB. The safety of incretin-based therapies—review of the scientific evidence. J Clin Endocrinol Metab. 2011;96:2027–31.CrossRefPubMedGoogle Scholar
  95. 95.
    Lunati ME, Grancini V, Colombo C, Palmieri E, Resi V, Perrino M, et al. Basal and stimulated calcitonin levels in patients with type 2 diabetes did not change during 1 year of liraglutide treatment. Metabolism. 2016;65:1–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Pinelli NR, Hurren KM. Efficacy and safety of long-acting glucagon-like peptide-1 receptor agonists compared with exenatide twice daily and sitagliptin in type 2 diabetes mellitus: a systematic review and meta-analysis. Ann Pharmacother. 2011;45:850–60.CrossRefPubMedGoogle Scholar
  97. 97.
    Koehler JA, Baggio LL, Lamont BJ, Ali S, Drucker DJ. Glucagon-like peptide-1 receptor activation modulates pancreatitis-associated gene expression but does not modify the susceptibility to experimental pancreatitis in mice. Diabetes. 2009;58:2148–61.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Noel RA, Braun DK, Patterson RE, Bloomgren GL. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care. 2009;32:834–8.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Garg R, Chen W, Pendergrass M. Acute pancreatitis in type 2 diabetes treated with exenatide or sitagliptin: a retrospective observational pharmacy claims analysis. Diabetes Care. 2010;33:2349–54.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Li X, Zhang Z, Duke J. Glucagon-like peptide 1-based therapies and risk of pancreatitis: a self-controlled case series analysis. Pharmacoepidemiol Drug Saf. 2014;23:234–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Monami M, Dicembrini I, Nardini C, Fiordelli I, Mannucci E. Glucagon-like peptide-1 receptor agonists and pancreatitis: a meta-analysis of randomized clinical trials. Diabetes Res Clin Pract. 2014;103:269–75.CrossRefPubMedGoogle Scholar
  102. 102.
    Egan JM, Chia CW. Incretin therapy and pancreatic pathologies: background pathology versus drug-induced pathology in rats. Diabetes. 2014;63:1174–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of MedicineBaylor College of MedicineHoustonUSA
  2. 2.Departments of MedicineMolecular and Cellular Biology, Biochemistry and Molecular Biology, Baylor College of MedicineHoustonUSA

Personalised recommendations