Current Diabetes Reports

, 16:91 | Cite as

Immune-Modulating Therapy for Rheumatologic Disease: Implications for Patients with Diabetes

  • Scott J. Pilla
  • Amy Q. Quan
  • Emily L. Germain-Lee
  • David B. Hellmann
  • Nestoras N. MathioudakisEmail author
Diabetes Epidemiology (N Maruthur, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Diabetes Epidemiology


Immune modulators used to treat rheumatologic disease have diverse endocrine effects in patients with diabetes. Providers should be aware of these effects given that diabetes and rheumatologic disease overlap in prevalence and cardiovascular morbidity. In patients with type 1 diabetes, clinical trials have demonstrated that immune modulators used early in the disease can improve pancreatic function, though their efficacy in adults with longstanding autoimmune diabetes is unknown. In patients with type 2 diabetes, hydroxychloroquine is an effective antihyperglycemic and may be preferred for rheumatologic use in patients with difficult glycemic control. In patients without diabetes, hydroxychloroquine and tumor necrosis factor (TNF) inhibitors have been found to decrease diabetes incidence in observational studies. Additionally, dapsone and sulfasalazine alter erythrocyte survival resulting in inaccurate HbA1c values. These multifaceted effects of immune modulators create a need for coordinated care between providers treating patients with diabetes to individualize medication selection and prevent hypoglycemic events. More research is needed to determine the long-term outcomes of immune modulators in patients with diabetes.


Immunomodulation Immunosuppressive agents Antirheumatic agents Diabetes mellitus Hypoglycemia Rheumatic diseases 


Compliance with Ethical Standards

Conflict of Interest

Scott J. Pilla, Amy Q. Quan, Emily L. Germain-Lee, David B. Hellmann, and Nestoras N. Mathioudakis have no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance••Of major importance

  1. 1.
    Imboden JB, Hellmann DB, Stone JH. Current diagnosis and treatment rheumatology. 3rd ed. New York: McGraw-Hill Medical; 2012.Google Scholar
  2. 2.
    Somers EC, Thomas SL, Smeeth L, Hall AJ. Are individuals with an autoimmune disease at higher risk of a second autoimmune disorder? Am J Epidemiol. 2009;169(6):749–55. doi: 10.1093/aje/kwn408.PubMedCrossRefGoogle Scholar
  3. 3.
    Liao KP, Gunnarsson M, Kallberg H, Ding B, Plenge RM, Padyukov L, et al. Specific association of type 1 diabetes mellitus with anti-cyclic citrullinated peptide-positive rheumatoid arthritis. Arthritis Rheum. 2009;60(3):653–60. doi: 10.1002/art.24362.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Han C, Robinson Jr DW, Hackett MV, Paramore LC, Fraeman KH, Bala MV. Cardiovascular disease and risk factors in patients with rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis. J Rheumatol. 2006;33(11):2167–72.PubMedGoogle Scholar
  5. 5.
    Goodson N, Marks J, Lunt M, Symmons D. Cardiovascular admissions and mortality in an inception cohort of patients with rheumatoid arthritis with onset in the 1980s and 1990s. Ann Rheum Dis. 2005;64(11):1595–601. doi: 10.1136/ard.2004.034777.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    von Herrath M, Sanda S, Herold K. Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol. 2007;7(12):988–94. doi: 10.1038/nri2192.CrossRefGoogle Scholar
  7. 7.
    Aly H, Gottlieb P. The honeymoon phase: intersection of metabolism and immunology. Curr Opin Endocrinol Diabetes Obes. 2009;16(4):286–92. doi: 10.1097/MED.0b013e32832e0693.PubMedCrossRefGoogle Scholar
  8. 8.
    Mortensen HB, Hougaard P, Swift P, Hansen L, Holl RW, Hoey H, et al. New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care. 2009;32(8):1384–90. doi: 10.2337/dc08-1987.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Agner T, Damm P, Binder C. Remission in IDDM: prospective study of basal C-peptide and insulin dose in 268 consecutive patients. Diabetes Care. 1987;10(2):164–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Waldron-Lynch F, Herold KC. Immunomodulatory therapy to preserve pancreatic beta-cell function in type 1 diabetes. Nat Rev Drug Discov. 2011;10(6):439–52. doi: 10.1038/nrd3402.PubMedCrossRefGoogle Scholar
  11. 11.
    Bach JF, Chatenoud L. A historical view from thirty eventful years of immunotherapy in autoimmune diabetes. Semin Immunol. 2011;23(3):174–81. doi: 10.1016/j.smim.2011.07.009.PubMedCrossRefGoogle Scholar
  12. 12.
    Palmer JP, Fleming GA, Greenbaum CJ, Herold KC, Jansa LD, Kolb H, et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21–22 October 2001. Diabetes. 2004;53(1):250–64.PubMedCrossRefGoogle Scholar
  13. 13.••
    Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Felner EI, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285–96. doi: 10.1172/JCI81722. This trial demonstrates that alafecept has beneficial effects on recent onset type 1 diabetes with no increase in adverse events.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sahasranaman S, Howard D, Roy S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol. 2008;64(8):753–67. doi: 10.1007/s00228-008-0478-6.PubMedCrossRefGoogle Scholar
  15. 15.
    Silverstein J, Maclaren N, Riley W, Spillar R, Radjenovic D, Johnson S. Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med. 1988;319(10):599–604. doi: 10.1056/NEJM198809083191002.PubMedCrossRefGoogle Scholar
  16. 16.
    Cook JJ, Hudson I, Harrison LC, Dean B, Colman PG, Werther GA, et al. Double-blind controlled trial of azathioprine in children with newly diagnosed type I diabetes. Diabetes. 1989;38(6):779–83.PubMedCrossRefGoogle Scholar
  17. 17.
    Harrison LC, Colman PG, Dean B, Baxter R, Martin FI. Increase in remission rate in newly diagnosed type I diabetic subjects treated with azathioprine. Diabetes. 1985;34(12):1306–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Moncada E, Subira ML, Oleaga A, Goni F, Sanchez-Ibarrola A, Monreal M, et al. Insulin requirements and residual beta-cell function 12 months after concluding immunotherapy in type I diabetic patients treated with combined azathioprine and thymostimulin administration for one year. J Autoimmun. 1990;3(5):625–38.PubMedCrossRefGoogle Scholar
  19. 19.
    Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S. Colchicine: old and new. Am J Med. 2015;128(5):461–70. doi: 10.1016/j.amjmed.2014.12.010.PubMedCrossRefGoogle Scholar
  20. 20.
    Das UN. Colchicine in diabetes mellitus. J Assoc Physicians India. 1993;41(4):213.PubMedGoogle Scholar
  21. 21.
    Wang L, Sawhney M, Zhao Y, Carpio GR, Fonseca V, Shi L. Association between colchicine and risk of diabetes among the veterans affairs population with gout. Clin Ther. 2015;37(6):1206–15. doi: 10.1016/j.clinthera.2015.03.010.PubMedCrossRefGoogle Scholar
  22. 22.
    Magnasco A, Rossi A, Catarsi P, Gusmano R, Ginevri F, Perfumo F, et al. Cyclosporin and organ specific toxicity: clinical aspects, pharmacogenetics and perspectives. Curr Clin Pharmacol. 2008;3(3):166–73.PubMedCrossRefGoogle Scholar
  23. 23.
    The Canadian-European Randomized Trial Group. Cyclosporin-induced remission of IDDM after early intervention. Association of 1 yr of cyclosporin treatment with enhanced insulin secretion. Diabetes. 1988;37(11):1574–82.CrossRefGoogle Scholar
  24. 24.
    Skyler JS, Rabinovitch A, Group MCDS. Cyclosporine in recent onset type I diabetes mellitus. Effects on islet beta cell function. J Diabetes Complications. 1992;6(2):77–88.PubMedCrossRefGoogle Scholar
  25. 25.
    Chase HP, Butler-Simon N, Garg SK, Hayward A, Klingensmith GJ, Hamman RF, et al. Cyclosporine A for the treatment of new-onset insulin-dependent diabetes mellitus. Pediatrics. 1990;85(3):241–5.PubMedGoogle Scholar
  26. 26.
    Feutren G, Papoz L, Assan R, Vialettes B, Karsenty G, Vexiau P, et al. Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial. Lancet. 1986;2(8499):119–24.PubMedCrossRefGoogle Scholar
  27. 27.
    O’Brien D, Butler N, Chase HP, Hammon R, Hayward A, Klingensmith G, et al. Cyclosporin A in treatment of new-onset type I diabetes mellitus. Diabetes Care. 1988;11(3):297.PubMedCrossRefGoogle Scholar
  28. 28.
    Dupre J, Stiller CR, Gent M, Donner A, von Graffenreid B, Murphy G, et al. Effects of immunosuppression with cyclosporine in insulin-dependent diabetes mellitus of recent onset: the Canadian open study at 44 months. Transplant Proc. 1988;20(3 Suppl 4):184–92.PubMedGoogle Scholar
  29. 29.
    Stiller CR, Dupre J, Gent M, Jenner MR, Keown PA, Laupacis A, et al. Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science. 1984;223(4643):1362–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Bougneres PF, Carel JC, Castano L, Boitard C, Gardin JP, Landais P, et al. Factors associated with early remission of type I diabetes in children treated with cyclosporine. N Engl J Med. 1988;318(11):663–70. doi: 10.1056/NEJM198803173181103.PubMedCrossRefGoogle Scholar
  31. 31.
    Sobel DO, Henzke A, Abbassi V. Cyclosporin and methotrexate therapy induces remission in type 1 diabetes mellitus. Acta Diabetol. 2010;47(3):243–50. doi: 10.1007/s00592-010-0188-2.PubMedCrossRefGoogle Scholar
  32. 32.
    Fleming RA. An overview of cyclophosphamide and ifosfamide pharmacology. Pharmacotherapy. 1997;17(5 Pt 2):146S–54S.PubMedGoogle Scholar
  33. 33.
    Henderson RG, Rubens RD. Cyclophosphamide and diabetes. Cancer Chemother Pharmacol. 1981;5(3):207.PubMedCrossRefGoogle Scholar
  34. 34.
    Chang DJ, Lamothe M, Stevens RM, Sigal LH. Dapsone in rheumatoid arthritis. Semin Arthritis Rheum. 1996;25(6):390–403.PubMedCrossRefGoogle Scholar
  35. 35.
    Degowin RL, Eppes RB, Powell RD, Carson PE. The haemolytic effects of diaphenylsulfone (DDS) in normal subjects and in those with glucose-6-phosphate-dehydrogenase deficiency. Bull World Health Organ. 1966;35(2):165–79.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Halim NK, Ogbeide E. Haematological alterations in leprosy patients treated with dapsone. East Afr Med J. 2002;79(2):100–2.PubMedCrossRefGoogle Scholar
  37. 37.
    Lee I, Barton TD, Goral S, Doyle AM, Bloom RD, Chojnowski D, et al. Complications related to dapsone use for Pneumocystis jirovecii pneumonia prophylaxis in solid organ transplant recipients. Am J Transplant. 2005;5(11):2791–5. doi: 10.1111/j.1600-6143.2005.01079.x.PubMedCrossRefGoogle Scholar
  38. 38.
    Barclay JA, Ziemba SE, Ibrahim RB. Dapsone-induced methemoglobinemia: a primer for clinicians. Ann Pharmacother. 2011;45(9):1103–15. doi: 10.1345/aph.1Q139.PubMedCrossRefGoogle Scholar
  39. 39.
    Radin MS. Pitfalls in hemoglobin A1c measurement: when results may be misleading. J Gen Intern Med. 2014;29(2):388–94. doi: 10.1007/s11606-013-2595-x.PubMedCrossRefGoogle Scholar
  40. 40.
    Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin A(1c) in the management of diabetes. J Diabetes. 2009;1(1):9–17. doi: 10.1111/j.1753-0407.2009.00009.x.PubMedCrossRefGoogle Scholar
  41. 41.
    Albright ES, Ovalle F, Bell DS. Artificially low hemoglobin A1c caused by use of dapsone. Endocr Pract. 2002;8(5):370–2. doi: 10.4158/EP.8.5.370.PubMedCrossRefGoogle Scholar
  42. 42.
    Lai YC, Wang CS, Wang YC, Hsu YL, Chuang LM. Falsely decreased HbA1c in a type 2 diabetic patient treated with dapsone. J Formos Med Assoc. 2012;111(2):109–12. doi: 10.1016/j.jfma.2012.01.007.PubMedCrossRefGoogle Scholar
  43. 43.
    Roxby A, Jain R. Dapsone interferes with hemoglobin A1c monitoring of diabetes in an HIV-infected patient. AIDS. 2013;27(2):299–301. doi: 10.1097/QAD.0b013e32835adde8.PubMedCrossRefGoogle Scholar
  44. 44.
    Shah AD, Fox RK, Rushakoff RJ. Falsely decreased HbA1c in a type 2 diabetic patient treated with dapsone. Endocr Pract. 2014;20(11):e229–32. doi: 10.4158/EP14291.CR.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    van Vollenhoven RF. Corticosteroids in rheumatic disease. Understanding their effects is key to their use. Postgrad Med. 1998;103(2):137–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Perez A, Jansen-Chaparro S, Saigi I, Bernal-Lopez MR, Minambres I, Gomez-Huelgas R. Glucocorticoid-induced hyperglycemia. J Diabetes. 2014;6(1):9–20. doi: 10.1111/1753-0407.12090.PubMedCrossRefGoogle Scholar
  47. 47.•
    Liu XX, Zhu XM, Miao Q, Ye HY, Zhang ZY, Li YM. Hyperglycemia induced by glucocorticoids in nondiabetic patients: a meta-analysis. Ann Nutr Metab. 2014;65(4):324–32. doi: 10.1159/000365892. This is a meta-analysis of the incidence of hyperglycemia and new-onset diabetes due to glucocorticoids in non-diabetic patients.PubMedCrossRefGoogle Scholar
  48. 48.
    Mistura L, Beccaria L, Meschi F, Flores D’Arcais A, Pellini C, Puzzovio M, et al. Prednisone treatment in newly diagnosed type I diabetic children: 1-yr follow-up. Diabetes Care. 1987;10(1):39–43.PubMedCrossRefGoogle Scholar
  49. 49.
    Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. Semin Arthritis Rheum. 1993;23(2 Suppl 1):82–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Olsen NJ, Schleich MA, Karp DR. Multifaceted effects of hydroxychloroquine in human disease. Semin Arthritis Rheum. 2013;43(2):264–72. doi: 10.1016/j.semarthrit.2013.01.001.PubMedCrossRefGoogle Scholar
  51. 51.
    Cansu DU, Korkmaz C. Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. Rheumatology (Oxford). 2008;47(3):378–9. doi: 10.1093/rheumatology/kem378.CrossRefGoogle Scholar
  52. 52.
    Winter EM, Schrander-van der Meer A, Eustatia-Rutten C, Janssen M (2011) Hydroxychloroquine as a glucose lowering drug. BMJ Case Rep 2011. doi:10.1136/bcr.06.2011.4393Google Scholar
  53. 53.
    Kang L, Mikuls TR, O’Dell JR (2009) Hydroxychloroquine: a diabetic drug in disguise? BMJ Case Rep 2009. doi:10.1136/bcr.08.2008.0654Google Scholar
  54. 54.
    Shojania K, Koehler BE, Elliott T. Hypoglycemia induced by hydroxychloroquine in a type II diabetic treated for polyarthritis. J Rheumatol. 1999;26(1):195–6.PubMedGoogle Scholar
  55. 55.
    Unubol M, Ayhan M, Guney E. Hypoglycemia induced by hydroxychloroquine in a patient treated for rheumatoid arthritis. J Clin Rheumatol. 2011;17(1):46–7. doi: 10.1097/RHU.0b013e3182098e1f.PubMedCrossRefGoogle Scholar
  56. 56.
    Gerstein HC, Thorpe KE, Taylor DW, Haynes RB. The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas—a randomized trial. Diabetes Res Clin Pract. 2002;55(3):209–19.PubMedCrossRefGoogle Scholar
  57. 57.
    Quatraro A, Consoli G, Magno M, Caretta F, Nardozza A, Ceriello A, et al. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann Intern Med. 1990;112(9):678–81.PubMedCrossRefGoogle Scholar
  58. 58.•
    Pareek A, Chandurkar N, Thomas N, Viswanathan V, Deshpande A, Gupta OP, et al. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: a double blind, randomized comparison with pioglitazone. Curr Med Res Opin. 2014;30(7):1257–66. doi: 10.1185/03007995.2014.909393. This trial compares hydroxychloroquine to pioglitazone in patients with type 2 diabetes demonstrating non-inferiority of hydroxychloroquine in reducing HbA1c, and improved lipid profiles in the hydroxychloroquine arm.PubMedCrossRefGoogle Scholar
  59. 59.
    Rekedal LR, Massarotti E, Garg R, Bhatia R, Gleeson T, Lu B, et al. Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases. Arthritis Rheum. 2010;62(12):3569–73. doi: 10.1002/art.27703.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF, et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA. 2007;298(2):187–93. doi: 10.1001/jama.298.2.187.PubMedCrossRefGoogle Scholar
  61. 61.
    Bili A, Sartorius JA, Kirchner HL, Morris SJ, Ledwich LJ, Antohe JL, et al. Hydroxychloroquine use and decreased risk of diabetes in rheumatoid arthritis patients. J Clin Rheumatol. 2011;17(3):115–20. doi: 10.1097/RHU.0b013e318214b6b5.PubMedCrossRefGoogle Scholar
  62. 62.
    Solomon DH, Massarotti E, Garg R, Liu J, Canning C, Schneeweiss S. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA. 2011;305(24):2525–31. doi: 10.1001/jama.2011.878.PubMedCrossRefGoogle Scholar
  63. 63.•
    Chen YM, Lin CH, Lan TH, Chen HH, Chang SN, Chen YH, et al. Hydroxychloroquine reduces risk of incident diabetes mellitus in lupus patients in a dose-dependent manner: a population-based cohort study. Rheumatology (Oxford). 2015;54(7):1244–9. doi: 10.1093/rheumatology/keu451. This retrospective cohort study found lower diabetes incidence associated with higher exposure to hydroxychloroquine in patients with systemic lupus erythematosus using a nation-wide registry in Taiwan.CrossRefGoogle Scholar
  64. 64.
    Penn SK, Kao AH, Schott LL, Elliott JR, Toledo FG, Kuller L, et al. Hydroxychloroquine and glycemia in women with rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol. 2010;37(6):1136–42. doi: 10.3899/jrheum.090994.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.•
    Abdel-Hamid AA, El-Firgany Ael D. Hydroxychloroquine hindering of diabetic isletopathy carries its signature on the inflammatory cytokines. J Mol Histol. 2016;47(2):183–93. doi: 10.1007/s10735-016-9664-5. This study examines the histologic and immunologic effects of hydroxychloroquine in a rat models of pancreatic endocrine failure.PubMedCrossRefGoogle Scholar
  66. 66.
    Hage MP, Al-Badri MR, Azar ST. A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Ther Adv Endocrinol Metab. 2014;5(4):77–85. doi: 10.1177/2042018814547204.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Breedveld FC, Dayer JM. Leflunomide: mode of action in the treatment of rheumatoid arthritis. Ann Rheum Dis. 2000;59(11):841–9.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163–72. doi: 10.1124/pr.57.2.3.PubMedCrossRefGoogle Scholar
  69. 69.
    Garrido-Mesa N, Zarzuelo A, Galvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–52. doi: 10.1111/bph.12139.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;14 Suppl 1:s2–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Iaccarino L, Rampudda M, Canova M, Della Libera S, Sarzi-Puttinic P, Doria A. Mycophenolate mofetil: what is its place in the treatment of autoimmune rheumatic diseases? Autoimmun Rev. 2007;6(3):190–5. doi: 10.1016/j.autrev.2006.11.001.PubMedCrossRefGoogle Scholar
  72. 72.
    Gottlieb PA, Quinlan S, Krause Steinrauf H, Greenbaum CJ, Wilson DM, Rodriguez H, et al. Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new-onset type 1 diabetes. Diabetes Care. 2010;33(4):826–32. doi: 10.2337/dc09-1349.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Segal T, Webb EA, Viner R, Pusey C, Wild G, Allgrove J. Severe insulin resistance secondary to insulin antibodies: successful treatment with the immunosuppressant MMF. Pediatr Diabetes. 2008;9(3pt1):250–4. doi: 10.1111/j.1399-5448.2008.00408.x.PubMedCrossRefGoogle Scholar
  74. 74.
    Smedegard G, Bjork J. Sulphasalazine: mechanism of action in rheumatoid arthritis. Br J Rheumatol. 1995;34 Suppl 2:7–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Taffet SL, Das KM. Sulfasalazine. Adverse effects and desensitization. Dig Dis Sci. 1983;28(9):833–42.PubMedCrossRefGoogle Scholar
  76. 76.
    Tack CJ, Wetzels JF. Decreased HbA1c levels due to sulfonamide-induced hemolysis in two IDDM patients. Diabetes Care. 1996;19(7):775–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Haas RM, Li P, Chu JW. Glucose-lowering effects of sulfasalazine in type 2 diabetes. Diabetes Care. 2005;28(9):2238–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Jin J, Chang Y, Wei W. Clinical application and evaluation of anti-TNF-alpha agents for the treatment of rheumatoid arthritis. Acta Pharmacol Sin. 2010;31(9):1133–40. doi: 10.1038/aps.2010.134.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S, et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care. 2009;32(7):1244–9. doi: 10.2337/dc09-0054.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Montes VN, Hirsch IB. Treatment of LADA with etanercept. Diabetes Care. 2012;35(5):e36. doi: 10.2337/dc12-0128.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Olivieri AN, Iafusco D, Mellos A, Zanfardino A, Mauro A, Granato C, et al. Refractory rheumatoid factor positive polyarthritis in a female adolescent already suffering from type 1 diabetes mellitus and Hashimoto’s thyroiditis successfully treated with etanercept. Ital J Pediatr. 2013;39:64. doi: 10.1186/1824-7288-39-64.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Boulton JG, Bourne JT. Unstable diabetes in a patient receiving anti-TNF-alpha for rheumatoid arthritis. Rheumatology (Oxford). 2007;46(1):178–9. doi: 10.1093/rheumatology/kel322.CrossRefGoogle Scholar
  83. 83.
    van Eijk IC, Peters MJ, Nurmohamed MT, van Deutekom AW, Dijkmans BA, Simsek S. Decrease of fructosamine levels during treatment with adalimumab in patients with both diabetes and rheumatoid arthritis. Eur J Endocrinol. 2007;156(3):291–3. doi: 10.1530/EJE-06-0693.PubMedCrossRefGoogle Scholar
  84. 84.
    Arif S, Cox P, Afzali B, Lombardi G, Lechler RI, Peakman M, et al. Anti-TNFalpha therapy—killing two birds with one stone? Lancet. 2010;375(9733):2278. doi: 10.1016/S0140-6736(10)60394-7.PubMedCrossRefGoogle Scholar
  85. 85.
    Timper K, Hruz P, Beglinger C, Donath MY. Infliximab in the treatment of Crohn disease and type 1 diabetes. Diabetes Care. 2013;36(7):e90–1. doi: 10.2337/dc13-0199.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bloom BJ. Development of diabetes mellitus during etanercept therapy in a child with systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum. 2000;43(11):2606–8. doi: 10.1002/1529-0131(200011)43:11<2606::AID-ANR31>3.0.CO;2-X.PubMedCrossRefGoogle Scholar
  87. 87.
    Tack CJ, Kleijwegt FS, Van Riel PL, Roep BO. Development of type 1 diabetes in a patient treated with anti-TNF-alpha therapy for active rheumatoid arthritis. Diabetologia. 2009;52(7):1442–4. doi: 10.1007/s00125-009-1381-0.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Singh JA, Wells GA, Christensen R, Tanjong Ghogomu E, Maxwell L, Macdonald JK, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev. 2011;2:CD008794. doi: 10.1002/14651858.CD008794.pub2.PubMedGoogle Scholar
  89. 89.
    Gupta-Ganguli M, Cox K, Means B, Gerling I, Solomon SS. Does therapy with anti-TNF-alpha improve glucose tolerance and control in patients with type 2 diabetes? Diabetes Care. 2011;34(7):e121. doi: 10.2337/dc10-1334.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Farrokhi F, Taylor HC, McBride NM. Etanercept-induced hypoglycemia and improved glycemic control in a patient with type 2 diabetes. Endocr Pract. 2011;17(2):306–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Cheung D, Bryer-Ash M. Persistent hypoglycemia in a patient with diabetes taking etanercept for the treatment of psoriasis. J Am Acad Dermatol. 2009;60(6):1032–6. doi: 10.1016/j.jaad.2008.12.012.PubMedCrossRefGoogle Scholar
  92. 92.
    Wambier CG, Foss-Freitas MC, Paschoal RS, Tomazini MV, Simao JC, Foss MC, et al. Severe hypoglycemia after initiation of anti-tumor necrosis factor therapy with etanercept in a patient with generalized pustular psoriasis and type 2 diabetes mellitus. J Am Acad Dermatol. 2009;60(5):883–5. doi: 10.1016/j.jaad.2008.10.009.PubMedCrossRefGoogle Scholar
  93. 93.
    Bonilla E, Lee YY, Phillips PE, Perl A. Hypoglycaemia after initiation of treatment with etanercept in a patient with type 2 diabetes mellitus. Ann Rheum Dis. 2007;66(12):1688. doi: 10.1136/ard.2007.072256.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yazdani-Biuki B, Stelzl H, Brezinschek HP, Hermann J, Mueller T, Krippl P, et al. Improvement of insulin sensitivity in insulin resistant subjects during prolonged treatment with the anti-TNF-alpha antibody infliximab. Eur J Clin Invest. 2004;34(9):641–2. doi: 10.1111/j.1365-2362.2004.01390.x.PubMedCrossRefGoogle Scholar
  95. 95.
    Yazdani-Biuki B, Mueller T, Brezinschek HP, Hermann J, Graninger W, Wascher TC. Relapse of diabetes after interruption of chronic administration of anti-tumor necrosis factor-alpha antibody infliximab: a case observation. Diabetes Care. 2006;29(7):1712–3. doi: 10.2337/dc06-0636.PubMedCrossRefGoogle Scholar
  96. 96.
    Herrero-Beaumont G, Martinez Calatrava MJ, Castaneda S. Abatacept mechanism of action: concordance with its clinical profile. Reumatol Clin. 2012;8(2):78–83. doi: 10.1016/j.reuma.2011.08.002.PubMedCrossRefGoogle Scholar
  97. 97.
    Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet. 2011;378(9789):412–9. doi: 10.1016/S0140-6736(11)60886-6.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.•
    Orban T, Bundy B, Becker DJ, Dimeglio LA, Gitelman SE, Goland R, et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37(4):1069–75. doi: 10.2337/dc13-0604. This follow-up study to an RCT of abatacept in recent onset type 1 diabetes [97] demonstrates persistent improvements in pancreatic function one year after abatacept was stopped.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Chamian F, Lin SL, Lee E, Kikuchi T, Gilleaudeau P, Sullivan-Whalen M, et al. Alefacept (anti-CD2) causes a selective reduction in circulating effector memory T cells (Tem) and relative preservation of central memory T cells (Tcm) in psoriasis. J Transl Med. 2007;5:27. doi: 10.1186/1479-5876-5-27.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Scheinfeld N. Alefacept: its safety profile, off-label uses, and potential as part of combination therapies for psoriasis. J Dermatolog Treat. 2007;18(4):197–208. doi: 10.1080/09546630701247955.PubMedCrossRefGoogle Scholar
  101. 101.
    Cavalli G, Dinarello CA. Treating rheumatological diseases and co-morbidities with interleukin-1 blocking therapies. Rheumatology (Oxford). 2015;54(12):2134–44. doi: 10.1093/rheumatology/kev269.Google Scholar
  102. 102.•
    Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet. 2013;381(9881):1905–15. doi: 10.1016/S0140-6736(13)60023-9. This trial of anakinra or canakinumab versus placebo finds no effects on pancreatic function of either drug in patients with recent onset type 1 diabetes.PubMedCrossRefGoogle Scholar
  103. 103.
    van Asseldonk EJ, van Poppel PC, Ballak DB, Stienstra R, Netea MG, Tack CJ. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus. Clin Immunol. 2015;160(2):155–62. doi: 10.1016/j.clim.2015.06.003.PubMedCrossRefGoogle Scholar
  104. 104.
    Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356(15):1517–26. doi: 10.1056/NEJMoa065213.PubMedCrossRefGoogle Scholar
  105. 105.
    Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 2009;32(9):1663–8. doi: 10.2337/dc09-0533.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Ruscitti P, Cipriani P, Cantarini L, Liakouli V, Vitale A, Carubbi F, et al. Efficacy of inhibition of IL-1 in patients with rheumatoid arthritis and type 2 diabetes mellitus: two case reports and review of the literature. J Med Case Rep. 2015;9:123. doi: 10.1186/s13256-015-0603-y.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hensen J, Howard CP, Walter V, Thuren T. Impact of interleukin-1beta antibody (canakinumab) on glycaemic indicators in patients with type 2 diabetes mellitus: results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 2013;39(6):524–31. doi: 10.1016/j.diabet.2013.07.003.PubMedCrossRefGoogle Scholar
  108. 108.
    Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23. doi: 10.1053/j.seminhematol.2010.01.011.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, Becker DJ, Gitelman SE, Goland R, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361(22):2143–52. doi: 10.1056/NEJMoa0904452.PubMedCrossRefGoogle Scholar
  110. 110.
    Pescovitz MD, Greenbaum CJ, Bundy B, Becker DJ, Gitelman SE, Goland R, et al. B-lymphocyte depletion with rituximab and beta-cell function: two-year results. Diabetes Care. 2014;37(2):453–9. doi: 10.2337/dc13-0626.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Quintana L, Paniagua JA, Gil-Contreras D, Jimenez-Yuste V, Torres A, Velasco F. Improving type 1 diabetes after treatment of immune thrombocytopenia with rituximab: killing two birds with one stone. Diabetes Care. 2010;33(9):e122. doi: 10.2337/dc10-0959.PubMedCrossRefGoogle Scholar
  112. 112.
    Tanaka T, Narazaki M, Kishimoto T. Anti-interleukin-6 receptor antibody, tocilizumab, for the treatment of autoimmune diseases. FEBS Lett. 2011;585(23):3699–709. doi: 10.1016/j.febslet.2011.03.023.PubMedCrossRefGoogle Scholar
  113. 113.
    Ogata A, Morishima A, Hirano T, Hishitani Y, Hagihara K, Shima Y, et al. Improvement of HbA1c during treatment with humanised anti-interleukin 6 receptor antibody, tocilizumab. Ann Rheum Dis. 2011;70(6):1164–5. doi: 10.1136/ard.2010.132845.PubMedCrossRefGoogle Scholar
  114. 114.
    Steffes MW, Sibley S, Jackson M, Thomas W. Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care. 2003;26(3):832–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Panero F, Novelli G, Zucco C, Fornengo P, Perotto M, Segre O, et al. Fasting plasma C-peptide and micro- and macrovascular complications in a large clinic-based cohort of type 1 diabetic patients. Diabetes Care. 2009;32(2):301–5. doi: 10.2337/dc08-1241.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209(1):51–60. doi: 10.1084/jem.20111187.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kobayashi T, Tamemoto K, Nakanishi K, Kato N, Okubo M, Kajio H, et al. Immunogenetic and clinical characterization of slowly progressive IDDM. Diabetes Care. 1993;16(5):780–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Morris SJ, Wasko MC, Antohe JL, Sartorius JA, Kirchner HL, Dancea S, et al. Hydroxychloroquine use associated with improvement in lipid profiles in rheumatoid arthritis patients. Arthritis Care Res (Hoboken). 2011;63(4):530–4. doi: 10.1002/acr.20393.CrossRefGoogle Scholar
  119. 119.
    Solomon DH, Garg R, Lu B, Todd DJ, Mercer E, Norton T, et al. Effect of hydroxychloroquine on insulin sensitivity and lipid parameters in rheumatoid arthritis patients without diabetes mellitus: a randomized, blinded crossover trial. Arthritis Care Res (Hoboken). 2014;66(8):1246–51. doi: 10.1002/acr.22285.CrossRefGoogle Scholar
  120. 120.
    Jacobsson LT, Turesson C, Gulfe A, Kapetanovic MC, Petersson IF, Saxne T, et al. Treatment with tumor necrosis factor blockers is associated with a lower incidence of first cardiovascular events in patients with rheumatoid arthritis. J Rheumatol. 2005;32(7):1213–8.PubMedGoogle Scholar
  121. 121.
    Association AD. Standards of medical care in diabetes—2014. Diabetes Care. 2014;37 Suppl 1:S14–80. doi: 10.2337/dc14-S014.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Scott J. Pilla
    • 1
  • Amy Q. Quan
    • 2
  • Emily L. Germain-Lee
    • 3
    • 4
  • David B. Hellmann
    • 5
  • Nestoras N. Mathioudakis
    • 6
    Email author
  1. 1.General Internal MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.Johns Hopkins School of MedicineBaltimoreUSA
  3. 3.Department of Pediatrics, Division of Pediatric EndocrinologyJohns Hopkins University, School of MedicineBaltimoreUSA
  4. 4.Kennedy Krieger InstituteBaltimoreUSA
  5. 5.Department of MedicineJohns Hopkins University School of Medicine and Johns Hopkins, Bayview, Johns Hopkins Bayview Medical CenterBaltimoreUSA
  6. 6.Endocrinology, Diabetes, and MetabolismJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations