Advertisement

Current Diabetes Reports

, 16:106 | Cite as

Sleep Duration and Diabetes Risk: Population Trends and Potential Mechanisms

  • Michael A. Grandner
  • Azizi Seixas
  • Safal Shetty
  • Sundeep Shenoy
Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (C Shay and B Conway, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Lifestyle Management to Reduce Diabetes/Cardiovascular Risk

Abstract

Sleep is important for regulating many physiologic functions that relate to metabolism. Because of this, there is substantial evidence to suggest that sleep habits and sleep disorders are related to diabetes risk. In specific, insufficient sleep duration and/or sleep restriction in the laboratory, poor sleep quality, and sleep disorders such as insomnia and sleep apnea have all been associated with diabetes risk. This research spans epidemiologic and laboratory studies. Both physiologic mechanisms such as insulin resistance, decreased leptin, and increased ghrelin and inflammation and behavioral mechanisms such as increased food intake, impaired decision-making, and increased likelihood of other behavioral risk factors such as smoking, sedentary behavior, and alcohol use predispose to both diabetes and obesity, which itself is an important diabetes risk factor. This review describes the evidence linking sleep and diabetes risk at the population and laboratory levels.

Keywords

Sleep Diabetes Insomnia Obesity Circadian 

Notes

Acknowledgments

This work was supported by K23HL110216.

Compliance with Ethical Standards

Conflict of Interest

Michael A. Grandner, Azizi Seixas, Safal Shetty, and Sundeep Shenoy declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of Importance •• Of major importance

  1. 1.
    Colten HR, Altevogt BM, Institute of Medicine Committee on Sleep Medicine and Research. Sleep disorders and sleep deprivation: an unmet public health problem. Washington: Institute of Medicine, National Academies Press; 2006. xviii, p. 404.Google Scholar
  2. 2.
    Office of Disease Prevention and Health Promotion. Healthy People 2020 objective topic areas. Washington: US Department of Health and Human Services; 2011.Google Scholar
  3. 3.
    Beccuti G, Pannain S. Sleep and obesity. Curr Opin Clin Nutr Metab Care. 2011;14(4):402–12.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Grandner MA, Patel NP, Gehrman PR, Perlis ML, Pack AI. Problems associated with short sleep: bridging the gap between laboratory and epidemiological studies. Sleep Med Rev. 2010;14:239–47.PubMedCrossRefGoogle Scholar
  5. 5.
    Zizi F, Jean-Louis G, Brown CD, Ogedegbe G, Boutin-Foster C, McFarlane SI. Sleep duration and the risk of diabetes mellitus: epidemiologic evidence and pathophysiologic insights. Curr Diab Rep. 2010;10(1):43–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sharma S, Kavuru M. Sleep and metabolism: an overview. Int J Endocrinol. 2010;2010.Google Scholar
  7. 7.
    Knutson KL. Sleep duration and cardiometabolic risk: a review of the epidemiologic evidence. Best Pract Res Clin Endocrinol Metab. 2010;24(5):731–43.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Faraut B, Boudjeltia KZ, Vanhamme L, Kerkhofs M. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med Rev. 2012;16(2):137–49.PubMedCrossRefGoogle Scholar
  9. 9.
    Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK. Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis. 2009;51(4):294–302.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Reutrakul S, Zaidi N, Wroblewski K, Kay HH, Ismail M, Ehrmann DA, et al. Sleep disturbances and their relationship to glucose tolerance in pregnancy. Diabetes Care. 2011;34(11):2454–7.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Van Cauter E. Sleep disturbances and insulin resistance. Diabet Med. 2011;28(12):1455–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008;9 Suppl 1:S23–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Spiegel K, Tasali E, Leproult R, Scherberg N, Van Cauter E. Twenty-four-hour profiles of acylated and total ghrelin: relationship with glucose levels and impact of time of day and sleep. J Clin Endocrinol Metab. 2011;96(2):486–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Balbo M, Leproult R, Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol. 2010;2010:759234.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Knutson KL, Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann N Y Acad Sci. 2008;1129:287–304.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Altman NG, Izci-Balserak B, Schopfer E, Jackson N, Rattanaumpawan P, Gehrman PR, et al. Sleep duration versus sleep insufficiency as predictors of cardiometabolic health outcomes. Sleep Med. 2012;13(10):1261–70.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med. 2010;71(5):1027–36.PubMedCrossRefGoogle Scholar
  20. 20.
    Gangwisch JE, Malaspina D, Babiss LA, Opler MG, Posner K, Shen S, et al. Short sleep duration as a risk factor for hypercholesterolemia: analyses of the National Longitudinal Study of Adolescent Health. Sleep. 2010;33(7):956–61.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep. 2008;30(12):1667–73.Google Scholar
  22. 22.
    Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension. 2006;47(5):833–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. J Clin Sleep Med. 2015;11(6):591–2.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38(6):843–4.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. J Clin Sleep Med. 2015;11(8):931–52.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. Sleep. 2015;38(8):1161–83.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Hirshkowitz M, Whiton K, Alpert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s updated sleep duration recommendations: final report. Sleep Health. 2015;1:233–43.CrossRefGoogle Scholar
  28. 28.
    Hirshkowitz M, Whiton K, Alpert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1:40–3.CrossRefGoogle Scholar
  29. 29.
    Mukherjee S, Patel SR, Kales SN, Ayas NT, Strohl KP, Gozal D, et al. An official American Thoracic Society statement: the importance of healthy sleep. Recommendations and future priorities. Am J Respir Crit Care Med. 2015;191(12):1450–8.PubMedCrossRefGoogle Scholar
  30. 30.•
    Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB. Prevalence of healthy sleep duration among adults—United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65(6):137–41. This report provides the first nationwide, county-level estimates of short sleep duration based on the newly released consensus statement.PubMedCrossRefGoogle Scholar
  31. 31.
    Krueger PM, Friedman EM. Sleep duration in the United States: a cross-sectional population-based study. Am J Epidemiol. 2009;169(9):1052–63.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Grandner MA, Chakravorty S, Perlis ML, Oliver L, Gurubhagavatula I. Habitual sleep duration associated with self-reported and objectively determined cardiometabolic risk factors. Sleep Med. 2014;15(1):42–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Bin YS, Marshall NS, Glozier N. Secular trends in adult sleep duration: a systematic review. Sleep Med Rev. 2012;16(3):223–30.PubMedCrossRefGoogle Scholar
  34. 34.
    Whinnery J, Jackson N, Rattanaumpawan P, Grandner MA. Short and long sleep duration associated with race/ethnicity, sociodemographics, and socioeconomic position. Sleep. 2014;37(3):601–11.PubMedPubMedCentralGoogle Scholar
  35. 35.•
    Grandner MA, Williams NJ, Knutson KL, Roberts D, Jean-Louis G. Sleep disparity, race/ethnicity, and socioeconomic position. Sleep Med. 2016;18:7–18. This review represents a comprehensive overview of the issues around sleep disparities.PubMedCrossRefGoogle Scholar
  36. 36.
    Knutson KL. Sociodemographic and cultural determinants of sleep deficiency: implications for cardiometabolic disease risk. Soc Sci Med. 2013;79:7–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med Rev. 2015;30:11–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Engeda J, Mezuk B, Ratliff S, Ning Y. Association between duration and quality of sleep and the risk of pre-diabetes: evidence from NHANES. Diabet Med. 2013;30(6):676–80.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mallon L, Broman JE, Hetta J. High incidence of diabetes in men with sleep complaints or short sleep duration: a 12-year follow-up study of a middle-aged population. Diabetes Care. 2005;28(11):2762–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Beihl DA, Liese AD, Haffner SM. Sleep duration as a risk factor for incident type 2 diabetes in a multiethnic cohort. Ann Epidemiol. 2009;19(5):351–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Zizi F, Pandey A, Murrray-Bachmann R, Vincent M, McFarlane S, Ogedegbe G, et al. Race/ethnicity, sleep duration, and diabetes mellitus: analysis of the National Health Interview Survey. Am J Med. 2012;125(2):162–7.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jackson CL, Redline S, Kawachi I, Hu FB. Association between sleep duration and diabetes in black and white adults. Diabetes Care. 2013;36(11):3557–65.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lee SW, Ng KY, Chin WK. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: a systematic review and meta-analysis. Sleep Med Rev. 2016. doi: 10.1016/j.smrv.2016.02.001.
  44. 44.
    Patel SR, Hu FB. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring). 2008;16(3):643–53.CrossRefGoogle Scholar
  45. 45.
    Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):e62.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.••
    Dashti HS, Scheer FA, Jacques PF, Lamon-Fava S, Ordovas JM. Short sleep duration and dietary intake: epidemiologic evidence, mechanisms, and health implications. Adv Nutr. 2015;6(6)):648–59. This review provides information regarding connections between sleep and dietary intake.PubMedCrossRefGoogle Scholar
  47. 47.
    Grandner MA. Addressing sleep disturbances: an opportunity to prevent cardiometabolic disease? Int Rev Psychiatry. 2014;26(2):155–76.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    St-Onge MP. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med. 2013;9(1):73–80.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Morselli LL, Guyon A, Spiegel K. Sleep and metabolic function. Pflugers Arch. 2012;463(1):139–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Broussard JL, Ehrmann DA, Van Cauter E, Tasali E, Brady MJ. Impaired insulin signaling in human adipocytes after experimental sleep restriction: a randomized, crossover study. Ann Intern Med. 2012;157(8):549–57.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Spiegel K, Leproult R, L’Hermite-Baleriaux M, Copinschi G, Penev PD, Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Copinschi G. Metabolic and endocrine effects of sleep deprivation. Essent Psychopharmacol. 2005;6(6):341–7.PubMedGoogle Scholar
  53. 53.
    Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A. 2013;110(14):5695–700.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    St-Onge MP, Roberts AL, Chen J, Kelleman M, O’Keeffe M, RoyChoudhury A, et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011;94(2):410–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Reynolds AC, Dorrian J, Liu PY, Van Dongen HP, Wittert GA, Harmer LJ, et al. Impact of five nights of sleep restriction on glucose metabolism, leptin and testosterone in young adult men. PLoS One. 2012;7(7):e41218.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Darukhanavala A, Booth 3rd JN, Bromley L, Whitmore H, Imperial J, Penev PD. Changes in insulin secretion and action in adults with familial risk for type 2 diabetes who curtail their sleep. Diabetes Care. 2011;34(10):2259–64.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Padilha HG, Crispim CA, Zimberg IZ, De-Souza DA, Waterhouse J, Tufik S, et al. A link between sleep loss, glucose metabolism and adipokines. Braz J Med Biol Res. 2011;44(10):992–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–33.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc Lond B Biol Sci. 1953;140(901):578–96.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Sinha MK, Ohannesian JP, Heiman ML, Kriauciunas A, Stephens TW, Magosin S, et al. Nocturnal rise of leptin in lean, obese, and non-insulin-dependent diabetes mellitus subjects. J Clin Invest. 1996;97(5):1344–7.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292–5.PubMedCrossRefGoogle Scholar
  63. 63.
    Caro JF, Sinha MK, Kolaczynski JW, Zhang PL, Considine RV. Leptin: the tale of an obesity gene. Diabetes. 1996;45(11):1455–62.PubMedCrossRefGoogle Scholar
  64. 64.
    Kelesidis T, Kelesidis I, Chou S, Mantzoros CS. Narrative review: The role of leptin in human physiology: emerging clinical applications. Ann Intern Med. 2010;152(2):93–100.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal Jr F, Krueger JM. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1071–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Barf RP, Desprez T, Meerlo P, Scheurink AJ. Increased food intake and changes in metabolic hormones in response to chronic sleep restriction alternated with short periods of sleep allowance. Am J Physiol Regul Integr Comp Physiol. 2012;302(1):R112–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosa Neto JC, Lira FS, Venancio DP, Cunha CA, Oyama LM, Pimentel GD, et al. Sleep deprivation affects inflammatory marker expression in adipose tissue. Lipids Health Dis. 2010;9:125.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Martins PJ, Fernandes L, de Oliveira AC, Tufik S, D’Almeida V. Type of diet modulates the metabolic response to sleep deprivation in rats. Nutr Metab (Lond). 2011;8(1):86.CrossRefGoogle Scholar
  69. 69.
    Sinton CM, Fitch TE, Gershenfeld HK. The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation. J Sleep Res. 1999;8(3):197–203.PubMedCrossRefGoogle Scholar
  70. 70.
    Husse J, Hintze SC, Eichele G, Lehnert H, Oster H. Circadian clock genes Per1 and Per2 regulate the response of metabolism-associated transcripts to sleep disruption. PLoS One. 2012;7(12):e52983.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Laposky AD, Bradley MA, Williams DL, Bass J, Turek FW. Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R2059–66.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Laposky AD, Shelton J, Bass J, Dugovic C, Perrino N, Turek FW. Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R894–903.PubMedCrossRefGoogle Scholar
  73. 73.
    Rasmussen MH, Wildschiodtz G, Juul A, Hilsted J. Polysomnographic sleep, growth hormone insulin-like growth factor-I axis, leptin, and weight loss. Obesity (Silver Spring). 2008;16(7):1516–21.CrossRefGoogle Scholar
  74. 74.
    Pejovic S, Vgontzas AN, Basta M, Tsaoussoglou M, Zoumakis E, Vgontzas A, et al. Leptin and hunger levels in young healthy adults after one night of sleep loss. J Sleep Res. 2010;19(4):552–8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Omisade A, Buxton OM, Rusak B. Impact of acute sleep restriction on cortisol and leptin levels in young women. Physiol Behav. 2010;99(5):651–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Mullington JM, Chan JL, Van Dongen HP, Szuba MP, Samaras J, Price NJ, et al. Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003;15(9):851–4.PubMedCrossRefGoogle Scholar
  77. 77.
    Benedict C, Hallschmid M, Lassen A, Mahnke C, Schultes B, Schioth HB, et al. Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr. 2011;93(6):1229–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H, et al. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009;90(6):1476–82.PubMedCrossRefGoogle Scholar
  79. 79.
    Calvin AD, Carter RE, Adachi T, Macedo P, Albuquerque FN, van der Walt C, et al. Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest. 2013;144:79–86.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Simpson NS, Banks S, Dinges DF. Sleep restriction is associated with increased morning plasma leptin concentrations, especially in women. Biol Res Nurs. 2010;12(1):47–53.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Boeke CE, Storfer-Isser A, Redline S, Taveras EM. Childhood sleep duration and quality in relation to leptin concentration in two cohort studies. Sleep. 2014;37(3):613–20.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hart CN, Carskadon MA, Considine RV, Fava JL, Lawton J, Raynor HA, et al. Changes in children’s sleep duration on food intake, weight, and leptin. Pediatrics. 2013;132(6):e1473–80.PubMedCrossRefGoogle Scholar
  84. 84.
    Kjeldsen JS, Hjorth MF, Andersen R, Michaelsen KF, Tetens I, Astrup A, et al. Short sleep duration and large variability in sleep duration are independently associated with dietary risk factors for obesity in Danish school children. Int J Obes (Lond). 2014;38(1):32–9.CrossRefGoogle Scholar
  85. 85.
    Al-Disi D, Al-Daghri N, Khanam L, Al-Othman A, Al-Saif M, Sabico S, et al. Subjective sleep duration and quality influence diet composition and circulating adipocytokines and ghrelin levels in teen-age girls. Endocr J. 2010;57(10):915–23.PubMedCrossRefGoogle Scholar
  86. 86.
    Martinez-Gomez D, Eisenmann JC, Gomez-Martinez S, Hill EE, Zapatera B, Veiga OL, et al. Sleep duration and emerging cardiometabolic risk markers in adolescents. The AFINOS study. Sleep Med. 2011;12(10):997–1002.PubMedCrossRefGoogle Scholar
  87. 87.
    Matsumoto Y, Toyomasu K, Uchimura N. Assessment of physical and mental health in male university students with varying sleep habits. Kurume Med J. 2011;58(4):105–15.PubMedCrossRefGoogle Scholar
  88. 88.
    Stern JH, Grant AS, Thomson CA, Tinker L, Hale L, Brennan KM, et al. Short sleep duration is associated with decreased serum leptin, increased energy intake, and decreased diet quality in postmenopausal women. Obesity (Silver Spring). 2013;22:E55–61.CrossRefGoogle Scholar
  89. 89.
    Chaput JP, Despres JP, Bouchard C, Tremblay A. Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Quebec family study. Obesity (Silver Spring). 2007;15(1):253–61.CrossRefGoogle Scholar
  90. 90.
    Charles LE, Gu JK, Andrew ME, Violanti JM, Fekedulegn D, Burchfiel CM. Sleep duration and biomarkers of metabolic function among police officers. J Occup Environ Med. 2011;53(8):831–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Moraes W, Poyares D, Zalcman I, de Mello MT, Bittencourt LR, Santos-Silva R, et al. Association between body mass index and sleep duration assessed by objective methods in a representative sample of the adult population. Sleep Med. 2013;14(4):312–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Hayes AL, Xu F, Babineau D, Patel SR. Sleep duration and circulating adipokine levels. Sleep. 2011;34(2):147–52.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Koo M, Lai NS, Chiang JK. Short duration of sleep is associated with hyperleptinemia in Taiwanese adults. J Clin Sleep Med. 2013;9(10):1049–55.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Knutson KL, Galli G, Zhao X, Mattingly M, Cizza G, Study NSE. No association between leptin levels and sleep duration or quality in obese adults. Obesity (Silver Spring). 2011;19(12):2433–5.CrossRefGoogle Scholar
  95. 95.
    Littman AJ, Vitiello MV, Foster-Schubert K, Ulrich CM, Tworoger SS, Potter JD, et al. Sleep, ghrelin, leptin and changes in body weight during a 1-year moderate-intensity physical activity intervention. Int J Obes (Lond). 2007;31(3):466–75.CrossRefGoogle Scholar
  96. 96.
    Motivala SJ, Tomiyama AJ, Ziegler M, Khandrika S, Irwin MR. Nocturnal levels of ghrelin and leptin and sleep in chronic insomnia. Psychoneuroendocrinology. 2009;34(4):540–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Hafner S, Baumert J, Emeny RT, Lacruz ME, Thorand B, Herder C, et al. Sleep disturbances and depressed mood: a harmful combination associated with increased leptin levels in women with normal weight. Biol Psychol. 2012;89(1):163–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Figueiro MG, Plitnick B, Rea MS. Light modulates leptin and ghrelin in sleep-restricted adults. Int J Endocrinol. 2012;2012:530726.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Garaulet M, Sanchez-Moreno C, Smith CE, Lee YC, Nicolas F, Ordovas JM. Ghrelin, sleep reduction and evening preference: relationships to CLOCK 3111 T/C SNP and weight loss. PLoS One. 2011;6(2):e17435.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D. Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr. 2010;91(6):1550–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Aldabal L, Bahammam AS. Metabolic, endocrine, and immune consequences of sleep deprivation. Open Respir Med J. 2011;5:31–43.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Gangwisch JE. Epidemiological evidence for the links between sleep, circadian rhythms and metabolism. Obes Rev. 2009;10 Suppl 2:37–45.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–60.PubMedCrossRefGoogle Scholar
  104. 104.
    Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Ueno H, Shiiya T, Nakazato M. Translational research of ghrelin. Ann N Y Acad Sci. 2010;1200:120–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Heppner KM, Tong J. Regulation of glucose metabolism by the ghrelin system: multiple players and multiple actions. Eur J Endocrinol. 2014;171:R21–32.PubMedCrossRefGoogle Scholar
  107. 107.
    Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407(6806):908–13.PubMedCrossRefGoogle Scholar
  108. 108.
    Weikel JC, Wichniak A, Ising M, Brunner H, Friess E, Held K, et al. Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab. 2003;284(2):E407–15.PubMedCrossRefGoogle Scholar
  109. 109.
    Vetrivelan R, Fuller PM, Yokota S, Lu J, Saper CB. Metabolic effects of chronic sleep restriction in rats. Sleep. 2012;35(11):1511–20.PubMedPubMedCentralGoogle Scholar
  110. 110.
    St-Onge MP, O’Keeffe M, Roberts AL, RoyChoudhury A, Laferrere B. Short sleep duration, glucose dysregulation and hormonal regulation of appetite in men and women. Sleep. 2012;35(11):1503–10.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Schmid SM, Hallschmid M, Jauch-Chara K, Born J, Schultes B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res. 2008;17(3):331–4.PubMedCrossRefGoogle Scholar
  112. 112.
    Allison KC, Ahima RS, O’Reardon JP, Dinges DF, Sharma V, Cummings DE, et al. Neuroendocrine profiles associated with energy intake, sleep, and stress in the night eating syndrome. J Clin Endocrinol Metab. 2005;90(11):6214–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003;14(3-4):185–91.PubMedCrossRefGoogle Scholar
  114. 114.
    Jain S, Mills PJ. Cytokines, chronic stress, and fatigue. In: Fink G, editor. Encyclopedia of stress. 1. 2nd ed. Oxford: Academic; 2007. p. 698–704.CrossRefGoogle Scholar
  115. 115.
    Vgontzas AN, Zoumakis E, Bixler EO, Lin HM, Follett H, Kales A, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab. 2004;89(5):2119–26.PubMedCrossRefGoogle Scholar
  116. 116.
    Irwin MR, Wang M, Campomayor CO, Collado-Hidalgo A, Cole S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch Intern Med. 2006;166(16):1756–62.PubMedCrossRefGoogle Scholar
  117. 117.
    Shearer WT, Reuben JM, Mullington JM, Price NJ, Lee BN, Smith EO, et al. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol. 2001;107(1):165–70.PubMedCrossRefGoogle Scholar
  118. 118.
    Haack M, Sanchez E, Mullington JM. Elevated inflammatory markers in response to prolonged sleep restriction are associated with increased pain experience in healthy volunteers. Sleep. 2007;30(9):1145–52.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Chennaoui M, Sauvet F, Drogou C, Van Beers P, Langrume C, Guillard M, et al. Effect of one night of sleep loss on changes in tumor necrosis factor alpha (TNF-alpha) levels in healthy men. Cytokine. 2011;56(2):318–24.PubMedCrossRefGoogle Scholar
  120. 120.
    Patel SR, Zhu X, Storfer-Isser A, Mehra R, Jenny NS, Tracy R, et al. Sleep duration and biomarkers of inflammation. Sleep. 2009;32(2):200–4.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83(3):847–50.PubMedGoogle Scholar
  122. 122.
    Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.PubMedGoogle Scholar
  123. 123.
    Kapsimalis F, Basta M, Varouchakis G, Gourgoulianis K, Vgontzas A, Kryger M. Cytokines and pathological sleep. Sleep Med. 2008;9(6):603–14.PubMedCrossRefGoogle Scholar
  124. 124.
    Khosro S, Alireza S, Omid A, Forough S. Night work and inflammatory markers. Indian J Occup Environ Med. 2011;15(1):38–41.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    van Leeuwen WM, Lehto M, Karisola P, Lindholm H, Luukkonen R, Sallinen M, et al. Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS One. 2009;4(2):e4589.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Dowd JB, Goldman N, Weinstein M. Sleep duration, sleep quality, and biomarkers of inflammation in a Taiwanese population. Ann Epidemiol. 2011;21(11):799–806.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    von Kanel R, Ancoli-Israel S, Dimsdale JE, Mills PJ, Mausbach BT, Ziegler MG, et al. Sleep and biomarkers of atherosclerosis in elderly Alzheimer caregivers and controls. Gerontology. 2010;56(1):41–50.CrossRefGoogle Scholar
  128. 128.
    Taveras EM, Rifas-Shiman SL, Rich-Edwards JW, Mantzoros CS. Maternal short sleep duration is associated with increased levels of inflammatory markers at 3 years postpartum. Metabolism. 2011;60(7):982–6.PubMedCrossRefGoogle Scholar
  129. 129.
    Spaeth AM, Dinges DF, Goel N. Sex and race differences in caloric intake during sleep restriction in healthy adults. Am J Clin Nutr. 2014;100(2):559–66.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Spaeth AM, Dinges DF, Goel N. Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep. 2013;36(7):981–90.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Shechter A, Grandner MA, St-Onge MP. The role of sleep in the control of food intake. Am J Lifestyle Med. 2014;8(6):371–4.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Jackson ML, Croft RJ, Kennedy GA, Owens K, Howard ME. Cognitive components of simulated driving performance: sleep loss effects and predictors. Accid Anal Prev. 2013;50:438–44.PubMedCrossRefGoogle Scholar
  133. 133.
    Jackson ML, Gunzelmann G, Whitney P, Hinson JM, Belenky G, Rabat A, et al. Deconstructing and reconstructing cognitive performance in sleep deprivation. Sleep Med Rev. 2013;17(3):215–25.PubMedCrossRefGoogle Scholar
  134. 134.
    Lo JC, Groeger JA, Santhi N, Arbon EL, Lazar AS, Hasan S, et al. Effects of partial and acute total sleep deprivation on performance across cognitive domains, individuals and circadian phase. PLoS One. 2012;7(9):e45987.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Muto V, Shaffii-le Bourdiec A, Matarazzo L, Foret A, Mascetti L, Jaspar M, et al. Influence of acute sleep loss on the neural correlates of alerting, orientating and executive attention components. J Sleep Res. 2012;21(6):648–58.PubMedCrossRefGoogle Scholar
  136. 136.
    McCoy JG, Strecker RE. The cognitive cost of sleep lost. Neurobiol Learn Mem. 2011;96(4):564–82.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Killgore WD, Grugle NL, Killgore DB, Leavitt BP, Watlington GI, McNair S, et al. Restoration of risk-propensity during sleep deprivation: caffeine, dextroamphetamine, and modafinil. Aviat Space Environ Med. 2008;79(9):867–74.PubMedCrossRefGoogle Scholar
  138. 138.
    Greer SM, Goldstein AN, Walker MP. The impact of sleep deprivation on food desire in the human brain. Nat Commun. 2013;4:2259.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Xiao Q, Keadle SK, Hollenbeck AR, Matthews CE. Sleep duration and total and cause-specific mortality in a large US cohort: interrelationships with physical activity, sedentary behavior, and body mass index. Am J Epidemiol. 2014;180(10):997–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Patterson F, Malone SK, Lozano A, Grandner MA, Hanlon AL. Smoking, screen-based sedentary behavior, and diet associated with habitual sleep duration and chronotype: data from the UK Biobank. Ann Behav Med. 2016 (in press).Google Scholar
  141. 141.
    Grandner MA, Jackson NJ, Izci-Balserak B, Gallagher RA, Murray-Bachmann R, Williams NJ, et al. Social and behavioral determinants of perceived insufficient sleep. Front Neurol. 2015;6:112.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Grandner MA, Patel NP, Perlis ML, Gehrman PR, Xie D, Sha D, et al. Obesity, diabetes, and exercise associated with sleep-related complaints in the American population. J Public Health. 2011;19(5):463–74.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Jaehne A, Unbehaun T, Feige B, Lutz UC, Batra A, Riemann D. How smoking affects sleep: a polysomnographical analysis. Sleep Med. 2012;13(10):1286–92.PubMedCrossRefGoogle Scholar
  144. 144.
    Irish LA, Kline CE, Gunn HE, Buysse DJ, Hall MH. The role of sleep hygiene in promoting public health: a review of empirical evidence. Sleep Med Rev. 2015;22:23–36.PubMedCrossRefGoogle Scholar
  145. 145.
    Hoevenaar-Blom MP, Spijkerman AM, Kromhout D, Verschuren WM. Sufficient sleep duration contributes to lower cardiovascular disease risk in addition to four traditional lifestyle factors: the MORGEN study. Eur J Prev Cardiol. 2014;21(11):1367–75.PubMedCrossRefGoogle Scholar
  146. 146.
    Menke A, Rust KF, Fradkin J, Cheng YJ, Cowie CC. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States: a series of cross-sectional studies. Ann Intern Med. 2014;161(5):328–35.PubMedCrossRefGoogle Scholar
  147. 147.
    Kono M, Tatsumi K, Saibara T, Nakamura A, Tanabe N, Takiguchi Y, et al. Obstructive sleep apnea syndrome is associated with some components of metabolic syndrome. Chest. 2007;131(5):1387–92.PubMedCrossRefGoogle Scholar
  148. 148.
    Redline S, Kapur VK, Sanders MH, Quan SF, Gottlieb DJ, Rapoport DM, et al. Effects of varying approaches for identifying respiratory disturbances on sleep apnea assessment. Am J Respir Crit Care Med. 2000;161(2):369–74.PubMedCrossRefGoogle Scholar
  149. 149.
    Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB, et al. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32(6):1017–9.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Aronsohn RS, Whitmore H, Van Cauter E, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med. 2010;181(5):507–13.PubMedCrossRefGoogle Scholar
  151. 151.
    Brooks B, Cistulli PA, Borkman M, Ross G, McGhee S, Grunstein RR, et al. Obstructive sleep apnea in obese noninsulin-dependent diabetic patients: effect of continuous positive airway pressure treatment on insulin responsiveness. J Clin Endocrinol Metab. 1994;79(6):1681–5.PubMedGoogle Scholar
  152. 152.
    Einhorn D, Stewart DA, Erman MK, Gordon N, Philis-Tsimikas A, Casal E. Prevalence of sleep apnea in a population of adults with type 2 diabetes mellitus. Endocr Pract. 2007;13(4):355–62.PubMedCrossRefGoogle Scholar
  153. 153.
    Heffner JE, Rozenfeld Y, Kai M, Stephens EA, Brown LK. Prevalence of diagnosed sleep apnea among patients with type 2 diabetes in primary care. Chest. 2012;141(6):1414–21.PubMedCrossRefGoogle Scholar
  154. 154.
    Reichmuth KJ, Austin D, Skatrud JB, Young T. Association of sleep apnea and type II diabetes: a population-based study. Am J Respir Crit Care Med. 2005;172(12):1590–5.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Marshall NS, Wong KK, Phillips CL, Liu PY, Knuiman MW, Grunstein RR. Is sleep apnea an independent risk factor for prevalent and incident diabetes in the Busselton Health Study? J Clin Sleep Med. 2009;5(1):15–20.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Lindberg E, Theorell-Haglöw J, Svensson M, Gislason T, Berne C, Janson C. Sleep apnea and glucose metabolism: a long-term follow-up in a community-based sample. Chest. 2012;142(4):935–42.PubMedCrossRefGoogle Scholar
  157. 157.
    Young T, Skatrud J, Peppard PE. Risk factors for obstructive sleep apnea in adults. JAMA. 2004;291(16):2013–6.PubMedCrossRefGoogle Scholar
  158. 158.
    Shetty S, Parthasarathy S. Obesity hypoventilation syndrome. Curr Pulmonol Rep. 2015;4(1):42–55.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–43.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Fogel RB, Malhotra A, White DP. Sleep. 2: pathophysiology of obstructive sleep apnoea/hypopnoea syndrome. Thorax. 2004;59(2):159–63.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002;165(5):670–6.PubMedCrossRefGoogle Scholar
  162. 162.
    Makino S, Handa H, Suzukawa K, Fujiwara M, Nakamura M, Muraoka S, et al. Obstructive sleep apnoea syndrome, plasma adiponectin levels, and insulin resistance. Clin Endocrinol (Oxf). 2006;64(1):12–9.CrossRefGoogle Scholar
  163. 163.
    Theorell-Haglow J, Berne C, Janson C, Lindberg E. Obstructive sleep apnoea is associated with decreased insulin sensitivity in females. Eur Respir J. 2008;31(5):1054–60.PubMedCrossRefGoogle Scholar
  164. 164.
    Martinez Ceron E, Casitas Mateos R, Garcia-Rio F. Sleep apnea-hypopnea syndrome and type 2 diabetes. A reciprocal relationship? Arch Bronconeumol. 2015;51(3):128–39.PubMedCrossRefGoogle Scholar
  165. 165.
    Xu J, Long YS, Gozal D, Epstein PN. Beta-cell death and proliferation after intermittent hypoxia: role of oxidative stress. Free Radic Biol Med. 2009;46(6):783–90.PubMedCrossRefGoogle Scholar
  166. 166.
    Alonso-Fernandez A, Garcia-Rio F, Arias MA, Hernanz A, de la Pena M, Pierola J, et al. Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial. Thorax. 2009;64(7):581–6.PubMedCrossRefGoogle Scholar
  167. 167.
    Wang J, Yu W, Gao M, Zhang F, Gu C, Yu Y, et al. Impact of obstructive sleep apnea syndrome on endothelial function, arterial stiffening, and serum inflammatory markers: an updated meta-analysis and metaregression of 18 studies. J Am Heart Assoc. 2015;4(11).Google Scholar
  168. 168.
    Martinez-Ceron E, Fernandez-Navarro I, Garcia-Rio F. Effects of continuous positive airway pressure treatment on glucose metabolism in patients with obstructive sleep apnea. Sleep Med Rev. 2016;25:121–30.PubMedCrossRefGoogle Scholar
  169. 169.
    Harsch IA, Schahin SP, Bruckner K, Radespiel-Troger M, Fuchs FS, Hahn EG, et al. The effect of continuous positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes. Respiration. 2004;71(3):252–9.PubMedCrossRefGoogle Scholar
  170. 170.
    Martinez-Ceron E, Barquiel B, Bezos AM, Casitas R, Galera R, Garcia-Benito C, et al. Effect of CPAP on glycemic control in patients with obstructive sleep apnea and type 2 diabetes. A randomized clinical trial. Am J Respir Crit Care Med. 2016;194(4):476–85.Google Scholar
  171. 171.
    Grimaldi D, Beccuti G, Touma C, Van Cauter E, Mokhlesi B. Association of obstructive sleep apnea in rapid eye movement sleep with reduced glycemic control in type 2 diabetes: therapeutic implications. Diabetes Care. 2014;37(2):355–63.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.••
    Perelis M, Ramsey KM, Marcheva B, Bass J. Circadian transcription from beta cell function to diabetes pathophysiology. J Biol Rhythms. 2016;31(4):323–36. This thorough review describes some of the current state of the science in the relationship between basic circadian physiology and metabolic regulation.PubMedCrossRefGoogle Scholar
  173. 173.
    Arble DM, Bass J, Behn CD, Butler MP, Challet E, Czeisler C, et al. Impact of sleep and circadian disruption on energy balance and diabetes: a summary of workshop discussions. Sleep. 2015;38(12):1849–60.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23(6):1048–59.PubMedCrossRefGoogle Scholar
  175. 175.
    Zarrinpar A, Chaix A, Panda S. Daily eating patterns and their impact on health and disease. Trends Endocrinol Metab. 2016;27(2):69–83.PubMedCrossRefGoogle Scholar
  176. 176.
    Gill S, Le HD, Melkani GC, Panda S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science. 2015;347(6227):1265–9.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Hatori M, Panda S. Response of peripheral rhythms to the timing of food intake. Methods Enzymol. 2015;552:145–61.PubMedCrossRefGoogle Scholar
  178. 178.
    Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20(6):1006–17.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Grandner MA, Patel NP, Hale L, Moore M. Mortality associated with sleep duration: the evidence, the possible mechanisms, and the future. Sleep Med Rev. 2010;14:191–203.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Michael A. Grandner
    • 1
    • 2
    • 4
  • Azizi Seixas
    • 3
  • Safal Shetty
    • 4
  • Sundeep Shenoy
    • 4
  1. 1.Sleep and Health Research Program, Department of PsychiatryUniversity of Arizona College of MedicineTucsonUSA
  2. 2.Sarver Heart CenterUniversity of Arizona College of MedicineTucsonUSA
  3. 3.Center for Healthful Behavior Change, Department of Population HealthNew York University Langone Medical CenterNew YorkUSA
  4. 4.Department of MedicineUniversity of Arizona College of MedicineTucsonUSA

Personalised recommendations