Current Diabetes Reports

, 16:102 | Cite as

Salivary Amylase: Digestion and Metabolic Syndrome

  • Catherine Peyrot des Gachons
  • Paul A. S. BreslinEmail author
Obesity (J McCaffery, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Obesity


Salivary amylase is a glucose-polymer cleavage enzyme that is produced by the salivary glands. It comprises a small portion of the total amylase excreted, which is mostly made by the pancreas. Amylases digest starch into smaller molecules, ultimately yielding maltose, which in turn is cleaved into two glucose molecules by maltase. Starch comprises a significant portion of the typical human diet for most nationalities. Given that salivary amylase is such a small portion of total amylase, it is unclear why it exists and whether it conveys an evolutionary advantage when ingesting starch. This review will consider the impact of salivary amylase on oral perception, nutrient signaling, anticipatory metabolic reflexes, blood sugar, and its clinical implications for preventing metabolic syndrome and obesity.


Salivary amylase Starch digestion AMY1 copy number variation Glucose homeostasis Insulin Metabolic syndrome 



We are grateful for useful early discussions with Louise Slade.

Compliance with Ethical Standards

Conflict of Interest

Catherine Peyrot des Gachons and Paul A.S. Breslin declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Dawes C, Pedersen AM, Villa A, et al. The functions of human saliva: a review sponsored by the World Workshop on Oral Medicine VI. Arch Oral Biol. 2015;60(6):863–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Ruhl S. The scientific exploration of saliva in the post-proteomic era: from database back to basic function. Expert Rev Proteomics. 2012;9(1):85–96.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Matsuo R. Role of saliva in the maintenance of taste sensitivity. Crit Rev Oral Biol Med. 2000;11(2):216–29.PubMedCrossRefGoogle Scholar
  4. 4.
    Henkin RI, Gill Jr JR, Bartter FC. Studies on taste thresholds in normal man and in patients with adrenal cortical insufficiency: the role of adrenal cortical steroids and of serum sodium concentration. J Clin Invest. 1963;42(5):727.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Power ML, Schulkin J. Anticipatory physiological regulation in feeding biology: cephalic phase responses. Appetite. 2008;50(2):194–206.PubMedCrossRefGoogle Scholar
  6. 6.
    Woods SC. The eating paradox: how we tolerate food. Psychol Rev. 1991;98(4):488.PubMedCrossRefGoogle Scholar
  7. 7.
    Loo JA, Yan W, Ramachandran P, et al. Comparative human salivary and plasma proteomes. J Dent Res. 2010;89(10):1016–23.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Scannapieco FA, Torres G, Levine MJ. Salivary α-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med. 1993;4(3):301–7.PubMedGoogle Scholar
  9. 9.
    Jacobsen N, Melvaer KL, Hensten-Pettersen A. Some properties of salivary amylase: a survey of the literature and some observations. J Dent Res. 1972;51(2):381–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Hall FF, Ratliff CR, Hayakawa T, et al. Substrate differentiation of human pancreatic and salivary alpha-amylases. Am J Dig Dis. 1970;15(11):1031–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosenblum JL, Irwin CL, Alpers DH. Starch and glucose oligosaccharides protect salivary-type amylase activity at acid pH. Am J Physiol Gastrointest Liver Physiol. 1988;254(5):G775–80.Google Scholar
  12. 12.
    Hoebler C, Karinthi A, Devaux MF, et al. Physical and chemical transformations of cereal food during oral digestion in human subjects. Br J Nutr. 1998;80(05):429–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Mandel AL, Peyrot des Gachons C, Plank KL, et al. Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch. PLoS One. 2010;5(10):e13352.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lapis TJ, Penner MH, Lim J. Evidence that humans can taste glucose polymers. Chem Senses. 2014;39(9):737–47.PubMedCrossRefGoogle Scholar
  15. 15.
    Boehlke C, Zierau O, Hannig C. Salivary amylase—the enzyme of unspecialized euryphagous animals. Arch Oral Biol. 2015;60(8):1162–76.PubMedCrossRefGoogle Scholar
  16. 16.
    Samuelson LC, Phillips RS, Swanberg LJ. Amylase gene structures in primates: retroposon insertions and promoter evolution. Mol Biol Evol. 1996;13(6):767–79.PubMedCrossRefGoogle Scholar
  17. 17.
    Chatterton RT, Vogelsong KM, Lu Y, Ellman AB, Hudgens GA. Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol. 1996;16:433–48.PubMedCrossRefGoogle Scholar
  18. 18.
    Ehlert U, Kirschbaum C. Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology. 2007;32(4):392–401.PubMedCrossRefGoogle Scholar
  19. 19.
    Squires BT. Human salivary amylase secretion in relation to diet. J Physiol. 1953;119:153–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bank RA, Hettema EH, Muijs MA, et al. Variation in gene copy number and polymorphism of the human salivary amylase isoenzyme system in Caucasians. Hum Genet. 1992;89(2):213–22.PubMedCrossRefGoogle Scholar
  21. 21.
    Perry GH, Dominy NJ, Claw KG, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007;39(10):1256–60.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yang ZM, Lin J, Chen LH, et al. The roles of AMY1 copies and protein expression in human salivary α-amylase activity. Physiol Behav. 2015;138:173–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Groot PC, Mager WH, Henriquez NV, et al. Evolution of the human α-amylase multigene family through unequal, homologous, and inter-and intrachromosomal crossovers. Genomics. 1990;8(1):97–105.PubMedCrossRefGoogle Scholar
  24. 24.
    Cooper GM, Nickerson DA, Eichler EE. Mutational and selective effects on copy-number variants in the human genome. Nat Genet. 2007;39:S22–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Perry GH. The evolutionary significance of copy number variation in the human genome. Cytogenet Genome Res. 2008;123(1–4):283–7.PubMedGoogle Scholar
  26. 26.
    Carpenter D, Dhar S, Mitchell LM, et al. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Hum Mol Genet. 2015;24(12):3472–80.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Usher CL, Handsaker RE, Esko T, et al. Structural forms of the human amylase locus and their relationships to SNPs, haplotypes and obesity. Nat Genet. 2015;47(8):921–5.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hardy K, Brand-Miller J, Brown KD, et al. The importance of dietary carbohydrate in human evolution. Q Rev Biol. 2015;90(3):251–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Simpson JW, Doxey DL, Brown R. Serum isoamylase values in normal dogs and dogs with exocrine pancreatic insufficiency. Vet Res Commun. 1984;8(1):303–8.PubMedCrossRefGoogle Scholar
  30. 30.••
    Axelsson E, Ratnakumar A, Arendt ML, et al. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013;495(7441):360–4. Show evidence for gain-of-function in AMY2B gene but also in the MGAM and SGLT1 genes in dogs.PubMedCrossRefGoogle Scholar
  31. 31.
    Arendt M, Fall T, Lindblad‐Toh K, et al. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes. Anim Genet. 2014;45(5):716–22.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ting CN, Rosenberg MP, Snow CM, Samuelson LC, Meisler MH. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 1992;6:1457–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Meisler MH, Ting CN. The remarkable evolutionary history of the human amylase genes. Crit Rev Oral Biol Med. 1993;4(3):503–9.PubMedGoogle Scholar
  34. 34.
    Evans ID, Haisman DR, Elson EL, et al. The effect of salivary amylase on the viscosity behaviour of gelatinised starch suspensions and the mechanical properties of gelatinised starch granules. J Sci Food Agric. 1986;37(6):573–90.CrossRefGoogle Scholar
  35. 35.
    Sclafani A, Nissenbaum JW, Vigorito M. Starch preference in rats. Neurosci Biobehav Rev. 1987;11(2):253–62.PubMedCrossRefGoogle Scholar
  36. 36.
    Vigorito M, Sclafani A. Ontogeny of polycose and sucrose appetite in neonatal rats. Dev Psychobiol. 1988;21(5):457–65.PubMedCrossRefGoogle Scholar
  37. 37.
    Ramirez IS. Chemoreception for an insoluble nonvolatile substance: starch taste? Am J Physiol Regul Integr Comp Physiol. 1991;260(1):R192–9.Google Scholar
  38. 38.
    Treesukosol Y, Smith KR, Spector AC. Behavioral evidence for a glucose polymer taste receptor that is independent of the T1R2+ 3 heterodimer in a mouse model. J Neurosci Nurs. 2011;31(38):13527–34.CrossRefGoogle Scholar
  39. 39.
    Zukerman S, Glendinning JI, Margolskee RF, et al. T1R3 taste receptor is critical for sucrose but not polycose taste. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R866–76.PubMedCrossRefGoogle Scholar
  40. 40.
    Breslin PAS, Beauchamp GK, Pugh EN. Monogeusia for fructose, glucose, sucrose, and maltose. Percept Psychophys. 1996;58(3):327–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Yee KK, Sukumaran SK, Kotha R, et al. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci. 2011;108(13):5431–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.••
    Sukumaran SK, Yee KK, Iwata S, et al. Taste cell-expressed α-glucosidase enzymes contribute to gustatory responses to disaccharides. PNAS. 2016;113(21):6035–40. Evidence of the expression of salivary amylase and maltase in taste cells and surrounding lingual salivary glands.PubMedCrossRefGoogle Scholar
  43. 43.
    Margolskee RF, Dyer J, Kokrashvili Z, et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na + −glucose cotransporter 1. Proc Natl Acad Sci. 2007;104(38):15075–80.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cloutier M, Gingras D, Bendayan M. Internalization and transcytosis of pancreatic enzymes by the intestinal mucosa. J Histochem Cytochem. 2006;54(7):781–94.PubMedCrossRefGoogle Scholar
  45. 45.
    Merigo F, Benati D, Cecchini MP, et al. Amylase expression in taste receptor cells of rat circumvallate papillae. Cell Tissue Res. 2009;336(3):411–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Pavlov IP. The work of the digestive glands. London: Charles Griffin Co Ltd; 1902.Google Scholar
  47. 47.
    Farrell JI. Contributions to the physiology of gastric secretion. Am J Physiol. 1928;85:672–87.Google Scholar
  48. 48.
    Preshaw RM, Cooke AR, Grossman MI. Quantitative aspects of response of canine pancreas to duodenal acidification. Gastroenterology. 1966;210:629–34.Google Scholar
  49. 49.
    Powley TL. The ventromedial hypothalamic syndrome, satiety, and a cephalic phase hypothesis. Psychol Rev. 1977;84:89–126.PubMedCrossRefGoogle Scholar
  50. 50.
    Ahren B, Holst JJ. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50:1030–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Mandel AL, Breslin PA. High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. J Nutr. 2012;142(5):853–8.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Glendinning JI, Stano S, Holter M, et al. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+ T1r3-independent taste transduction pathway in mice. Am J Physiol Regul Integr Comp Physiol. 2015;309(5):R552–60.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Williams JA, Goldfine ID. The insulin-pancreatic acinar axis. Diabetes. 1985;34(10):980–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Schneyer CA, Schneyer LH. Amylase in rat serum, submaxillary gland and liver following pilocarpine administration or normal feeding. Am J Physiol. 1960;198:771–3.PubMedGoogle Scholar
  55. 55.
    Schrifin A, Tuchman L, Antopol W. Blood amylase response to acetyl-b-methylcholine chloride in rabbits. Proc Soc Exp Biol Med. 1936;34:539–40.CrossRefGoogle Scholar
  56. 56.
    Isenman L, Liebow C, Rothman S. The endocrine secretion of mammalian digestive enzymes by exocrine glands. Am J Physiol Endocrinol Metab. 1999;276(2):E223–32.Google Scholar
  57. 57.
    Pieper-Bigelow C, Strocchi A, Levitt MD. Where does serum amylase come from and where does it go? Gastroenterol Clin North Am. 1990;19(4):793–810.PubMedGoogle Scholar
  58. 58.
    Proctor GB, Asking B, Garrett JR. Serum amylase of non-parotid and non-pancreatic origin increases on feeding in rats and may originate from the liver. Comp Biochem Physiol B Biochem Mol Biol. 1991;98(4):631–5.CrossRefGoogle Scholar
  59. 59.
    Messer MI, Dean RT. Immunochemical relationship between α-amylases of rat liver, serum, pancreas and parotid gland. Biochem J. 1975;151(1):17–22.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hokari S, Miura K, Koyama I, et al. Expression of α-amylase isozymes in rat tissues. Comp Biochem Physiol B Biochem Mol Biol. 2003;135(1):63–9.PubMedCrossRefGoogle Scholar
  61. 61.
    McGeachin RL, Abshier WM, O’Leary K. The effects of puromycin and actinomycin D on the serum and liver amylase levels in the mouse, rabbit, and rat. Carbohydr Res. 1978;61(1):425–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Rohr G, Scheele G. Fate of radioactive exocrine pancreatic proteins injected into the blood circulation of the rat. Tissue uptake and transepithelial excretion. Gastroenterol. 1983;85(5):991–1002.Google Scholar
  63. 63.••
    Falchi M, Moustafa JS, Takousis P, et al. Low copy number of the salivary amylase gene predisposes to obesity. Nat Genet. 2014;46(5):492–7. First article showing a positive association between AMY CN and obesity.PubMedCrossRefGoogle Scholar
  64. 64.
    Viljakainen H, Andersson-Assarsson JC, Armenio M, et al. Low copy number of the AMY1 locus is associated with early-onset female obesity in Finland. PLoS One. 2015;10(7):e0131883.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mejía-Benítez MA, Bonnefond A, Yengo L, et al. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children. Diabetologia. 2015;58(2):290–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Marcovecchio ML, Florio R, Verginelli F, et al. Low AMY1 gene copy number is associated with increased body mass index in prepubertal boys. PLoS One. 2016;11(5):e0154961.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Usher CL, McCarroll SA. Complex and multi-allelic copy number variation in human disease. Brief Funct Genomics. 2015;elv028.14:329–38.Google Scholar
  68. 68.
    Yong RY, Mustaffa SA, Wasan PS, et al. Complex copy number variation of AMY1 does not associate with obesity in two East Asian cohorts. Hum Mutat. 2016;37:669–78.Google Scholar
  69. 69.••
    Nakajima K. Low serum amylase and obesity, diabetes and metabolic syndrome: a novel interpretation. World J Diabetes. 2016;7(6):112. Interesting review on low serum amylase and metabolic syndrome.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Skrha J, Stĕpán J. Clinical significance of amylase isoenzyme determination. Acta Univ Carol Med Monogr. 1986;120:1–81.Google Scholar
  71. 71.
    Dandona P, Freedman DB, Foo Y, Perkins J, Katrak A, Mikhailidis DP, et al. Exocrine pancreatic function in diabetes mellitus. J Clin Pathol. 1984;37:302–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Swislocki A, Noth R, Hallstone A, Kyger E, Triadafilopoulos G. Secretin-stimulated amylase release into blood is impaired in type 1 diabetes mellitus. Horm Metab Res. 2005;37:326–30.PubMedCrossRefGoogle Scholar
  73. 73.
    Lee JG, Park SW, Cho BM, et al. Serum amylase and risk of the metabolic syndrome in Korean adults. Clin Chim Acta. 2011;412(19):1848–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Nakajima K, Nemoto T, Muneyuki T, et al. Low serum amylase in association with metabolic syndrome and diabetes: a community-based study. Cardiovasc Diabetol. 2011;10(1):34.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nakajima K, Muneyuki T, Munakata H, et al. Revisiting the cardiometabolic relevance of serum amylase. BMC Res Notes. 2011;4(1):419.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Muneyuki T, Nakajima K, Aoki A, et al. Latent associations of low serum amylase with decreased plasma insulin levels and insulin resistance in asymptomatic middle-aged adults. Cardiovasc Diabetol. 2012;11(80):10–186.Google Scholar
  77. 77.
    Zhao Y, Zhang J, Zhang J, et al. Metabolic syndrome and diabetes are associated with low serum amylase in a Chinese asymptomatic population. Scand J Clin Lab Invest. 2014;74(3):235–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Mossner J, Logsdon CD, Goldfine ID, et al. Regulation of pancreatic acinar cell insulin receptors by insulin. Am J Physiol Gastrointest Liver Physiol. 1984;247(2):G155–60.Google Scholar
  79. 79.
    Schneeman BO, Inman MD, Stern JS. Pancreatic enzyme activity in obese and lean Zucker rats: a developmental study. J Nutr. 1983;113(4):921–5.PubMedGoogle Scholar
  80. 80.
    Carter DA, Wobken JD, Dixit PK, et al. Immunoreactive insulin in rat salivary glands and its dependence on age and serum insulin levels. Exp Biol Med. 1995;209(3):245–50.CrossRefGoogle Scholar
  81. 81.
    Rocha EM, Carvalho CR, Saad MJ, et al. The influence of ageing on the insulin signalling system in rat lacrimal and salivary glands. Acta Ophthalmol Scand. 2003;81(6):639–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Catherine Peyrot des Gachons
    • 1
  • Paul A. S. Breslin
    • 1
    • 2
    Email author
  1. 1.Monell Chemical Senses CenterPhiladelphiaUSA
  2. 2.Department of Nutritional Sciences, School of Environmental and Biological SciencesRutgers UniversityNew BrunswickUSA

Personalised recommendations