Current Diabetes Reports

, 16:100 | Cite as

Receptor for Advanced Glycation End Products (RAGE) in Type 1 Diabetes Pathogenesis

  • Sherman S. Leung
  • Josephine M. Forbes
  • Danielle J. Borg
Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pathogenesis of Type 1 Diabetes


The receptor for advanced glycation end products (RAGE) is a novel protein increasingly studied in the pathogenesis of type 1 diabetes (T1D). RAGE is expressed by several immune cell types, including T cells, antigen-presenting cells, endothelial cells, and the endocrine cells of the pancreatic islets. RAGE binds various ligands including advanced glycation end products (AGEs), high-mobility group box protein 1 (HMGB1), S100 proteins, β-amyloid, β-sheet fibrils, and lipopolysaccharide. AGEs are a particularly interesting ligand because their exogenous introduction into the body can be accelerated by the consumption of AGE-rich processed foods. This review will detail RAGE isoforms and its ligands and discuss how RAGE binding on the aforementioned cells could be linked to T1D pathogenesis.


Type 1 diabetes pathogenesis Receptor for advanced glycation end products Advanced glycation end products High-mobility group box protein 1 S100 calgranulins Immunology 



JMF is supported by a fellowship from the National Health and Medical Research Council of Australia; DJB is supported by a Diabetes Australia Research Grant (Y16G); SSL is supported by an Australian Postgraduate Award (The University of Queensland) and Frank Clair Scholarship (Mater Research); and the authors acknowledge the ongoing support of the Mater Foundation. We apologize to those groups who made important contributions that could not be considered here due to space limitations.

Compliance with Ethical Standards

Conflict of Interest

Sherman S. Leung, Josephine M. Forbes, and Danielle J. Borg declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any unpublished studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Vissing H, Aagaard L, Tommerup N, Boel E. Localization of the human gene for advanced glycosylation end product-specific receptor (AGER) to chromosome 6p21.3. Genomics. 1994;24:606–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Forbes JM, Soderlund J, Yap FY, Knip M, Andrikopoulos S, Ilonen J, et al. Receptor for advanced glycation end-products (RAGE) provides a link between genetic susceptibility and environmental factors in type 1 diabetes. Diabetologia. 2011;54:1032–42.PubMedCrossRefGoogle Scholar
  3. 3.
    Fritz G. RAGE: a single receptor fits multiple ligands. Trends Biochem Sci. 2011;36:625–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Xue J, Rai V, Singer D, Chabierski S, Xie J, Reverdatto S, et al. Advanced glycation end product recognition by the receptor for AGEs. Structure. 2011;19:722–32.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem. 1995;270:25752–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamamoto Y, Harashima A, Saito H, Tsuneyama K, Munesue S, Motoyoshi S, et al. Septic shock is associated with receptor for advanced glycation end products ligation of LPS. J Immunol. 2011;186:3248–57.PubMedCrossRefGoogle Scholar
  7. 7.
    L. Wang, T. Chen, J. Wu, and Q. Huang. Lipopolysaccharide-induced inflammation is associated with receptor for advanced glycation end products in human endothelial cells (1096.5). FASEB J. 28. 2014.Google Scholar
  8. 8.
    Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97:889–901.PubMedCrossRefGoogle Scholar
  9. 9.
    Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, et al. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382:685–91.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilton R, Yousef MA, Saxena P, Szpunar M, Stevens FJ. Expression and purification of recombinant human receptor for advanced glycation endproducts in Escherichia coli. Protein Expr Purif. 2006;47:25–35.PubMedCrossRefGoogle Scholar
  11. 11.
    Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.PubMedCrossRefGoogle Scholar
  12. 12.
    International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels: International Diabetes Federation; 2015.Google Scholar
  13. 13.
    Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599–604.PubMedCrossRefGoogle Scholar
  14. 14.
    Lucassen AM, Julier C, Beressi JP, Boitard C, Froguel P, Lathrop M, et al. Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat Genet. 1993;4:305–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12:781–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Bakay M, Pandey R, Hakonarson H. Genes involved in type 1 diabetes: an update. Genes (Basel). 2013;4:499–521.Google Scholar
  17. 17.
    Tishkoff SA, Verrelli BC. Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet. 2003;4:293–340.PubMedCrossRefGoogle Scholar
  18. 18.
    Eisenbarth GS. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med. 1986;314:1360–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Virk J, Li J, Vestergaard M, Obel C, Lu M, Olsen J. Early life disease programming during the preconception and prenatal period: making the link between stressful life events and type-1 diabetes. PLoS One. 2010;5, e11523.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Podar T, Solntsev A, Karvonen M, Padaiga Z, Brigis G, Urbonaite B, et al. Increasing incidence of childhood-onset type I diabetes in 3 Baltic countries and Finland 1983-1998. Diabetologia. 2001;44 Suppl 3:B17–20.PubMedCrossRefGoogle Scholar
  21. 21.
    W.-P. You and M. Henneberg, Type 1 diabetes prevalence increasing globally and regionally: the role of natural selection and life expectancy at birth. BMJ Open Diabetes Research & Care. 4. 2016.Google Scholar
  22. 22.
    Oikarinen S, Martiskainen M, Tauriainen S, Huhtala H, Ilonen J, Veijola R, et al. Enterovirus RNA in blood is linked to the development of type 1 diabetes. Diabetes. 2011;60:276–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Lonnrot M, Korpela K, Knip M, Ilonen J, Simell O, Korhonen S, et al. Enterovirus infection as a risk factor for beta-cell autoimmunity in a prospectively observed birth cohort: the Finnish Diabetes Prediction and Prevention Study. Diabetes. 2000;49:1314–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Chehadeh W, Kerr-Conte J, Pattou F, Alm G, Lefebvre J, Wattre P, et al. Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells. J Virol. 2000;74:10153–64.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med. 1998;4:781–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Akerblom HK, Virtanen SM, Ilonen J, Savilahti E, Vaarala O, Reunanen A, et al. Dietary manipulation of beta cell autoimmunity in infants at increased risk of type 1 diabetes: a pilot study. Diabetologia. 2005;48:829–37.PubMedCrossRefGoogle Scholar
  27. 27.
    Knip M, Akerblom HK, Becker D, Dosch HM, Dupre J, Fraser W, et al. Hydrolyzed infant formula and early beta-cell autoimmunity: a randomized clinical trial. JAMA. 2014;311:2279–87.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Dong JY, Zhang WG, Chen JJ, Zhang ZL, Han SF, Qin LQ. Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients. 2013;5:3551–62.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Martin T, Campbell RK. Vitamin D and diabetes. Diabetes Spectrum. 2011;24:113–8.CrossRefGoogle Scholar
  30. 30.
    Norris JM, Yin X, Lamb MM, Barriga K, Seifert J, Hoffman M, et al. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. JAMA. 2007;298:1420–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Hindmarsh PC, Matthews DR, Di Silvio L, Kurtz AB, Brook CG. Relation between height velocity and fasting insulin concentrations. Arch Dis Child. 1988;63:665–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hypponen E, Kenward MG, Virtanen SM, Piitulainen A, Virta-Autio P, Tuomilehto J, et al. Infant feeding, early weight gain, and risk of type 1 diabetes. Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care. 1999;22:1961–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11:46.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One. 2011;6, e25792.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Akirav EM, Preston-Hurlburt P, Garyu J, Henegariu O, Clynes R, Schmidt AM, et al. RAGE expression in human T cells: a link between environmental factors and adaptive immune responses. PLoS One. 2012;7, e34698.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Han XQ, Gong ZJ, Xu SQ, Li X, Wang LK, Wu SM, et al. Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response. J Huazhong Univ Sci Technol Med Sci. 2014;34:10–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Wild CA, Bergmann C, Fritz G, Schuler P, Hoffmann TK, Lotfi R, et al. HMGB1 conveys immunosuppressive characteristics on regulatory and conventional T cells. Int Immunol. 2012;24:485–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Moser B, Janik S, Schiefer AI, Mullauer L, Bekos C, Scharrer A, et al. Expression of RAGE and HMGB1 in thymic epithelial tumors, thymic hyperplasia and regular thymic morphology. PLoS One. 2014;9, e94118.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Pellat-Deceunynck C, Mellerin MP, Labarriere N, Jego G, Moreau-Aubry A, Harousseau JL, et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol. 2000;30:803–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Hama S, Takeichi O, Saito I, Ito K. Involvement of inducible nitric oxide synthase and receptor for advanced glycation end products in periapical granulomas. J Endod. 2007;33:137–41.PubMedCrossRefGoogle Scholar
  41. 41.
    Miura J, Uchigata Y, Yamamoto Y, Takeuchi M, Sakurai S, Watanabe T, et al. AGE down-regulation of monocyte RAGE expression and its association with diabetic complications in type 1 diabetes. J Diabetes Complicat. 2004;18:53–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Z. Li, M. J. Scott, E. K. Fan, Y. Li, J. Liu, G. Xiao, et al.. Tissue damage negatively regulates LPS-induced macrophage necroptosis. Cell Death Differ. 2016.Google Scholar
  43. 43.
    Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, Nawroth PP, et al. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol. 2005;174:7506–15.PubMedCrossRefGoogle Scholar
  44. 44.
    Buttari B, Profumo E, Facchiano F, Ozturk EI, Segoni L, Saso L, et al. Resveratrol prevents dendritic cell maturation in response to advanced glycation end products. Oxid Med Cell Longev. 2013;2013:574029.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, Rovere-Querini P. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol. 2005;35:2184–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Parodi M, Pedrazzi M, Cantoni C, Averna M, Patrone M, Cavaletto M, et al. Natural killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic High Mobility Group Box-1 (HMGB1) capable of amplifying NK cell recruitment. Oncoimmunology. 2015;4, e1052353.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Moser B, Desai DD, Downie MP, Chen Y, Yan SF, Herold K, et al. Receptor for advanced glycation end products expression on T cells contributes to antigen-specific cellular expansion in vivo. J Immunol. 2007;179:8051–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Loser K, Vogl T, Voskort M, Lueken A, Kupas V, Nacken W, et al. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8+ T cells. Nat Med. 2010;16:713–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Chen Y, Akirav EM, Chen W, Henegariu O, Moser B, Desai D, et al. RAGE ligation affects T cell activation and controls T cell differentiation. J Immunol. 2008;181:4272–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Matsuoka N, Itoh T, Watarai H, Sekine-Kondo E, Nagata N, Okamoto K, et al. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. J Clin Invest. 2010;120:735–43.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Koyama M, Cheong M, Markey KA, Gartlan KH, Kuns RD, Locke KR, et al. Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. J Exp Med. 2015;212:1303–21.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Narumi K, Miyakawa R, Ueda R, Hashimoto H, Yamamoto Y, Yoshida T, et al. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J Immunol. 2015;194:5539–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Xu Y, Zhan Y, Lew AM, Naik SH, Kershaw MH. Differential development of murine dendritic cells by GM-CSF versus Flt3 ligand has implications for inflammation and trafficking. J Immunol. 2007;179:7577–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Yonekura H, Yamamoto Y, Sakurai S, Petrova RG, Abedin MJ, Li H, et al. Novel splice variants of the receptor for advanced glycation end-products expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury. Biochem J. 2003;370:1097–109.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, et al. Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation. 2002;105:816–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Guzman-Ruiz R, Ortega F, Rodriguez A, Vazquez-Martinez R, Diaz-Ruiz A, Garcia-Navarro S, et al. Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in beta-cells. Int J Obes (Lond). 2014;38:1545–54.CrossRefGoogle Scholar
  57. 57.
    Han D, Yamamoto Y, Munesue S, Motoyoshi S, Saito H, Win MT, et al. Induction of receptor for advanced glycation end products by insufficient leptin action triggers pancreatic beta-cell failure in type 2 diabetes. Genes Cells. 2013;18:302–14.PubMedCrossRefGoogle Scholar
  58. 58.
    Zhu Y, Shu T, Lin Y, Wang H, Yang J, Shi Y, et al. Inhibition of the receptor for advanced glycation endproducts (RAGE) protects pancreatic beta-cells. Biochem Biophys Res Commun. 2011;404:159–65.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaji Y, Usui T, Ishida S, Yamashiro K, Moore TC, Moore J, et al. Inhibition of diabetic leukostasis and blood-retinal barrier breakdown with a soluble form of a receptor for advanced glycation end products. Invest Ophthalmol Vis Sci. 2007;48:858–65.PubMedCrossRefGoogle Scholar
  60. 60.
    Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Buckman LB, Anderson-Baucum EK, Hasty AH, Ellacott K. Regulation of S100B in white adipose tissue by obesity in mice. Adipocyte. 2014;3:215–20.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem. 1997;272:17810–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Li J, Schmidt AM. Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem. 1997;272:16498–506.PubMedCrossRefGoogle Scholar
  64. 64.
    Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269:9889–97.PubMedGoogle Scholar
  65. 65.
    Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, et al. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest. 2008;118:183–94.PubMedCrossRefGoogle Scholar
  66. 66.
    Guh JY, Huang JS, Chen HC, Hung WC, Lai YH, Chuang LY. Advanced glycation end product-induced proliferation in NRK-49F cells is dependent on the JAK2/STAT5 pathway and cyclin D1. Am J Kidney Dis. 2001;38:1096–104.PubMedCrossRefGoogle Scholar
  67. 67.
    Hudson BI, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, et al. Identification, classification, and expression of RAGE gene splice variants. FASEB J. 2008;22:1572–80.PubMedCrossRefGoogle Scholar
  68. 68.
    Kalea AZ, Reiniger N, Yang H, Arriero M, Schmidt AM, Hudson BI. Alternative splicing of the murine receptor for advanced glycation end-products (RAGE) gene. FASEB J. 2009;23:1766–74.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cheng A, Dong Y, Zhu F, Liu Y, Hou FF, Nie J. AGE-LDL activates Toll like receptor 4 pathway and promotes inflammatory cytokines production in renal tubular epithelial cells. Int J Biol Sci. 2013;9:94–107.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Araki N, Higashi T, Mori T, Shibayama R, Kawabe Y, Kodama T, et al. Macrophage scavenger receptor mediates the endocytic uptake and degradation of advanced glycation end products of the Maillard reaction. Eur J Biochem. 1995;230:408–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, et al. Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem. 2001;276:3195–202.PubMedCrossRefGoogle Scholar
  72. 72.
    Pullerits R, Brisslert M, Jonsson IM, Tarkowski A. Soluble receptor for advanced glycation end products triggers a proinflammatory cytokine cascade via beta2 integrin Mac-1. Arthritis Rheum. 2006;54:3898–907.PubMedCrossRefGoogle Scholar
  73. 73.••
    Salonen KM, Ryhanen SJ, Forbes JM, Harkonen T, Ilonen J, Laine AP, et al. Circulating concentrations of soluble receptor for AGE are associated with age and AGER gene polymorphisms in children with newly diagnosed type 1 diabetes. Diabetes Care. 2014;37:1975–81. This was the first study to demonstrate that a RAGE isoform associated with progression towards overt type 1 diabetes.PubMedCrossRefGoogle Scholar
  74. 74.
    Salonen KM, Ryhanen SJ, Forbes JM, Borg DJ, Harkonen T, Ilonen J, et al. Decrease in circulating concentrations of soluble receptors for advanced glycation end products at the time of seroconversion to autoantibody positivity in children with prediabetes. Diabetes Care. 2015;38:665–70.PubMedGoogle Scholar
  75. 75.
    Koschinsky T, He CJ, Mitsuhashi T, Bucala R, Liu C, Buenting C, et al. Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc Natl Acad Sci U S A. 1997;94:6474–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44:129–46.PubMedCrossRefGoogle Scholar
  77. 77.
    Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bügel S, Nielsen J, et al. Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol. 2013;60:10–37.PubMedCrossRefGoogle Scholar
  78. 78.••
    Beyan H, Riese H, Hawa MI, Beretta G, Davidson HW, Hutton JC, et al. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes. 2012;61:1192–8. This was the first study to demonstrate that RAGE ligands, AGEs, acted as independent predictors for type 1 diabetes progression in ICA+ children.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Barat P, Cammas B, Lacoste A, Harambat J, Vautier V, Nacka F, et al. Advanced glycation end products in children with type 1 diabetes: family matters? Diabetes Care. 2012;35:e1.PubMedCrossRefGoogle Scholar
  80. 80.
    Mericq V, Piccardo C, Cai W, Chen X, Zhu L, Striker GE, et al. Maternally transmitted and food-derived glycotoxins: a factor preconditioning the young to diabetes? Diabetes Care. 2010;33:2232–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Coughlan MT, Yap FY, Tong DC, Andrikopoulos S, Gasser A, Thallas-Bonke V, et al. Advanced glycation end products are direct modulators of beta-cell function. Diabetes. 2011;60:2523–32.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Peppa M, He C, Hattori M, McEvoy R, Zheng F, Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52:1441–8.PubMedCrossRefGoogle Scholar
  83. 83.
    Leslie RD, Beyan H, Sawtell P, Boehm BO, Spector TD, Snieder H. Level of an advanced glycated end product is genetically determined: a study of normal twins. Diabetes. 2003;52:2441–4.PubMedCrossRefGoogle Scholar
  84. 84.
    Jaisson S, Gillery P. Evaluation of nonenzymatic posttranslational modification-derived products as biomarkers of molecular aging of proteins. Clin Chem. 2010;56:1401–12.PubMedCrossRefGoogle Scholar
  85. 85.
    Doyle HA, Mamula MJ. Post-translational protein modifications in antigen recognition and autoimmunity. Trends Immunol. 2001;22:443–9.PubMedCrossRefGoogle Scholar
  86. 86.
    Delong T, Wiles TA, Baker RL, Bradley B, Barbour G, Reisdorph R, et al. Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion. Science. 2016;351:711–4.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Zaldumbide A, et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes. 2014;63:237–47.PubMedCrossRefGoogle Scholar
  88. 88.
    McLaughlin RJ, Spindler MP, van Lummel M, Roep BO. Where, how, and when: positioning posttranslational modification within type 1 diabetes pathogenesis. Curr Diabetes Rep. 2016;16:1–9.CrossRefGoogle Scholar
  89. 89.
    Abdel-Wahab YH, O’Harte FP, Boyd AC, Barnett CR, Flatt PR. Glycation of insulin results in reduced biological activity in mice. Acta Diabetol. 1997;34:265–70.PubMedCrossRefGoogle Scholar
  90. 90.
    Abdel-Wahab YH, O’Harte FP, Ratcliff H, McClenaghan NH, Barnett CR, Flatt PR. Glycation of insulin in the islets of Langerhans of normal and diabetic animals. Diabetes. 1996;45:1489–96.PubMedCrossRefGoogle Scholar
  91. 91.
    Hunter SJ, Boyd AC, O’Harte FP, McKillop AM, Wiggam MI, Mooney MH, et al. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulinemic clamp technique in humans. Diabetes. 2003;52:492–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Oliveira LM, Lages A, Gomes RA, Neves H, Familia C, Coelho AV, et al. Insulin glycation by methylglyoxal results in native-like aggregation and inhibition of fibril formation. BMC Biochem. 2011;12:41.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Vay D, Vidali M, Allochis G, Cusaro C, Rolla R, Mottaran E, et al. Antibodies against advanced glycation end product Nepsilon-(carboxymethyl)lysine in healthy controls and diabetic patients. Diabetologia. 2000;43:1385–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Turk Z, Ljubic S, Turk N, Benko B. Detection of autoantibodies against advanced glycation endproducts and AGE-immune complexes in serum of patients with diabetes mellitus. Clin Chim Acta. 2001;303:105–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Ahmad S, Moinuddin, Shahab U, Habib S, Salman Khan M, Alam K, et al. Glycoxidative damage to human DNA: neo-antigenic epitopes on DNA molecule could be a possible reason for autoimmune response in type 1 diabetes. Glycobiology. 2014;24:281–91.PubMedCrossRefGoogle Scholar
  96. 96.
    Mir AR, Moinuddin. Glycoxidation of histone proteins in autoimmune disorders. Clin Chim Acta. 2015;450:25–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Chikazawa M, Otaki N, Shibata T, Miyashita H, Kawai Y, Maruyama S, et al. Multispecificity of immunoglobulin M antibodies raised against advanced glycation end products: involvement of electronegative potential of antigens. J Biol Chem. 2013;288:13204–14.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ligier S, Fortin PR, Newkirk MM. A new antibody in rheumatoid arthritis targeting glycated IgG: IgM anti-IgG-AGE. Rheumatology. 1998;37:1307–14.CrossRefGoogle Scholar
  99. 99.
    Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38:14–9.PubMedCrossRefGoogle Scholar
  100. 100.
    Penfold SA, Coughlan MT, Patel SK, Srivastava PM, Sourris KC, Steer D, et al. Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney Int. 2010;78:287–95.PubMedCrossRefGoogle Scholar
  101. 101.
    Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8:487–96.PubMedCrossRefGoogle Scholar
  102. 102.
    Yang X, Wang H, Zhang M, Liu J, Lv B, Chen F. HMGB1: a novel protein that induced platelets active and aggregation via Toll-like receptor-4, NF-kappaB and cGMP dependent mechanisms. Diagn Pathol. 2015;10:134.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–60.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Degryse B, Bonaldi T, Scaffidi P, Muller S, Resnati M, Sanvito F, et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol. 2001;152:1197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Urbonaviciute V, Furnrohr BG, Meister S, Munoz L, Heyder P, De Marchis F, et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J Exp Med. 2008;205:3007–18.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Han J, Zhong J, Wei W, Wang Y, Huang Y, Yang P, et al. Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. Diabetes. 2008;57:2118–27.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013;13:24–57.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Schafer BW, Fritschy JM, Murmann P, Troxler H, Durussel I, Heizmann CW, et al. Brain S100A5 is a novel calcium-, zinc-, and copper ion-binding protein of the EF-hand superfamily. J Biol Chem. 2000;275:30623–30.PubMedCrossRefGoogle Scholar
  109. 109.
    Leukert N, Vogl T, Strupat K, Reichelt R, Sorg C, Roth J. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity. J Mol Biol. 2006;359:961–72.PubMedCrossRefGoogle Scholar
  110. 110.
    Ostendorp T, Leclerc E, Galichet A, Koch M, Demling N, Weigle B, et al. Structural and functional insights into RAGE activation by multimeric S100B. EMBO J. 2007;26:3868–78.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    K. M. Wartchow, A. C. Tramontina, D. F. de Souza, R. Biasibetti, L. D. Bobermin, and C. A. Goncalves. Insulin stimulates S100B secretion and these proteins antagonistically modulate brain glucose metabolism. Neurochem Res. 2016.Google Scholar
  112. 112.
    Rammes A, Roth J, Goebeler M, Klempt M, Hartmann M, Sorg C. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem. 1997;272:9496–502.PubMedCrossRefGoogle Scholar
  113. 113.
    Tardif MR, Chapeton-Montes JA, Posvandzic A, Page N, Gilbert C, Tessier PA. Secretion of S100A8, S100A9, and S100A12 by neutrophils involves reactive oxygen species and potassium efflux. J Immunol Res. 2015;2015:296149.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Passey RJ, Williams E, Lichanska AM, Wells C, Hu S, Geczy CL, et al. A null mutation in the inflammation-associated S100 protein S100A8 causes early resorption of the mouse embryo. J Immunol. 1999;163:2209–16.PubMedGoogle Scholar
  115. 115.
    Hobbs JA, May R, Tanousis K, McNeill E, Mathies M, Gebhardt C, et al. Myeloid cell function in MRP-14 (S100A9) null mice. Mol Cell Biol. 2003;23:2564–76.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Bouma G, Coppens JM, Lam-Tse WK, Luini W, Sintnicolaas K, Levering WH, et al. An increased MRP8/14 expression and adhesion, but a decreased migration towards proinflammatory chemokines of type 1 diabetes monocytes. Clin Exp Immunol. 2005;141:509–17.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Bouma G, Lam-Tse WK, Wierenga-Wolf AF, Drexhage HA, Versnel MA. Increased serum levels of MRP-8/14 in type 1 diabetes induce an increased expression of CD11b and an enhanced adhesion of circulating monocytes to fibronectin. Diabetes. 2004;53:1979–86.PubMedCrossRefGoogle Scholar
  118. 118.
    Ikemoto M, Matsumoto S, Egawa H, Okitsu T, Iwanaga Y, Umemoto S, et al. A case with transient increases in serum S100A8/A9 levels implying acute inflammatory responses after pancreatic islet transplantation. Ann Clin Biochem. 2007;44:570–2.PubMedCrossRefGoogle Scholar
  119. 119.
    Xiong Z, O’Hanlon D, Becker LE, Roder J, MacDonald JF, Marks A. Enhanced calcium transients in glial cells in neonatal cerebellar cultures derived from S100B null mice. Exp Cell Res. 2000;257:281–9.PubMedCrossRefGoogle Scholar
  120. 120.
    Winer S, Tsui H, Lau A, Song A, Li X, Cheung RK, et al. Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med. 2003;9:198–205.PubMedCrossRefGoogle Scholar
  121. 121.
    Gomez-Tourino I, Simon-Vazquez R, Alonso-Lorenzo J, Arif S, Calvino-Sampedro C, Gonzalez-Fernandez A, et al. Characterization of the autoimmune response against the nerve tissue S100beta in patients with type 1 diabetes. Clin Exp Immunol. 2015;180:207–17.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lotosh NG, Savel’eva EK, Selishcheva AA, Savel’ev SV. Autoantibodies to neuron-specific proteins S100, GFAP, MBP and NGF in the serum of rats with streptozotocin-induced diabetes. Bull Exp Biol Med. 2013;155:48–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Serre L, Fazilleau N, Guerder S. Central tolerance spares the private high-avidity CD4(+) T-cell repertoire specific for an islet antigen in NOD mice. Eur J Immunol. 2015;45:1946–56.PubMedCrossRefGoogle Scholar
  124. 124.
    Jin X, Yao T, Zhou Z, Zhu J, Zhang S, Hu W, et al. Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-kappaB pathway. Biomed Res Int. 2015;2015:732450.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Rev Endocrinol. 2008;4:285–93.Google Scholar
  126. 126.
    Qin Q, Niu J, Wang Z, Xu W, Qiao Z, Gu Y. Heparanase induced by advanced glycation end products (AGEs) promotes macrophage migration involving RAGE and PI3K/AKT pathway. Cardiovasc Diabetol. 2013;12:37.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Friggeri A, Banerjee S, Biswas S, de Freitas A, Liu G, Bierhaus A, et al. Participation of the receptor for advanced glycation end products in efferocytosis. J Immunol. 2011;186:6191–8.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533–44.PubMedCrossRefGoogle Scholar
  129. 129.
    Yui S, Sasaki T, Araki N, Horiuchi S, Yamazaki M. Induction of macrophage growth by advanced glycation end products of the Maillard reaction. J Immunol. 1994;152:1943–9.PubMedGoogle Scholar
  130. 130.
    Tesch G, Sourris KC, Summers SA, McCarthy D, Ward MS, Borg DJ, et al. Deletion of bone-marrow-derived receptor for AGEs (RAGE) improves renal function in an experimental mouse model of diabetes. Diabetologia. 2014;57:1977–85.PubMedCrossRefGoogle Scholar
  131. 131.
    Rojas A, Delgado-Lopez F, Perez-Castro R, Gonzalez I, Romero J, Rojas I, et al. HMGB1 enhances the protumoral activities of M2 macrophages by a RAGE-dependent mechanism. Tumour Biol. 2016;37:3321–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Kang R, Chen R, Xie M, Cao L, Lotze MT, Tang D, et al. The receptor for advanced glycation end products activates the AIM2 inflammasome in acute pancreatitis. J Immunol. 2016;196:4331–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509–13.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Lehuen A, Diana J, Zaccone P, Cooke A. Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol. 2010;10:501–13.PubMedCrossRefGoogle Scholar
  135. 135.
    Flodström-Tullberg M, Yadav D, Hägerkvist R, Tsai D, Secrest P, Stotland A, et al. Target cell expression of suppressor of cytokine signaling-1 prevents diabetes in the NOD mouse. Diabetes. 2003;52:2696–700.PubMedCrossRefGoogle Scholar
  136. 136.
    Chong MMW, Chen Y, Darwiche R, Dudek NL, Irawaty W, Santamaria P, et al. Suppressor of cytokine signaling-1 overexpression protects pancreatic β cells from CD8+ T cell-mediated autoimmune destruction. J Immunol. 2004;172:5714–21.PubMedCrossRefGoogle Scholar
  137. 137.
    Rodacki M, Svoren B, Butty V, Besse W, Laffel L, Benoist C, et al. Altered natural killer cells in type 1 diabetic patients. Diabetes. 2007;56:177–85.PubMedCrossRefGoogle Scholar
  138. 138.
    Brauner H, Elemans M, Lemos S, Broberger C, Holmberg D, Flodstrom-Tullberg M, et al. Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice. J Immunol. 2010;184:2272–80.PubMedCrossRefGoogle Scholar
  139. 139.
    DeMarco RA, Fink MP, Lotze MT. Monocytes promote natural killer cell interferon gamma production in response to the endogenous danger signal HMGB1. Mol Immunol. 2005;42:433–44.PubMedCrossRefGoogle Scholar
  140. 140.
    Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 2008;181:4666–75.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res. 2011;9:133–48.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008;205:2235–49.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E, Baniyash M. Tumor necrosis factor-alpha blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. 2013;38:541–54.PubMedCrossRefGoogle Scholar
  144. 144.
    Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Yamamoto H, et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther. 2006;8:R69.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Schelbergen RF, Blom AB, de Munter W, Vogl T, Roth J, van den Berg WB, et al. Alarmins s100a8 and s100a9 stimulate production of pro-inflammatory cytokines in M2 macrophages without changing their M2 membrane phenotype. Ann Rheum Dis. 2012;71:A76.CrossRefGoogle Scholar
  146. 146.
    Matteucci E, Ghimenti M, Di Beo S, Giampietro O. Altered proportions of naïve, central memory and terminally differentiated central memory subsets among CD4+ and CD8+ T cells expressing CD26 in patients with type 1 diabetes. J Clin Immunol. 2011;31:977–84.PubMedCrossRefGoogle Scholar
  147. 147.
    M. L. Bian, O. Haigh, D. Munster, M. Harris, A. Cotterill, J. J. Miles, et al.. Reactivated CD4+ Tm cells of T1D patients and siblings display an exaggerated effector phenotype with heightened sensitivity to activation-induced cell death. Diabetes. 2014.Google Scholar
  148. 148.•
    Nagareddy PR, Murphy AJ, Stirzaker RA, Hu Y, Yu S, Miller RG, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013;17:695–708. This study showed that the S100A8/A9 levels correlate with leukocyte counts in individuals with type 1 diabetes, and the interaction of S100A8/A9 and RAGE promote myelopoiesis in hyperglycaemic environments.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Nagareddy PR, Kraakman M, Masters SL, Stirzaker RA, Gorman DJ, Grant RW, et al. Adipose tissue macrophages promote myelopoiesis and monocytosis in obesity. Cell Metab. 2014;19:821–35.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Reis C, Sousa E. Dendritic cells in a mature age. Nat Rev Immunol. 2006;6:476–83.CrossRefGoogle Scholar
  151. 151.
    Heilmann M, Wellner A, Gadermaier G, Ilchmann A, Briza P, Krause M, et al. Ovalbumin modified with pyrraline, a Maillard reaction product, shows enhanced T-cell immunogenicity. J Biol Chem. 2014;289:7919–28.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ilchmann A, Burgdorf S, Scheurer S, Waibler Z, Nagai R, Wellner A, et al. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II. J Allergy Clin Immunol. 2010;125:175-83. e1–11.CrossRefGoogle Scholar
  153. 153.
    Hilmenyuk T, Bellinghausen I, Heydenreich B, Ilchmann A, Toda M, Grabbe S, et al. Effects of glycation of the model food allergen ovalbumin on antigen uptake and presentation by human dendritic cells. Immunology. 2010;129:437–45.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kumar RK, Herbert C, Foster PS. The “classical” ovalbumin challenge model of asthma in mice. Curr Drug Targets. 2008;9:485–94.PubMedCrossRefGoogle Scholar
  155. 155.
    Buttari B, Profumo E, Capozzi A, Facchiano F, Saso L, Sorice M, et al. Advanced glycation end products of human beta(2) glycoprotein I modulate the maturation and function of DCs. Blood. 2011;117:6152–61.PubMedCrossRefGoogle Scholar
  156. 156.
    Price CL, Sharp PS, North ME, Rainbow SJ, Knight SC. Advanced glycation end products modulate the maturation and function of peripheral blood dendritic cells. Diabetes. 2004;53:1452–8.PubMedCrossRefGoogle Scholar
  157. 157.
    Schmidt A, Oberle N, Krammer PH. Molecular mechanisms of Treg-mediated T cell suppression. Front Immunol. 2012;3:51.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Pejnovic NN, Pantic JM, Jovanovic IP, Radosavljevic GD, Milovanovic MZ, Nikolic IG, et al. Galectin-3 deficiency accelerates high-fat diet-induced obesity and amplifies inflammation in adipose tissue and pancreatic islets. Diabetes. 2013;62:1932–44.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Su Z, Sun C, Zhou C, Liu Y, Zhu H, Sandoghchian S, et al. HMGB1 blockade attenuates experimental autoimmune myocarditis and suppresses Th17-cell expansion. Eur J Immunol. 2011;41:3586–95.PubMedCrossRefGoogle Scholar
  160. 160.
    Tang Q, Li J, Zhu H, Li P, Zou Z, Xiao Y. Hmgb1-IL-23-IL-17-IL-6-Stat3 axis promotes tumor growth in murine models of melanoma. Mediat Inflamm. 2013;2013:713859.Google Scholar
  161. 161.
    Zhang LT, Yao YM, Yao FH, Huang LF, Dong N, Yu Y, et al. Association between high-mobility group box-1 protein release and immune function of dendritic cells in thermal injury. J Interferon Cytokine Res. 2010;30:487–95.PubMedCrossRefGoogle Scholar
  162. 162.•
    Kim TS, Gorski SA, Hahn S, Murphy KM, Braciale TJ. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8(+) T cell differentiation by a CD24-dependent mechanism. Immunity. 2014;40:400–13. This study showed that CD8+ T cell activation could be regulated via CD24 through HMGB1 engagement of T cell RAGE.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Manfredi AA, Capobianco A, Esposito A, De Cobelli F, Canu T, Monno A, et al. Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J Immunol. 2008;180:2270–5.PubMedCrossRefGoogle Scholar
  164. 164.
    Huber JP, Ramos HJ, Gill MA, Farrar JD. Cutting edge: type I IFN reverses human Th2 commitment and stability by suppressing GATA3. J Immunol. 2010;185:813–7.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Duan L, Wang CY, Chen J, Gong Q, Zhu P, Zheng F, et al. High-mobility group box 1 promotes early acute allograft rejection by enhancing IL-6-dependent Th17 alloreactive response. Lab Invest. 2011;91:43–53.PubMedCrossRefGoogle Scholar
  166. 166.
    Zhang Y, Yao YM, Huang LF, Dong N, Yu Y, Sheng ZY. The potential effect and mechanism of high-mobility group box 1 protein on regulatory T cell-mediated immunosuppression. J Interferon Cytokine Res. 2011;31:249–57.PubMedCrossRefGoogle Scholar
  167. 167.
    Mu L, Zhang Y, Sun B, Wang J, Xie X, Li N, et al. Activation of the receptor for advanced glycation end products (RAGE) exacerbates experimental autoimmune myasthenia gravis symptoms. Clin Immunol. 2011;141:36–48.PubMedCrossRefGoogle Scholar
  168. 168.
    Kim TS, Kang YJ, Kim JY, Lee S, Lee WJ, Sohn Y, et al. Up-regulated S100 calcium binding protein A8 in Plasmodium-infected patients correlates with CD4(+)CD25(+)Foxp3 regulatory T cell generation. Malar J. 2015;14:385.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Savinov AY, Rozanov DV, Strongin AY. Specific inhibition of autoimmune T cell transmigration contributes to beta cell functionality and insulin synthesis in non-obese diabetic (NOD) mice. J Biol Chem. 2007;282:32106–11.PubMedCrossRefGoogle Scholar
  170. 170.
    Lozanoska-Ochser B, Peakman M. Level of major histocompatibility complex class I expression on endothelium in non-obese diabetic mice influences CD8 T cell adhesion and migration. Clin Exp Immunol. 2009;157:119–27.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Matsui T, Oda E, Higashimoto Y, Yamagishi S. Glyceraldehyde-derived pyridinium (GLAP) evokes oxidative stress and inflammatory and thrombogenic reactions in endothelial cells via the interaction with RAGE. Cardiovasc Diabetol. 2015;14:1.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Sun W, Jiao Y, Cui B, Gao X, Xia Y, Zhao Y. Immune complexes activate human endothelium involving the cell-signaling HMGB1-RAGE axis in the pathogenesis of lupus vasculitis. Lab Investig; J Tech Methods Pathol. 2013;93:626–38.CrossRefGoogle Scholar
  173. 173.
    Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–60.PubMedCrossRefGoogle Scholar
  174. 174.
    Ehlermann P, Eggers K, Bierhaus A, Most P, Weichenhan D, Greten J, et al. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products. Cardiovasc Diabetol. 2006;5:6.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Chavakis T, Bierhaus A, Al-Fakhri N, Schneider D, Witte S, Linn T, et al. The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment. J Exp Med. 2003;198:1507–15.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Frommhold D, Kamphues A, Hepper I, Pruenster M, Lukic IK, Socher I, et al. RAGE and ICAM-1 cooperate in mediating leukocyte recruitment during acute inflammation in vivo. Blood. 2010;116:841–9.PubMedCrossRefGoogle Scholar
  177. 177.
    Kirstein M, Brett J, Radoff S, Ogawa S, Stern D, Vlassara H. Advanced protein glycosylation induces transendothelial human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and aging. Proc Natl Acad Sci U S A. 1990;87:9010–4.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Lee BW, Chae HY, Kwon SJ, Park SY, Ihm J, Ihm SH. RAGE ligands induce apoptotic cell death of pancreatic beta-cells via oxidative stress. Int J Mol Med. 2010;26:813–8.PubMedGoogle Scholar
  179. 179.
    Li M, Song L, Gao X, Chang W, Qin X. Toll-like receptor 4 on islet [beta] cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes. Exp Mol Med. 2012;44:260–7.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Luciano Viviani G, Puddu A, Sacchi G, Garuti A, Storace D, Durante A, et al. Glycated fetal calf serum affects the viability of an insulin-secreting cell line in vitro. Metabolism. 2008;57:163–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Shu T, Zhu Y, Wang H, Lin Y, Ma Z, Han X. AGEs decrease insulin synthesis in pancreatic beta-cell by repressing Pdx-1 protein expression at the post-translational level. PLoS ONE. 2011;6, e18782.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Zhao Z, Zhao C, Zhang XH, Zheng F, Cai W, Vlassara H, et al. Advanced glycation end products inhibit glucose-stimulated insulin secretion through nitric oxide-dependent inhibition of cytochrome C oxidase and adenosine triphosphate synthesis. Endocrinology. 2009;150:2569–76.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sherman S. Leung
    • 1
    • 2
  • Josephine M. Forbes
    • 1
    • 3
  • Danielle J. Borg
    • 1
  1. 1.Glycation and Diabetes, Mater Research Institute, Translational Research InstituteThe University of QueenslandBrisbaneAustralia
  2. 2.School of Biomedical SciencesThe University of QueenslandBrisbaneAustralia
  3. 3.Mater Clinical School, School of MedicineThe University of QueenslandBrisbaneAustralia

Personalised recommendations